Decomposition and respiration in high-andean forest soils at different successional stages

dc.contributor.advisorSalazar Villegas, Alejandro
dc.contributor.advisorSalgado Negret, Beatriz
dc.contributor.authorFranco Londoño, Catalina
dc.contributor.orcid0000-0002-3483-6792spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Catalina-Franco-2spa
dc.date.accessioned2023-06-06T20:20:34Z
dc.date.available2023-06-06T20:20:34Z
dc.date.issued2023-01
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractSe evaluó la respiración y la descomposición en los suelos comparando entre dos etapas sucesionales en bosques altoandinos. Estos procesos son una parte importante del balance de carbono global ya que están directamente ligados a la emisión y secuestro de carbono en el suelo. Sin embargo, no está claro cómo estos procesos pueden verse afectados por la etapa sucesional debido a las propiedades de la vegetación, como la estructura del bosque y la composición funcional. Medimos la respiración con un analizador de gases infrarrojo (IRGA, por sus siglas en inglés) y utilizamos el índice de bolsitas de té (TBI, por sus siglas en inglés) para medir la descomposición potencial de la hojarasca y el factor de estabilización. También medimos la estructura del bosque y la composición funcional a nivel de comunidad, así como la humedad, la temperatura y el pH del suelo. Luego, utilizamos un enfoque de modelo de ecuaciones estructurales para evaluar la cascada de efectos de la sucesión a los procesos del suelo, pasando a través de los atributos del bosque y el microclima. El modelo ajustado muestra que, mientras que la combinación de interacciones mutuamente compensatorias dio como resultado efectos totales neutrales sobre las tasas de respiración y descomposición del suelo, la sucesión juega un papel importante en la determinación de esto procesos del suelo. Este estudio brinda nuevas perspectivas sobre los mecanismos que impulsan el secuestro de carbono y la biodiversidad en los bosques de los Andes altos y destaca la importancia de considerar la sucesión en los esfuerzos de conservación y manejo de estos ecosistemas. (Texto tomado de la fuente)spa
dc.description.abstractThis study investigates the effects of succession on soil respiration and litter decomposition in high Andean forests. These processes are an important part of the global carbon budget as they are responsible for the emission and sequestration of carbon in the soil and can be affected by the successional stage due to the properties of vegetation, such as forest structure and functional composition. We measured actual soil respiration using an infrared gas analyzer and both potential litter decomposition and stabilization factor using the tea bag index. We characterized the stand structure and community-level functional composition. Microclimate variables, including soil water content, temperature, and pH, were also measured. A structural equation model approach was used to evaluate the cascade of effects from succession to soil processes, passing through forest attributes and microclimate. Results indicate that even though we did not find differences in the soil processes between the successional stages, succession plays an important role in determining soil process rates, but that the combination of mutually counterbalancing interactions results in neutral total effects. Our study provides insights into the mechanisms driving carbon sequestration and biodiversity in high Andean forests and highlights the importance of considering succession in conservation and management efforts in these ecosystems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.format.extent35 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83980
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAcuña, A. (2013). Potencial de regeneracion de rastrojos y bosques secundarios en la Sabana de Bogotá. PhD thesis, Pontificia Universidad Javeriana.spa
dc.relation.referencesAerts, R. (1997). Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79(3):439.spa
dc.relation.referencesAhmed, I. U., Assefa, D., and Godbold, D. L. (2022). Land-Use Change Depletes Quantity and Quality of Soil Organic Matter Fractions in Ethiopian Highlands. Forests, 13(1):1–20.spa
dc.relation.referencesAmoakwah, E., Lucas, S. T., Didenko, N. A., Rahman, M. A., and Islam, K. R. (2022). Impact of deforestation and temporal landuse change on soil organic carbon storage, quality, and lability. PLoS ONE, 17(8 August):1–25.spa
dc.relation.referencesAnselm, N., Brokamp, G., and Schütt, B. (2018). Assessment of land cover change in peri-urban high Andean environments south of Bogotá, Colombia. Land, 7(2):1–28.spa
dc.relation.referencesArmenteras, D., Gast, F., and Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes , Colombia. Biological Conservation, 113:245–256.spa
dc.relation.referencesArmenteras, D., Rodríguez, N., Retana, J., and Morales, M. (2011). Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change, 11(3):693–705spa
dc.relation.referencesArroyo-Rodríguez, V., Melo, F. P., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R., and Tabarelli, M. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92(1):326–340.spa
dc.relation.referencesAryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Esparza-Olguin, L., and Mendoza-Vega, J. (2014). Carbon stocks and changes in tropical secondary forests of southern Mexico. Agriculture, Ecosystems and Environment, 195:220–230spa
dc.relation.referencesBakker, M. A., Carreño-Rocabado, G., and Poorter, L. (2011). Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25(3):473–483.spa
dc.relation.referencesBautista-Cruz, A. and del Castillo, R. F. (2005). Soil Changes During Secondary Succession in a Tropical Montane Cloud Forest Area. Soil Science Society of America Journal, 69(3):906–914.spa
dc.relation.referencesBekku, Y., Koizumi, H., Nakadai, T., and Iwaki, H. (1995). Measurement of soil respiration using closed chamber method: An IRGA technique. Ecological Research, 10(3):369–373.spa
dc.relation.referencesBerg, B. and Meentemeyer, V. (2002). Litter quality in a north European transect versus carbon storage potential. Plant and Soil, 242(1):83–92.spa
dc.relation.referencesBongers, F., Chazdon, R. L., and Poorter, L. (2015). The potential of secondary forests. Science, 348(6235):642–643.spa
dc.relation.referencesCavelier, J., Estevez, J., Arjona, B., Cavelier, J., Estevez, J., and Arjona, B. (2015). Fine-root Biomass in Three Successional Stages of an Andean Cloud Forest in Colombia. Biotropica, 28(4):728–736.spa
dc.relation.referencesChapin, F. S., Matson, P. A., and Vitousek, P. M. (2011). Decomposition and Ecosystem Carbon Budgets. In Principles of Terrestrial Ecosystem, pages 183–228. Springer, second edi edition.spa
dc.relation.referencesChazdon, R. L., Letcher, S. G., Van Breugel, M., Martínez-Ramos, M., Bongers, F., and Finegan, B. (2007). Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1478):273–289spa
dc.relation.referencesChen, Y., Liu, Y., Zhang, J., Yang, W., He, R., and Deng, C. (2018). Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine foresttundra ecotone. Scientific Reports, 8:e14998.spa
dc.relation.referencesChokkalingam, U. and De Jong, W. (2001). Secondary forest: A working definition and typology. International Forestry Review, 3(1):19–26spa
dc.relation.referencesConnell, J. H. and Slatyer, R. (1977). Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. The American naturalist, 111(982):1119 – 1144.spa
dc.relation.referencesCornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10):1065–1071.spa
dc.relation.referencesDe Deyn, G. B., Cornelissen, J. H. C., and Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5):516–531spa
dc.relation.referencesde Godoy Fernandes, P. H., de Souza, A. L. T., Tanaka, M. O., and Sebastiani, R. (2021). Decomposition and stabilization of organic matter in an old-growth tropical riparian forest: effects of soil properties and vegetation structure. Forest Ecosystems, 8(1).spa
dc.relation.referencesDeng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P., and Sweeney, S. (2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110:1–7.spa
dc.relation.referencesDíaz, S., Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., and Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104(52):20684–20689spa
dc.relation.referencesDuan, B., Man, X., Cai, T., Xiao, R., and Ge, Z. (2020). Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing’an mountains, northeast China. Global Ecology and Conservation, 24:e01258.spa
dc.relation.referencesDuque, A., Peña, M. A., Cuesta, F., González-Caro, S., Kennedy, P., Phillips, O. L., CalderónLoor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J. A., Myers, J. A., Osinaga-Acosta, O., Peralvo, M., Pinto, E., Saatchi, S., Silman, M., Tello, J. S., Terán-Valdez, A., and Feeley, K. J. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12(1):1–10.spa
dc.relation.referencesEichenberg, D., Trogisch, S., Huang, Y., He, J. S., and Bruelheide, H. (2013). Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. Journal of Plant Ecology, 8(4):401–410.spa
dc.relation.referencesEtter R., A. and Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7):432–439spa
dc.relation.referencesFang, X., Zhao, L., Zhou, G., Huang, W., and Liu, J. (2015). Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 392(1-2):139–153.spa
dc.relation.referencesFlores-Rentería, D., Rincón, A., Morán-López, T., Hereş, A. M., Pérez-Izquierdo, L., Valladares, F., and Yuste, J. C. (2018). Habitat fragmentation is linked to cascading effects on soil functioning and CO2 emissions in Mediterranean holm-oak-forests. PeerJ, 2018(10)spa
dc.relation.referencesGromova, M. S., Matvienko, A. I., Makarov, M. I., Cheng, C. H., and Menyailo, O. V. (2020). Temperature Sensitivity (Q10) of Soil Basal Respiration as a Function of Available Carbon Substrate, Temperature, and Moisture. Eurasian Soil Science, 53(3):377–382.spa
dc.relation.referencesGuariguata, M. R. and Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3):185–206spa
dc.relation.referencesHardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and Ewers, R. M. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201:187–195.spa
dc.relation.referencesHastwell, G. T. and Morris, E. C. (2013). Structural features of fragmented woodland communities affect leaf litter decomposition rates. Basic and Applied Ecology, 14(4):298–308.spa
dc.relation.referencesHertel, D., Hölscher, D., Köhler, L., and Leuschner, C. (2006). Changes in Fine Root System Size and Structure During Secondary Succession in a Costa Rican Montane Oak Forest. In Kappelle, M., editor, Ecology and Conservation of Neotropical Montane Oak Forests, volume 185 of Ecological Studies, pages 283–297. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesHuang, W., Han, T., Liu, J., Wang, G., and Zhou, G. (2016). Changes in soil respiration components and their specific respiration along three successional forests in the subtropics. Functional Ecology, 30(8):1466–1474.spa
dc.relation.referencesHuang, Y., Zhou, G., Tang, X., Jiang, H., Zhang, D., and Zhang, Q. (2011). Estimated soil respiration rates decreased with long-term soil microclimate changes in successional forests in Southern China. Environmental Management, 48(6):1189–1197spa
dc.relation.referencesHurtado-M, A. B., Echeverry-Galvis, M. Á., Salgado-Negret, B., Muñoz, J. C., Posada, J. M., and Norden, N. (2020). Little trace of floristic homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 0:1–11.spa
dc.relation.referencesHurtado-M, A. B., Muñoz, J. C., Ángela Echeverry-Galvis, M., and Norden, N. (2022). Bosques sucesionales en Colombia: una oportunidad para la recuperación de paisajes transformados Successional forests in Colombia: an opportunity for recovery of transformed landscapes. Caldasia, 44(2):332–344spa
dc.relation.referencesJewell, M. D., Shipley, B., Low-Décarie, E., Tobner, C. M., Paquette, A., Messier, C., and Reich, P. B. (2017). Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos, 126(7):959–971.spa
dc.relation.referencesJiang, L., Ma, S., Zhou, Z., Zheng, T., Jiang, X., Cai, Q., Li, P., Zhu, J., Li, Y., and Fang, J. (2016). Soil respiration and its partitioning in different components in tropical primary and secondary mountain rain forests in Hainan Island, China. Journal of Plant Ecology, 10(5):791– 799.spa
dc.relation.referencesKeuskamp, J. A., Dingemans, B. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M. (2013). Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4(11):1070–1075.spa
dc.relation.referencesKovács, B., Tinya, F., and Ódor, P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agricultural and Forest Meteorology, 234-235:11–21.spa
dc.relation.referencesLal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123:1–22.spa
dc.relation.referencesLe Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Ivar Korsbakken, J., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C.,Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M., Munro, D. R., Nabel, J. E., Nakaoka, S. I., O’Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., Van Der Laan-Luijkx, I. T., Van Der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Zaehle, S., Quéré, C. L., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., and Barbero, L. (2016). Global Carbon Budget 2016. Earth System Science Data, 8:605–649.spa
dc.relation.referencesLebrija-Trejos, E., Meave, J. A., Poorter, L., Pérez-García, E. A., and Bongers, F. (2010). Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12(4):267–275.spa
dc.relation.referencesLefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5):573–579.spa
dc.relation.referencesLewis, D. B., Castellano, M. J., and Kaye, J. P. (2014). Forest succession, soil carbon accumulation, and rapid nitrogen storage in poorly remineralized soil organic matter. Ecology, 95(10):2687–2693spa
dc.relation.referencesLi, Y., Yang, F., Ou, Y., Zhang, D., Liu, J., Chu, G., Zhang, Y., Otieno, D., and Zhou, G. (2013). Changes in forest soil properties in different successional stages in lower tropical China. PLoS ONE, 8(11):1–10spa
dc.relation.referencesLin, L. C., Huang, P. H., and Weng, L. J. (2017). Selecting Path Models in SEM: A Comparison of Model Selection Criteria. Structural Equation Modeling, 24(6):855–869.spa
dc.relation.referencesLohbeck, M., Poorter, L., Martínez-Ramos, M., Bongers, F., and Craft, N. J. B. (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96(5):1242–1252.spa
dc.relation.referencesLohbeck, M., Poorter, L., Martínez-Ramos, M., Rodriguez-Velázquez, J., van Breugel, M., and Bongers, F. (2014). Changing drivers of species dominance during tropical forest succession. Functional Ecology, 28(4):1052–1058.spa
dc.relation.referencesLuyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E. J., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., and Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13:2509–2537.spa
dc.relation.referencesMarkesteijn, L., Poorter, L., Bongers, F., Paz, H., and Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191(2):480–495spa
dc.relation.referencesMayer, M., Sandén, H., Rewald, B., Godbold, D. L., and Katzensteiner, K. (2017). Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Functional Ecology, 31(5):1163–1172spa
dc.relation.referencesMcCook, L. J. (1994). Understanding ecological community succession: Causal models and theories, a review. Vegetatio, 110(2):115–147.spa
dc.relation.referencesMéndez-Alonzo, R., Paz, H., Zuluaga, R. C., Rosell, J. A., and Olson, M. E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93(11):2397–2406.spa
dc.relation.referencesMendoza S., J. E. and Etter R., A. (2002). Multitemporal analysis (1940-1996) of land cover changes in the southwestern Bogotá highplain (Colombia). Landscape and Urban Planning, 59(3):147–158spa
dc.relation.referencesMetzger, J. C., Wutzler, T., Dalla Valle, N., Filipzik, J., Grauer, C., Lehmann, R., Roggenbuck, M., Schelhorn, D., Weckmüller, J., Küsel, K., Totsche, K. U., Trumbore, S., and Hildebrandt, A. (2017). Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrological Processes, 31(22):3783–3795.spa
dc.relation.referencesMuñoz, J. C., Hurtado-M, A. B., and Norden, N. (2017). COMPOSICIÓN FLORÍSTICA DE TRES FRAGMENTOS DE BOSQUE ALTOANDINO EN LOS ALREDEDORES DE LA SABANA DE BOGOTÁ. Technical report, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C.spa
dc.relation.referencesNakai, T., Sumida, A., Kodama, Y., Hara, T., and Ohta, T. (2010). A comparison between various definitions of forest stand height and aerodynamic canopy height. Agricultural and Forest Meteorology, 150:1225–1233.spa
dc.relation.referencesOrrego, M., Ugawa, S., Inoue, A., Laplace, S., Kume, T., Koga, S., Hishi, T., and Enoki, T. (2022). Climate, Soil, and Plant Controls on Early-Stage Litter Decomposition in Moso Bamboo Stands at a Regional Scale. Frontiers in Forests and Global Change, 5(July):1–11spa
dc.relation.referencesPan, Y., Birdsey, R. A., Fang, J., Houghton, R. A., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333:988–993.spa
dc.relation.referencesPetraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano, D., Abeli, T., Orsenigo, S., and Carbognani, M. (2019). Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435(1-2):187–200.spa
dc.relation.referencesPfeifer, M. (2015). Manual to measure and model leaf area index and its spatial variability on local and landscape scale.spa
dc.relation.referencesPoorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, L., Bongers, F., Chazdon, R. L., Farrior, C. E., Kambach, S., Meave, J. A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Zambrano, A. M. A., Amani, B., Andrade, J. L., Brancalion, P. H., Broadbent, E. N., de Foresta, H., Dent, D. H., Derroire, G., DeWalt, S. J., Dupuy, J. M., Durán, S. M., Fantini, A. C., Finegan, B., Hernández-Jaramillo, A., Hernández-Stefanoni, J. L., Hietz, P., Junqueira, A. B., N’dja, J. K., Letcher, S. G., Lohbeck, M., López-Camacho, R., Martínez-Ramos, M., Melo, F. P., Mora, F., Müller, S. C., N’Guessan, A. E., Oberleitner, F., Ortiz-Malavassi, E., Pérez-García, E. A., Pinho, B. X., Piotto, D., Powers, J. S., Rodríguez-Buriticá, S., Rozendaal, D. M., Ruíz, J., Tabarelli, M., Teixeira, H. M., De Sá Barretto Sampaio, E. V., van der Wal,H., Villa, P. M., Fernandes, G. W., Santos, B. A., Aguilar-Cano, J., de Almeida-Cortez, J. S., Alvarez-Davila, E., Arreola-Villa, F., Balvanera, P., Becknell, J. M., Cabral, G. A., CastellanosCastro, C., de Jong, B. H., Nieto, J. E., Espírito-Santo, M. M., Fandino, M. C., García, H., García-Villalobos, D., Hall, J. S., Idárraga, A., Jiménez-Montoya, J., Kennard, D., MarínSpiotta, E., Mesquita, R., Nunes, Y. R., Ochoa-Gaona, S., Peña-Claros, M., Pérez-Cárdenas, N., Rodríguez-Velázquez, J., Villanueva, L. S., Schwartz, N. B., Steininger, M. K., Veloso, M. D., Vester, H. F., Vieira, I. C., Williamson, G. B., Zanini, K., and Hérault, B. (2021). Multidimensional tropical forest recovery. Science, 374(6573):1370–1376.spa
dc.relation.referencesPrescott, C. E. and Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498(July):119522.spa
dc.relation.referencesQuested, H., Eriksson, O., Fortunel, C., and Garnier, E. (2007). Plant traits relate to wholecommunity litter quality and decomposition following land use change. Functional Ecology, 21(6):1016–1026.spa
dc.relation.referencesRaich, J. W. and Tufekcioglu, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1):71–90.spa
dc.relation.referencesRawat, M., Arunachalam, K., and Arunachalam, A. (2015). Plant functional traits and carbon accumulation in forest. Climate Change and Environmental Sustainability, 3(1):1–12.spa
dc.relation.referencesRodtassana, C., Unawong, W., Yaemphum, S., Chanthorn, W., Chawchai, S., Nathalang, A., Brockelman, W. Y., and Tor-ngern, P. (2021). Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecology and Evolution, 11(21):15430–15443spa
dc.relation.referencesSalazar-Villegas, A., Blagodatskaya, E., and Dukes, J. S. (2016). Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture. Frontiers in Microbiology, 7(APR):1–10.spa
dc.relation.referencesSalazar-Villegas, A., Sulman, B. N., and Dukes, J. S. (2018). Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biology and Biochemistry, 116(October 2017):237–244.spa
dc.relation.referencesSalgado-Negret, B., Pulido Rodriguez, E. N., Cabrera, M., Ruiz Osorio, C., and Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In Salgado-Negret, B., editor, Ecología Funcional como apróxmación al estudo, conservación, manejo y conservación de la biodiversidad, chapter 2, pages 36–79. Editorial Alexander von Humboldt, Bogotá D.C.spa
dc.relation.referencesSarneel, J. M., Sundqvist, M. K., Molau, U., Björkman, M. P., and Alatalo, J. M. (2020). Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming. Science of the Total Environment, 724:1–8.spa
dc.relation.referencesSayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1):1–31.spa
dc.relation.referencesSchedlbauer, J. L. and Kavanagh, K. L. (2008). Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica. Forest Ecology and Management, 255(3-4):1326– 1335.spa
dc.relation.referencesSedjo, R. and Sohngen, B. (2012). Carbon sequestration in forests and soils. Annual Review of Resource Economics, 4:127–144spa
dc.relation.referencesSeidelmann, K. N., Scherer-Lorenzen, M., and Niklaus, P. A. (2016). Direct vs. Microclimatedriven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE, 11(8):1–17.spa
dc.relation.referencesSix, J., Frey, S. D., Thiet, R. K., and Batten, K. M. (2006). Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 70(2):555– 569.spa
dc.relation.referencesSøe, A. R. and Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiology, 25(11):1427–1436.spa
dc.relation.referencesStoy, P. C., Lin, H., Novick, K. A., Siqueira, M. B. S., and Juang, J. Y. (2014). The role of vegetation on the ecosystem radiative entropy budget and trends along ecological succession. Entropy, 16(7):3710–3731.spa
dc.relation.referencesSuseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S. (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18(1):336–348.spa
dc.relation.referencesTrivedi, P., Wallenstein, M. D., Delgado-Baquerizo, M., and Singh, B. K. (2018). Microbial modulators and mechanisms of soil carbon storage. In Soil Carbon Storage: Modulators, Mechanisms and Modeling, pages 73–115. Elsevierspa
dc.relation.referencesValentini, C. M. A., Sanches, L., De Paula, S. R., Vourlitis, G. L., De Nogueira, J. S., Pinto, O. B., and De Lobo, F. A. (2009). Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest mato grosso, brazil. Journal of Geophysical Research: Biogeosciences, 114(1):1–11.spa
dc.relation.referencesVargas-Terminel, M. L., Flores-Rentería, D., Sánchez-Mejía, Z. M., Rojas-Robles, N. E., Sandoval-Aguilar, M., Chávez-Vergara, B., Robles-Morua, A., Garatuza-Payan, J., and Yépez, E. A. (2022). Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Systems, 6(4):75spa
dc.relation.referencesWang, C., Ma, Y., Trogisch, S., Huang, Y., Geng, Y., Scherer-Lorenzen, M., and He, J. S. (2017). Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China. Journal of Plant Ecology, 10(1):36–46spa
dc.relation.referencesWardle, D. A., Bardgett, R. D., Walker, L. R., and Bonner, K. I. (2009). Among- and withinspecies variation in plant litter decomposition in contrasting long-term chronosequences. Functional Ecology, 23(2):442–453spa
dc.relation.referencesWeiss, M. and Baret, F. (2017). CAN _ EYE V6.4.91 user manual. INRA SCIENCE & IMPACTspa
dc.relation.referencesWen, Z., Zheng, H., Smith, J. R., and Ouyang, Z. (2021). Plant functional diversity mediates indirect effects of land-use intensity on soil water conservation in the dry season of tropical areas. Forest Ecology and Management, 480(18):118646.spa
dc.relation.referencesWright, S. J. (2010). The future of tropical forests. Annals of the New York Academy of Sciences, 1195:1–27.spa
dc.relation.referencesXiao, W., Ge, X., Zeng, L., Huang, Z., Lei, J., Zhou, B., and Li, M. (2014). Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China. PLoS ONE, 9(7):1–12.spa
dc.relation.referencesYou, S. J., Yin, Y., and Allen, H. E. (1999). Partitioning of organic matter in soils: Effects of pH and water/soil ratio. Science of the Total Environment, 227(2-3):155–160.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembHOJARASCA FORESTAL-BIODEGRADACIONspa
dc.subject.lembForest Litter - Biodegradationeng
dc.subject.lembCONSERVACION DE BOSQUESspa
dc.subject.lembForest conservationeng
dc.subject.proposalRespiración del suelospa
dc.subject.proposalDescomposición de hojarascaspa
dc.subject.proposalBosques secundariosspa
dc.subject.proposalSecuestro de carbonospa
dc.subject.proposalRasgos funcionalesspa
dc.subject.proposalÍndice de bolsas de téspa
dc.subject.proposalModelos de ecuaciones estructuralesspa
dc.subject.proposalBosques altoandinosspa
dc.subject.proposalSoil respirationeng
dc.subject.proposalLitter decompositioneng
dc.subject.proposalSecondary forestseng
dc.subject.proposalCarbon sequestrationeng
dc.subject.proposalFunctional traitseng
dc.subject.proposalTea Bag Indexeng
dc.subject.proposalStructural equation modelseng
dc.subject.proposalHigh-andean forestseng
dc.titleDecomposition and respiration in high-andean forest soils at different successional stageseng
dc.title.translatedDescomposición y respiración en suelos de bosques altoandinos en diferentes estados sucesionaleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018487881.2023.pdf
Tamaño:
2.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias- Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: