Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro

dc.contributor.advisorNarváez Tovar, Carlos Albertospa
dc.contributor.advisorGarzón Alvarado, Diego Alexanderspa
dc.contributor.authorRamírez Rodríguez, Carlos Andrésspa
dc.contributor.orcidRamirez Rodriguez, Carlos Andres [0000-0001-6592-9804]spa
dc.contributor.researchgroupInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)spa
dc.contributor.researchgrouplaboratorio de Biomiméticos: Grupo de Mecanobiología de Órganos y Tejidosspa
dc.date.accessioned2024-10-16T13:03:35Z
dc.date.available2024-10-16T13:03:35Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEl objetivo principal de esta investigación es determinar el efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por procesos de fotopolimerización en la rugosidad superficial de scaffolds que puedan ser utilizados en cultivo de tejido óseo in vitro. La metodología seguida abarcó la definición de los requerimientos fundamentales para los scaffolds empleados en cultivo de tejido óseo in vitro, la determinación de los parámetros geométricos y dimensionales de las celdas unitarias estudiadas; esto por medio de mapas de manufacturabildiad calculados, considerando las dos formas de construir las celdas TPMS (Walled y Offset), el tamaño de poro adecuado, la porosidad y las condiciones de manufacturabilidad dadas por la permeabilidad y la construcción de espesores delgados mediante el proceso de fotopolimerización MSLA. Posteriormente se realizó la fabricación y medición de la rugosidad superficial de acuerdo con el diseño experimental de Taguchi definido con un arreglo L9; y por último, se desarrolló el análisis estadístico para identificar el efecto que tienen los factores estudiados sobre la rugosidad superficial medida en Sa y Ra. Los resultados indicaron que el Giroide, especialmente el Giroide Walled, tiene el mayor espacio de diseño. Sin embargo, se destacó que el Giroide Offset demostró ser más eficiente en la construcción de espesores delgados y presentó una mayor permeabilidad en comparación con las demás TPMS estudiadas. Luego de un estudio exploratorio y su posterior análisis, se definieron los factores específicos para la investigación que corresponden a: el tamaño de celda unitaria, con niveles de 1,5 mm, 1,75 mm y 2,0 mm, el Offset con niveles de -0,2 mm, -0,1 mm y 0,0 mm, por último, el espesor de capa con niveles de 0,03 mm, 0,05 mm y 0,1 mm. Los valores de la rugosidad superficial Sa obtenidos oscilan, en promedio, entre 10,2 y 29,5 µm. Los valores de Ra en dirección longitudinal (RaL) oscilan, en promedio, entre 7,45 y 24,35 µm, mientras que los de Ra en dirección transversal (RaT) la hacen, entre 2,71 y 5,95 µm. Del análisis de estos resultados se evidenció que existe un cambio en el valor de la rugosidad superficial entre tratamientos; es decir, existe influencia de alguno de los factores. Además, los tratamientos se pueden agrupar según el espesor de capa, es decir, aquellos que comparten el mismo espesor de capa muestran resultados muy cercanos. De forma general, se observó que la variabilidad de los datos aumenta con el espesor de capa. Las pruebas estadísticas aplicadas mostraron que el espesor de capa es el único factor que afecta significativamente las variables Sa y RaL. Sin embargo, para RaT, tanto el tamaño de celda unitaria como el espesor de capa son significativos. En conclusión, se establece que el espesor de capa es el factor más influyente en la rugosidad superficial, independientemente de la dirección de medición (Texto tomado de la fuente).spa
dc.description.abstractThe main objective of this research is to determine the effect of the geometric parameters of the TPMS unit cell and the printing parameters by photopolymerization processes on the surface roughness of scaffolds that can be used in in vitro bone tissue cultivation. The methodology followed encompassed the definition of the fundamental requirements for scaffolds used in in vitro bone tissue cultivation, the determination of the geometric and dimensional parameters of the studied unit cells; this was done through calculated manufacturability maps, considering the two ways of constructing TPMS cells (Walled and Offset), the appropriate pore size, porosity, and manufacturability conditions given by permeability and the construction of thin thicknesses. Subsequently, the manufacturing and measurement of surface roughness were carried out according to the Taguchi experimental design defined with an L9 array, and finally, statistical analysis was developed to identify the effect of the studied factors on surface roughness measured in Sa and Ra. The results indicated that the Gyroid, especially the Walled Gyroid, has the largest design space. However, it was highlighted that the Offset Gyroid proved to be more efficient in constructing thin thicknesses and showed higher permeability compared to the other TPMS studied. After an exploratory study and subsequent analysis, specific factors for the research were defined, corresponding to the unit cell size with levels of 1.5 mm, 1.75 mm, and 2.0 mm, the Offset with levels of -0.2 mm, -0.1 mm, and 0.0 mm, and finally, the layer thickness with levels of 0,03 mm, 0,05 mm, and 0,1 mm. The values of the Sa surface roughness obtained range, on average, between 10.2 and 29.5 µm. The values of Ra in the longitudinal direction (RaL) range, on average, between 7.45 and 24.35 µm, while those of Ra in the transverse direction (RaT) range between 2.71 and 5.95 µm. From the analysis of these results, it was evident that there is a change in the value of surface roughness between treatments; that is, there is an influence of some factors. Additionally, the treatments can be grouped according to the layer thickness; in other words, those sharing the same layer thickness show very close results. In general, it was observed that the variability of the data increases with the layer thickness. The applied statistical tests showed that layer thickness is the only factor that significantly affects the variables Sa and RaL. However, for RaT, both the unit cell size and layer thickness are significant. In conclusion, it is established that layer thickness is the most influential factor in surface roughness, regardless of the measurement direction.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Materiales y Procesosspa
dc.description.researchareaProcesos de manufactura y metalurgiaspa
dc.format.extentxvi, 144 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86970
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesA. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater, vol. 62, pp. 1–28, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.08.030.spa
dc.relation.referencesH. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater Today Commun, vol. 24, p. 101024, Sep. 2020, doi: 10.1016/J.MTCOMM.2020.101024.spa
dc.relation.referencesM. M. Stevens, “Biomaterials for bone tissue engineering,” Materials Today, vol. 11, no. 5, pp. 18–25, May 2008, doi: 10.1016/S1369-7021(08)70086-5.spa
dc.relation.referencesJ. C. Reichert et al., “Custom-made composite scaffolds for segmental defect repair in long bones,” Int Orthop, vol. 35, no. 8, pp. 1229–1236, Aug. 2011, doi: 10.1007/S00264-010-1146-X.spa
dc.relation.referencesR. Calvo, D. Figueroa, C. Díaz-Ledezma, A. Vaisman, and F. Figueroa, “Aloinjertos óseos y la función del banco de huesos,” Rev Med Chil, vol. 139, no. 5, pp. 660–666, May 2011, doi: 10.4067/S0034-98872011000500015.spa
dc.relation.referencesJ. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective,” Bone Res, vol. 1, no. 3, pp. 216–248, Sep. 2013, doi: 10.4248/BR201303002.spa
dc.relation.referencesG. M. Crane, S. L. Ishaug, and A. G. Mikos, “Bone tissue engineering,” Nat Med, vol. 1, no. 12, pp. 1322–1324, 1995, doi: 10.1038/NM1295-1322.spa
dc.relation.referencesC. R. M. Black, V. Goriainov, D. Gibbs, J. Kanczler, R. S. Tare, and R. O. C. Oreffo, “Bone Tissue Engineering,” Curr Mol Biol Rep, vol. 1, no. 3, p. 132, Sep. 2015, doi: 10.1007/S40610-015-0022-2.spa
dc.relation.referencesR. C. de Azevedo Gonçalves Mota, E. O. da Silva, F. F. de Lima, L. R. de Menezes, and A. C. S. Thiele, “3D Printed Scaffolds as a New Perspective for Bone Tissue Regeneration: Literature Review,” Materials Sciences and Applications, vol. 07, no. 08, pp. 430–452, 2016, doi: 10.4236/MSA.2016.78039.spa
dc.relation.referencesD. Barba, E. Alabort, and R. C. Reed, “Synthetic bone: Design by additive manufacturing,” Acta Biomater, vol. 97, pp. 637–656, Oct. 2019, doi: 10.1016/J.ACTBIO.2019.07.049.spa
dc.relation.referencesK. Dave and V. G. Gomes, “Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity,” Materials Science and Engineering: C, vol. 105, p. 110078, Dec. 2019, doi: 10.1016/J.MSEC.2019.110078.spa
dc.relation.referencesR. E. McClelland, R. Dennis, L. M. Reid, J. P. Stegemann, B. Palsson, and J. M. Macdonald, “Tissue Engineering,” Introduction to Biomedical Engineering, pp. 273–357, Jan. 2012, doi: 10.1016/B978-0-12-374979-6.00006-X.spa
dc.relation.referencesF. Berthiaume and M. L. Yarmush, “Tissue Engineering,” Encyclopedia of Physical Science and Technology, pp. 817–842, Jan. 2003, doi: 10.1016/B0-12-227410-5/00783-3.spa
dc.relation.referencesL. Di Silvio, “Bone tissue engineering and biomineralization,” Tissue Engineering Using Ceramics and Polymers, pp. 319–331, Jan. 2007, doi: 10.1533/9781845693817.2.319.spa
dc.relation.referencesA. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater, vol. 62, pp. 1–28, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.08.030.spa
dc.relation.referencesS. Tajvar, A. Hadjizadeh, and S. S. Samandari, “Scaffold degradation in bone tissue engineering: An overview,” Int Biodeterior Biodegradation, vol. 180, p. 105599, May 2023, doi: 10.1016/J.IBIOD.2023.105599.spa
dc.relation.referencesJ. Feng, J. Fu, X. Yao, and Y. He, “Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications,” International Journal of Extreme Manufacturing, vol. 4, no. 2, p. 022001, Mar. 2022, doi: 10.1088/2631-7990/AC5BE6.spa
dc.relation.references“Old and New Blocks: Walled TPMS (deprecated) | Community.” Accessed: Jul. 29, 2023. [Online]. Available: https://community.ntop.com/discussion/old-and-new-blocks-walled-tpms-deprecatedspa
dc.relation.referencesF. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Hüttig, “Surface characteristics of dental implants: A review,” Dental Materials, vol. 34, no. 1, pp. 40–57, Jan. 2018, doi: 10.1016/J.DENTAL.2017.09.007.spa
dc.relation.referencesA. Wennerberg and T. Albrektsson, “Effects of titanium surface topography on bone integration: a systematic review,” Clin Oral Implants Res, vol. 20, no. SUPPL. 4, pp. 172–184, Sep. 2009, doi: 10.1111/J.1600-0501.2009.01775.X.spa
dc.relation.referencesN. I. Jaramillo Gómez, “Desarrollo de un scaffold para regeneración ósea mediante impresión 3D de una pasta cerámica compuesta de una mezcla de fosfatos de calcio y biovidrio.”spa
dc.relation.referencesM. E. Furth and A. Atala, “Tissue Engineering: Future Perspectives,” Principles of Tissue Engineering: Fourth Edition, pp. 83–123, Jan. 2014, doi: 10.1016/B978-0-12-398358-9.00006-9.spa
dc.relation.referencesM. Filippi, G. Born, M. Chaaban, and A. Scherberich, “Natural Polymeric Scaffolds in Bone Regeneration,” Front Bioeng Biotechnol, vol. 8, p. 532791, May 2020, doi: 10.3389/FBIOE.2020.00474/BIBTEX.spa
dc.relation.referencesC. M. Moysidou, C. Barberio, and R. M. Owens, “Advances in Engineering Human Tissue Models,” Front Bioeng Biotechnol, vol. 8, p. 620962, Jan. 2021, doi: 10.3389/FBIOE.2020.620962/BIBTEX.spa
dc.relation.referencesG. Battafarano et al., “Strategies for Bone Regeneration: From Graft to Tissue Engineering,” International Journal of Molecular Sciences 2021, Vol. 22, Page 1128, vol. 22, no. 3, p. 1128, Jan. 2021, doi: 10.3390/IJMS22031128.spa
dc.relation.referencesN. Kladovasilakis et al., “Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing,” J Mech Behav Biomed Mater, vol. 141, p. 105796, May 2023, doi: 10.1016/J.JMBBM.2023.105796.spa
dc.relation.referencesG. L. Koons, M. Diba, and A. G. Mikos, “Materials design for bone-tissue engineering,” Nature Reviews Materials 2020 5:8, vol. 5, no. 8, pp. 584–603, Jun. 2020, doi: 10.1038/s41578-020-0204-2.spa
dc.relation.referencesR. Florencio-Silva, G. R. D. S. Sasso, E. Sasso-Cerri, M. J. Simões, and P. S. Cerri, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/421746.spa
dc.relation.referencesR. Fattahi, F. M. Chamkhorami, N. Taghipour, and S. H. Keshel, “The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article,” Tissue Cell, vol. 76, Jun. 2022, doi: 10.1016/J.TICE.2022.101748.spa
dc.relation.referencesA. I. Alford, K. M. Kozloff, and K. D. Hankenson, “Extracellular matrix networks in bone remodeling,” Int J Biochem Cell Biol, vol. 65, pp. 20–31, May 2015, doi: 10.1016/J.BIOCEL.2015.05.008.spa
dc.relation.referencesC. Gentili/snm, >, and R. Cancedda, “Cartilage and bone extracellular matrix,” Curr Pharm Des, vol. 15, no. 12, pp. 1334–1348, Mar. 2009, doi: 10.2174/138161209787846739.spa
dc.relation.references“Histología: texto y atlas color con biología celular y molecular - Michael H. Ross, Wojciech Pawlina - Google Libros.” Accessed: Jul. 26, 2023. [Online]. Available: https://books.google.es/books?id=NxYmIRZQi2oC&printsec=frontcover&hl=es#v=onepage&q&f=falsespa
dc.relation.referencesE. Hardy and C. Fernandez-Patron, “Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases,” Front Physiol, vol. 11, p. 500305, Feb. 2020, doi: 10.3389/FPHYS.2020.00047/BIBTEX.spa
dc.relation.referencesM. Ansari, “Bone tissue regeneration: biology, strategies and interface studies,” Prog Biomater, vol. 8, no. 4, pp. 223–237, Dec. 2019, doi: 10.1007/S40204-019-00125-Z/FIGURES/5.spa
dc.relation.referencesM. S. Carvalho, J. M. S. Cabral, C. L. da Silva, and D. Vashishth, “Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix,” Polymers 2021, Vol. 13, Page 1095, vol. 13, no. 7, p. 1095, Mar. 2021, doi: 10.3390/POLYM13071095.spa
dc.relation.referencesJ. R. Caeiro, P. González, and D. Guede, “Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea,” Revista de Osteoporosis y Metabolismo Mineral, vol. 5, no. 2, pp. 99–108, Jun. 2013, doi: 10.4321/S1889-836X2013000200007.spa
dc.relation.referencesY. Liu, D. Luo, and T. Wang, “Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering,” Small, vol. 12, no. 34, pp. 4611–4632, Sep. 2016, doi: 10.1002/SMLL.201600626.spa
dc.relation.referencesJ. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys, vol. 20, no. 2, pp. 92–102, Mar. 1998, doi: 10.1016/S1350-4533(98)00007-1.spa
dc.relation.referencesX. Wang et al., “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review,” Biomaterials, vol. 83, pp. 127–141, Mar. 2016, doi: 10.1016/J.BIOMATERIALS.2016.01.012.spa
dc.relation.referencesC. Frantz, K. M. Stewart, and V. M. Weaver, “The extracellular matrix at a glance,” J Cell Sci, vol. 123, no. 24, pp. 4195–4200, Dec. 2010, doi: 10.1242/JCS.023820.spa
dc.relation.referencesL. Di Silvio and P. Jayakumar, “Cellular response to osteoinductive materials in orthopaedic surgery,” Cellular Response to Biomaterials, pp. 313–343, Jan. 2009, doi: 10.1533/9781845695477.2.313.spa
dc.relation.referencesL. Hughes, C. P. Charalambous, and A. Aljawadi, “Engineering advances in promoting bone union,” Advances in Medical and Surgical Engineering, pp. 5–18, Jan. 2020, doi: 10.1016/B978-0-12-819712-7.00002-4.spa
dc.relation.referencesB. Buranawat, P. Kalia, and L. Di Silvio, “Vascularisation of tissue-engineered constructs,” Standardisation in Cell and Tissue Engineering: Methods and Protocols, pp. 77–103a, Jan. 2013, doi: 10.1533/9780857098726.1.77.spa
dc.relation.referencesL. T. Chau, J. E. Frith, R. J. Mills, D. J. Menzies, D. M. Titmarsh, and J. J. Cooper-White, “Microfluidic devices for developing tissue scaffolds,” Microfluidic Devices for Biomedical Applications, pp. 363–387, Jan. 2013, doi: 10.1533/9780857097040.3.363.spa
dc.relation.referencesR. Lemos, F. R. Maia, R. L. Reis, and J. M. Oliveira, “Engineering of Extracellular Matrix-Like Biomaterials at Nano- and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering,” Adv Nanobiomed Res, vol. 2, no. 2, p. 2100116, Feb. 2022, doi: 10.1002/ANBR.202100116.spa
dc.relation.referencesR. Lemos, F. R. Maia, R. L. Reis, and J. M. Oliveira, “Engineering of Extracellular Matrix-Like Biomaterials at Nano- and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering,” Adv Nanobiomed Res, vol. 2, no. 2, p. 2100116, Feb. 2022, doi: 10.1002/ANBR.202100116.spa
dc.relation.referencesM. Rahman et al., “3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration,” Bioact Mater, vol. 6, no. 11, pp. 4083–4095, Nov. 2021, doi: 10.1016/J.BIOACTMAT.2021.01.013.spa
dc.relation.referencesA. Przekora, “The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications,” Mater Sci Eng C Mater Biol Appl, vol. 97, pp. 1036–1051, Apr. 2019, doi: 10.1016/J.MSEC.2019.01.061.spa
dc.relation.referencesS. J. Gutiérrez-Prieto, S. J. Perdomo-Lara, J. M. Diaz-Peraza, and L. G. Sequeda-Castañeda, “Analysis of In Vitro Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry,” Adv Pharmacol Sci, vol. 2019, 2019, doi: 10.1155/2019/5420752.spa
dc.relation.referencesM. N. Collins, G. Ren, K. Young, S. Pina, R. L. Reis, and J. M. Oliveira, “Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering,” Adv Funct Mater, vol. 31, no. 21, p. 2010609, May 2021, doi: 10.1002/ADFM.202010609.spa
dc.relation.referencesH. P. Felgueiras, J. C. Antunes, M. C. L. Martins, and M. A. Barbosa, “Fundamentals of protein and cell interactions in biomaterials,” Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair, pp. 1–27, Jan. 2018, doi: 10.1016/B978-0-08-100803-4.00001-2.spa
dc.relation.referencesD. R. Schmidt, H. Waldeck, and W. J. Kao, “Protein Adsorption to Biomaterials,” Biological Interactions on Materials Surfaces, pp. 1–18, 2009, doi: 10.1007/978-0-387-98161-1_1.spa
dc.relation.referencesQ. Wei et al., “Protein interactions with polymer coatings and biomaterials,” Angew Chem Int Ed Engl, vol. 53, no. 31, pp. 8004–8031, Jul. 2014, doi: 10.1002/ANIE.201400546.spa
dc.relation.referencesF. Poncin-Epaillard et al., “Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules,” J Funct Biomater, vol. 3, no. 3, p. 528, Aug. 2012, doi: 10.3390/JFB3030528.spa
dc.relation.referencesP. Thevenot, W. Hu, and L. Tang, “SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY,” Curr Top Med Chem, vol. 8, no. 4, p. 270, Mar. 2008, doi: 10.2174/156802608783790901.spa
dc.relation.referencesM. Tagaya, “In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility,” Polymer Journal 2015 47:9, vol. 47, no. 9, pp. 599–608, Jul. 2015, doi: 10.1038/pj.2015.43.spa
dc.relation.referencesK. Metavarayuth, P. Sitasuwan, X. Zhao, Y. Lin, and Q. Wang, “Influence of Surface Topographical Cues on the Differentiation of Mesenchymal Stem Cells in Vitro,” ACS Biomater Sci Eng, vol. 2, no. 2, pp. 142–151, Feb. 2016, doi: 10.1021/ACSBIOMATERIALS.5B00377.spa
dc.relation.referencesE. Ruoslahti and M. D. Pierschbacher, “New perspectives in cell adhesion: RGD and integrins,” Science, vol. 238, no. 4826, pp. 491–497, 1987, doi: 10.1126/SCIENCE.2821619.spa
dc.relation.referencesN. O. Carragher and M. C. Frame, “Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion,” Trends Cell Biol, vol. 14, no. 5, pp. 241–249, May 2004, doi: 10.1016/J.TCB.2004.03.011.spa
dc.relation.referencesV. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nature Reviews Molecular Cell Biology 2006 7:4, vol. 7, no. 4, pp. 265–275, Feb. 2006, doi: 10.1038/nrm1890.spa
dc.relation.referencesJ. Han et al., “Surface Roughness and Biocompatibility of Polycaprolactone Bone Scaffolds: An Energy-Density-Guided Parameter Optimization for Selective Laser Sintering,” Front Bioeng Biotechnol, vol. 10, p. 1, Jul. 2022, doi: 10.3389/FBIOE.2022.888267/FULL.spa
dc.relation.referencesA. Barfeie, J. Wilson, and J. Rees, “Implant surface characteristics and their effect on osseointegration,” British Dental Journal 2015 218:5, vol. 218, no. 5, pp. E9–E9, Mar. 2015, doi: 10.1038/sj.bdj.2015.171.spa
dc.relation.references“Medición de rugosidad superficial: Parámetros | Olympus.” Accessed: Jan. 25, 2024. [Online]. Available: https://www.olympus-ims.com/es/metrology/surface-roughness-measurement-portal/parameters/spa
dc.relation.references“Medición de la rugosidad superficial: Evaluación de parámetros | Olympus.” Accessed: Nov. 05, 2023. [Online]. Available: https://www.olympus-ims.com/es/metrology/surface-roughness-measurement-portal/evaluating-parameters/#!cms[focus]=01spa
dc.relation.referencesG. B. Valverde, R. Jimbo, H. S. Teixeira, E. A. Bonfante, M. N. Janal, and P. G. Coelho, “Evaluation of surface roughness as a function of multiple blasting processing variables,” Clin Oral Implants Res, vol. 24, no. 2, pp. 238–242, 2013, doi: 10.1111/J.1600-0501.2011.02392.X.spa
dc.relation.references“Rugosidad Superficial”.spa
dc.relation.referencesW. Yang et al., “Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells,” Materials Science and Engineering: C, vol. 60, pp. 45–53, Mar. 2016, doi: 10.1016/J.MSEC.2015.11.012.spa
dc.relation.referencesA. B. Faia-Torres et al., “Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study,” Acta Biomater, vol. 28, pp. 64–75, Dec. 2015, doi: 10.1016/J.ACTBIO.2015.09.028.spa
dc.relation.referencesC. Yang, U. Tartaglino, and B. N. J. Persson, “Influence of surface roughness on superhydrophobicity,” Phys Rev Lett, vol. 97, no. 11, p. 116103, Sep. 2006, doi: 10.1103/PHYSREVLETT.97.116103/FIGURES/6/MEDIUM.spa
dc.relation.referencesS. Vermeulen et al., “Expanding Biomaterial Surface Topographical Design Space through Natural Surface Reproduction,” Advanced Materials, vol. 33, no. 31, p. 2102084, Aug. 2021, doi: 10.1002/ADMA.202102084.spa
dc.relation.referencesP. Han, G. A. Gomez, G. N. Duda, S. Ivanovski, and P. S. P. Poh, “Scaffold geometry modulation of mechanotransduction and its influence on epigenetics,” Acta Biomater, vol. 163, pp. 259–274, Jun. 2023, doi: 10.1016/J.ACTBIO.2022.01.020.spa
dc.relation.referencesS. J. P. Callens, R. J. C. Uyttendaele, L. E. Fratila-Apachitei, and A. A. Zadpoor, “Substrate curvature as a cue to guide spatiotemporal cell and tissue organization,” Biomaterials, vol. 232, Feb. 2020, doi: 10.1016/J.BIOMATERIALS.2019.119739.spa
dc.relation.referencesM. Werner, N. A. Kurniawan, and C. V. C. Bouten, “Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design,” Materials (Basel), vol. 13, no. 4, Feb. 2020, doi: 10.3390/MA13040963.spa
dc.relation.referencesL. Iturriaga, K. D. Van Gordon, G. Larrañaga-Jaurrieta, and S. Camarero-Espinosa, “Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration,” Adv Nanobiomed Res, vol. 1, no. 12, p. 2100068, Dec. 2021, doi: 10.1002/ANBR.202100068.spa
dc.relation.referencesM. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/729076.spa
dc.relation.references“4 formas de calcular la porosidad - wikiHow.” Accessed: Jan. 20, 2024. [Online]. Available: https://es.wikihow.com/calcular-la-porosidadspa
dc.relation.referencesS. J. P. Callens, D. C. Tourolle né Betts, R. Müller, and A. A. Zadpoor, “The local and global geometry of trabecular bone,” Acta Biomater, vol. 130, pp. 343–361, Aug. 2021, doi: 10.1016/J.ACTBIO.2021.06.013.spa
dc.relation.referencesA. Graziano et al., “Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering,” J Cell Physiol, vol. 214, no. 1, pp. 166–172, Jan. 2008, doi: 10.1002/JCP.21175.spa
dc.relation.referencesA. A. Zadpoor, “Bone tissue regeneration: the role of scaffold geometry,” Biomater Sci, vol. 3, no. 2, pp. 231–245, Feb. 2015, doi: 10.1039/C4BM00291A.spa
dc.relation.referencesS. Ma et al., “Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting,” Mater Des, vol. 195, p. 109034, Oct. 2020, doi: 10.1016/J.MATDES.2020.109034.spa
dc.relation.referencesP. De, G. Juan, E. Arjona, R. Profesor, A. Juan, and P. Casas Rodríguez, “Caracterización de estructuras celulares TPMS manufacturadas aditivamente para aplicaciones de absorción de energía”.spa
dc.relation.references“Implicit modeling for engineering design | nTop.” Accessed: Aug. 07, 2023. [Online]. Available: https://www.ntop.com/resources/blog/implicit-modeling-for-mechanical-design/spa
dc.relation.referencesS. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck, “Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study,” Acta Biomater, vol. 8, no. 4, pp. 1648–1658, Apr. 2012, doi: 10.1016/J.ACTBIO.2011.12.021.spa
dc.relation.referencesJ. Santos, T. Pires, B. P. Gouveia, A. P. G. Castro, and P. R. Fernandes, “On the permeability of TPMS scaffolds,” J Mech Behav Biomed Mater, vol. 110, p. 103932, Oct. 2020, doi: 10.1016/J.JMBBM.2020.103932.spa
dc.relation.referencesA. P. G. Castro, T. Pires, J. E. Santos, B. P. Gouveia, and P. R. Fernandes, “Permeability versus Design in TPMS Scaffolds,” Materials, vol. 12, no. 8, 2019, doi: 10.3390/MA12081313.spa
dc.relation.referencesF. J. O’Brien, B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, and P. J. Prendergast, “The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering,” Technology and Health Care, vol. 15, no. 1, pp. 3–17, 2007, doi: 10.3233/THC-2007-15102.spa
dc.relation.referencesX. P. Tan, Y. J. Tan, C. S. L. Chow, S. B. Tor, and W. Y. Yeong, “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Materials Science and Engineering: C, vol. 76, pp. 1328–1343, Jul. 2017, doi: 10.1016/J.MSEC.2017.02.094.spa
dc.relation.referencesS. J. Hollister, “Porous scaffold design for tissue engineering,” Nat Mater, vol. 4, no. 7, pp. 518–524, 2005, doi: 10.1038/NMAT1421.spa
dc.relation.referencesY. Lu, L. L. Cheng, Z. Yang, J. Li, and H. Zhu, “Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure,” PLoS One, vol. 15, no. 9, p. e0238471, Sep. 2020, doi: 10.1371/JOURNAL.PONE.0238471.spa
dc.relation.referencesM. Lipowiecki, M. Ryvolova, A. Tottosi, S. Naher, and D. Brabazon, “Permeability of Rapid Prototyped Artificial Bone Scaffold Structures,” Adv Mat Res, vol. 445, pp. 607–612, Jan. 2012, doi: 10.4028/SCIENTIFIC5/AMR.445.607.spa
dc.relation.referencesS. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/J.TIBTECH.2012.07.005.spa
dc.relation.referencesX. Y. Zhang, G. Fang, and J. Zhou, “Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review,” Materials 2017, Vol. 10, Page 50, vol. 10, no. 1, p. 50, Jan. 2017, doi: 10.3390/MA10010050.spa
dc.relation.referencesK. Gupta and K. Meena, “Artificial bone scaffolds and bone joints by additive manufacturing: A review,” Bioprinting, vol. 31, p. e00268, Jun. 2023, doi: 10.1016/J.BPRINT.2023.E00268.spa
dc.relation.referencesA. Becerro, “Regeneración ósea mediante injertos personalizados: Una revisión bibliográfica de los métodos y materiales,” Labor dental clínica: Avances clínicos en odontoestomatología, ISSN 1888-4040, Vol. 21, No. 3, 2020, págs. 20-49, vol. 21, no. 3, pp. 20–49, 2020, Accessed: Jul. 31, 2023. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=8037640&info=resumen&idioma=ENGspa
dc.relation.references“(2) (PDF) Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.researchgate.net/publication/317003912_Techniques_for_manufacturing_polymer_scaffolds_with_potential_applications_in_tissue_engineeringspa
dc.relation.referencesA. Salerno and P. A. Netti, “Introduction to biomedical foams,” Biomedical Foams for Tissue Engineering Applications, pp. 3–39, Jan. 2014, doi: 10.1533/9780857097033.1.3.spa
dc.relation.referencesL. Suamte, A. Tirkey, J. Barman, and P. Jayasekhar Babu, “Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications,” Smart Materials in Manufacturing, vol. 1, p. 100011, Jan. 2023, doi: 10.1016/J.SMMF.2022.100011.spa
dc.relation.referencesP. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, p. 100235, Mar. 2022, doi: 10.1016/J.OCERAM.2022.100235.spa
dc.relation.referencesD. Mondal and T. L. Willett, “Enhanced mechanical performance of mSLA-printed biopolymer nanocomposites due to phase functionalization,” J Mech Behav Biomed Mater, vol. 135, p. 105450, Nov. 2022, doi: 10.1016/J.JMBBM.2022.105450.spa
dc.relation.referencesS. R. Gaikwad, N. H. Pawar, and S. U. Sapkal, “Comparative evaluation of 3D printed components for deviations in dimensional and geometrical features,” Mater Today Proc, vol. 59, pp. 297–304, Jan. 2022, doi: 10.1016/J.MATPR.2021.11.157.spa
dc.relation.references“Impresión 3D SLA y MSLA: ¿en qué se diferencian? - 3Dnatives.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.3dnatives.com/es/diferencias-impresion-3d-sla-msla-280720222/spa
dc.relation.references“Resin 3D Printing – The Ultimate Guide | All3DP Pro.” Accessed: Jul. 31, 2023. [Online]. Available: https://all3dp.com/1/sla-resin-3d-printing-guide/spa
dc.relation.references“Laser SLA vs DLP vs Masked SLA 3D Printing Technology - The Ortho Cosmos.” Accessed: Jul. 31, 2023. [Online]. Available: https://theorthocosmos.com/laser-sla-vs-dlp-vs-masked-sla-3d-printing-technology-compared/spa
dc.relation.referencesP. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, p. 100235, Mar. 2022, doi: 10.1016/J.OCERAM.2022.100235.spa
dc.relation.referencesP. J. Bártolo, Ed., “Stereolithography,” 2011, doi: 10.1007/978-0-387-92904-0.spa
dc.relation.references“ANYCUBIC Photon Mono 4K”.spa
dc.relation.referencesP. Ożóg et al., “Engineering of silicone-based blends for the masked stereolithography of biosilicate/carbon composite scaffolds,” J Eur Ceram Soc, vol. 42, no. 13, pp. 6192–6198, Oct. 2022, doi: 10.1016/J.JEURCERAMSOC.2022.06.057.spa
dc.relation.referencesB. Nowacki, P. Kowol, M. Kozioł, P. Olesik, J. Wieczorek, and K. Wacławiak, “Effect of Post-Process Curing and Washing Time on Mechanical Properties of mSLA Printouts,” Materials, vol. 14, no. 17, Sep. 2021, doi: 10.3390/MA14174856.spa
dc.relation.references“Explicación de nFEP y la diferencia con FEP regular para impresión 3D.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.liqcreate.com/es/supportarticles/what-is-nfep-and-what-is-the-difference-with-regular-fep-in-resin-3d-printing/spa
dc.relation.referencesR. Brighenti, L. Marsavina, M. P. Marghitas, M. Montanari, A. Spagnoli, and F. Tatar, “The effect of process parameters on mechanical characteristics of specimens obtained via DLP additive manufacturing technology,” Mater Today Proc, vol. 78, pp. 331–336, Jan. 2023, doi: 10.1016/J.MATPR.2023.01.092.spa
dc.relation.referencesB. Zhang et al., “DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration,” Biomaterials Advances, vol. 145, p. 213261, Feb. 2023, doi: 10.1016/J.BIOADV.2022.213261.spa
dc.relation.referencesW. Z. Tan, C. H. Koo, W. J. Lau, W. C. Chong, and J. Y. Tey, “Recent advances in 3D printed membranes for water applications,” 60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization, and Applications, pp. 71–96, Jan. 2022, doi: 10.1016/B978-0-323-89977-2.00012-9.spa
dc.relation.referencesE. Andrzejewska, “Free Radical Photopolymerization of Multifunctional Monomers,” Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications, pp. 62–81, Jan. 2016, doi: 10.1016/B978-0-323-35321-2.00004-2.spa
dc.relation.referencesK. Mostafa, A. J. Qureshi, and C. Montemagno, “Tolerance control using subvoxel gray-scale DLP 3D printing,” ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 2, 2017, doi: 10.1115/IMECE2017-72232.spa
dc.relation.references“Optimal Layer Exposure Time for Perfect Resin Prints - Tutorial Australia.” Accessed: Aug. 01, 2023. [Online]. Available: https://core-electronics.com.au/guides/perfect-resin-print-exposure-setting/spa
dc.relation.references“Prefacio - Física universitaria volumen 3 | OpenStax.” Accessed: Aug. 01, 2023. [Online]. Available: https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/prefaciospa
dc.relation.references“2 reasons to reduce the %UV power for resin 3D-printing explained.” Accessed: Aug. 01, 2023. [Online]. Available: https://www.liqcreate.com/supportarticles/reduce-uv-power-resin/spa
dc.relation.referencesI. L. Tsiklin, A. V. Shabunin, A. V. Kolsanov, and L. T. Volova, “In Vivo Bone Tissue Engineering Strategies: Advances and Prospects,” Polymers (Basel), vol. 14, no. 15, Aug. 2022, doi: 10.3390/POLYM14153222.spa
dc.relation.referencesL. Vidal, C. Kampleitner, M. Brennan, A. Hoornaert, and P. Layrolle, “Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing,” Front Bioeng Biotechnol, vol. 8, Feb. 2020, doi: 10.3389/FBIOE.2020.00061.spa
dc.relation.referencesN. Andalib, M. Kehtari, E. Seyedjafari, N. Motamed, and M. M. Matin, “In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells,” Cell Tissue Bank, vol. 22, no. 3, pp. 467–477, Sep. 2021, doi: 10.1007/S10561-020-09894-5.spa
dc.relation.referencesP. K. Chandra, S. Soker, and A. Atala, “Tissue engineering: current status and future perspectives,” Principles of Tissue Engineering, pp. 1–35, Jan. 2020, doi: 10.1016/B978-0-12-818422-6.00004-6.spa
dc.relation.referencesA. G. Abdelaziz et al., “A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges,” Bioengineering, vol. 10, no. 2, Feb. 2023, doi: 10.3390/BIOENGINEERING10020204.spa
dc.relation.references“Next-Gen Engineering Design Software: nTop (formerly nTopology) | nTop.” Accessed: Jan. 20, 2024. [Online]. Available: https://www.ntop.com/spa
dc.relation.references“Anycubic Tienda oficial | Impresora 3D | Resina | Filamento – ANYCUBIC-ES.” Accessed: Jan. 21, 2024. [Online]. Available: https://www.anycubic.es/spa
dc.relation.references“Anycbic High Clear Resin - 1KG – ANYCUBIC-US.” Accessed: Jan. 22, 2024. [Online]. Available: https://www.anycubic.com/collections/high-clear-resin/products/high-clear-resinspa
dc.relation.referencesD. Dean et al., “Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual Phys Prototyp, vol. 7, no. 1, pp. 13–24, Mar. 2012, doi: 10.1080/17452759.2012.673152.spa
dc.relation.references“Diseño y analisis de experimentos montgomery ocr | PDF.” Accessed: Sep. 30, 2023. [Online]. Available: https://es.slideshare.net/jairjosemunozsuarez/diseo-y-analisis-de-experimentos-montgomery-ocrspa
dc.relation.referencesH. Gutiérrez Pulido and R. de la Vara Salazar, “Análisis y diseño de experimentos.” [Online]. Available: www.FreeLibros.orgspa
dc.relation.referencesA. P. Moreno Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, “Advances in additive manufacturing for bone tissue engineering scaffolds,” Materials Science and Engineering: C, vol. 100, pp. 631–644, Jul. 2019, doi: 10.1016/J.MSEC.2019.03.037.spa
dc.relation.referencesA. Dasan et al., “Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds,” Materials 2021, Vol. 14, Page 5083, vol. 14, no. 17, p. 5083, Sep. 2021, doi: 10.3390/MA14175083.spa
dc.relation.referencesD. Mondal et al., “mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair,” Materials Science and Engineering: C, vol. 130, p. 112456, Nov. 2021, doi: 10.1016/J.MSEC.2021.112456.spa
dc.relation.referencesM. G. Kim, “A cautionary note on the use of Cook’s distance,” Commun Stat Appl Methods, vol. 24, no. 3, pp. 317–324, May 2017, doi: 10.5351/CSAM.2017.24.3.317.spa
dc.relation.referencesS. Türkan, M. Candan, and T. Toktamı¸s, “OUTLIER DETECTION BY REGRESSION DIAGNOSTICS BASED ON ROBUST PARAMETER ESTIMATES,” Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 147–155, 2012.spa
dc.relation.references“Download the latest version of Lychee Slicer for SLA/Resin 3D Printers.” Accessed: Jan. 23, 2024. [Online]. Available: https://mango3d.io/downloads/spa
dc.relation.references“Herramientas estadísticas, de análisis de datos y de mejora de procesos | Minitab.” Accessed: Jan. 23, 2024. [Online]. Available: https://www.minitab.com/es-mx/spa
dc.relation.referencesJ. DURBIN and G. S. WATSON, “Comprobar si existe autocorrelación usando el estadístico de Durbin-Watson,” Biometrika, vol. 38, no. 1–2, pp. 159–178, 1951, doi: 10.1093/BIOMET/38.1-2.159.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::611 - Anatomía humana, citología, histologíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.decsPropiedades de Superficiespa
dc.subject.decsSurface Propertieseng
dc.subject.decsIngeniería de Tejidosspa
dc.subject.decsTissue Engineeringeng
dc.subject.lembTEJIDO OSEOspa
dc.subject.lembBoneeng
dc.subject.proposalTPMSeng
dc.subject.proposalTamaño de celda unitariaspa
dc.subject.proposalOffseteng
dc.subject.proposalTiempo de exposiciónspa
dc.subject.proposalRugosidad superficiaspa
dc.subject.proposalUnit cell sizeeng
dc.subject.proposalExposure timeeng
dc.subject.proposalSurface roughnesseng
dc.titleEfecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitrospa
dc.title.translatedEffect of the geometric parameters of the TPMS unit cell and the photopolymerization printing parameters on the surface roughness of scaffolds for in vitro bone tissue cultureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestria Carlos Andres Ramirez.pdf
Tamaño:
5.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: