Pronóstico de velocidad de viento para generación eólica Offshore basado en programación genética

dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.authorGarrido Atencia, Oscar Alberto
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2021-06-01T17:19:53Z
dc.date.available2021-06-01T17:19:53Z
dc.date.issued2020
dc.description.abstractLas energías renovables han surgido como la alternativa más viable para solucionar los problemas que presentan las fuentes de generación convencionales. En este sentido, la generación eólica offshore cuenta con gran potencial de crecimiento para los próximos años es por esto que el presente trabajo plantea una metodología que implementa la programación genética para realizar pronósticos de vientos promedio a mediano y largo plazo, con el fin de minimizar la incertidumbre asociada a este tipo de generación. Para esto, inicialmente se realiza el planteamiento del algoritmo regresión simbólica híbrida por medio del cual se realizarán los pronósticos de vientos propuestos; realizando una descripción del funcionamiento de este. Posteriormente se realiza la implementación del algoritmo planteado en cuatro casos de estudio ubicados en zonas costeras y en islas, de tal manera que se disponga de históricos de datos meteorológicos con los cuales poder realizar las pruebas del algoritmo. Posterior a esto, se evaluarán los errores obtenidos para seleccionar una cantidad de datos para entrenamiento y prueba del algoritmo.spa
dc.description.abstractRenewable energies have emerged as the most viable alternative to solve the problems presented by conventional generation sources. offshore wind generation has great growth potential for the next years, which is why this work proposes a methodology that implements genetic programming to make forecasts of average winds in the medium and long term, to minimize the uncertainty associated with this kind of generation. To that, initially the approach of the hybrid symbolic regression algorithm is carried out by means of which the proposed wind forecasts will be made; making a description of how it works. Subsequently, the implementation of the algorithm proposed in four case studies located in coastal areas and on islands is carried out, so that historical meteorological data are available with which to carry out the algorithm tests. After this, the errors obtained will be evaluated to select an amount of data for training and testing the algorithm.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Eléctricaspa
dc.description.researchareaInteligencia Computacional aplicada al Sector Eléctricospa
dc.format.extent1 recurso en línea (82 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79586
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] C. Arriagada, “ANALISIS COMPARATIVO DE LA GOBERNABILIDAD DE MERCADOS DE GENERACION ELECTRICA,” PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA, 1998.spa
dc.relation.references[2] M. Deveci, E. Ozcan, and R. John, “Offshore wind farms: A fuzzy approach to site selection in a black sea region,” 2020 IEEE Texas Power Energy Conf. TPEC 2020, 2020, doi: 10.1109/TPEC48276.2020.9042530.spa
dc.relation.references[3] U. Cali, N. Erdogan, S. Kucuksari, and M. Argin, “TECHNO-ECONOMIC analysis of high potential offshore wind farm locations in Turkey,” Energy Strateg. Rev., vol. 22, no. November 2017, pp. 325–336, 2018, doi: 10.1016/j.esr.2018.10.007.spa
dc.relation.references[4] L. A. Barroso and A. J. Conejo, Decision making under uncertainty in electricity markets. 2006.spa
dc.relation.references[5] Y. Zhao, L. Ye, Z. Li, X. Song, Y. Lang, and J. Su, “A novel bidirectional mechanism based on time series model for wind power forecasting,” Appl. Energy, vol. 177, pp. 793–803, 2016, doi: https://doi.org/10.1016/j.apenergy.2016.03.096.spa
dc.relation.references[6] GWEC, “Global wind energy council report 2018,” Wind Glob. Counc. Energy, no. April, pp. 1–61, 2019, [Online]. Available: www.gwec.net.spa
dc.relation.references[7] A. E. Saleh, M. S. Moustafa, K. M. Abo-Al-Ez, and A. A. Abdullah, “A hybrid neuro-fuzzy power prediction system for wind energy generation,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 384–395, 2016, doi: 10.1016/j.ijepes.2015.07.039.spa
dc.relation.references[8] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods and advances in forecasting of wind power generation,” Renew. Energy, vol. 37, no. 1, pp. 1–8, 2012, doi: 10.1016/j.renene.2011.05.033.spa
dc.relation.references[9] M. Á. Vanegas Ramos, “Implementación de modelos locales en el espacio de fase para el pronóstico de variables hidrometeorológicas a partir de series de tiempo,” p. 398, 2011.spa
dc.relation.references[10] G. Riahy and M. Abedi, “Short term wind speed forecasting for wind turbine applications using linear prediction method,” Renew. Energy, vol. 33, pp. 35–41, Jan. 2008, doi: 10.1016/j.renene.2007.01.014.spa
dc.relation.references[11] Z. Lin and X. Liu, “Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network,” Energy, vol. 201, p. 117693, 2020, doi: https://doi.org/10.1016/j.energy.2020.117693.spa
dc.relation.references[12] C. Wan, Y. Song, Z. Xu, G. Yang, and A. H. Nielsen, “Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks,” Electr. Power Components Syst., vol. 44, no. 15, pp. 1656–1668, 2016, doi: 10.1080/15325008.2016.1198437.spa
dc.relation.references[13] S. Salcedo-Sanz, E. G. Ortiz-García, Á. M. Pérez-Bellido, A. Portilla-Figueras, and L. Prieto, “Short term wind speed prediction based on evolutionary support vector regression algorithms,” Expert Syst. Appl., vol. 38, no. 4, pp. 4052–4057, 2011, doi: 10.1016/j.eswa.2010.09.067.spa
dc.relation.references[14] A. Marvuglia and A. Messineo, “Monitoring of wind farms’ power curves using machine learning techniques,” Appl. Energy, vol. 98, no. May, pp. 574–583, 2012, doi: 10.1016/j.apenergy.2012.04.037.spa
dc.relation.references[15] V. Veloso de Melo and W. Banzhaf, “Automatic feature engineering for regression models with machine learning: An evolutionary computation and statistics hybrid,” Inf. Sci. (Ny)., vol. 430–431, no. November, pp. 287–313, 2018, doi: 10.1016/j.ins.2017.11.041.spa
dc.relation.references[16] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, “Probabilistic forecasting of wind power generation using extreme learning machine,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1033–1044, 2014, doi: 10.1109/TPWRS.2013.2287871.spa
dc.relation.references[17] Y. Zhang, K. Liu, L. Qin, and X. An, “Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods,” Energy Convers. Manag., vol. 112, pp. 208–219, 2016, doi: 10.1016/j.enconman.2016.01.023.spa
dc.relation.references[18] S. An, H. Shi, Q. Hu, X. Li, and J. Dang, “Fuzzy rough regression with application to wind speed prediction,” Inf. Sci. (Ny)., vol. 282, pp. 388–400, 2014, doi: 10.1016/j.ins.2014.03.090.spa
dc.relation.references[19] G. Santamaría-Bonfil, A. Reyes-Ballesteros, and C. Gershenson, “Wind speed forecasting for wind farms: A method based on support vector regression,” Renew. Energy, vol. 85, pp. 790–809, 2016, doi: 10.1016/j.renene.2015.07.004.spa
dc.relation.references[20] F. Andrés and A. Rodríguez, “Tendencias recientes en el pronóstico de velocidad de viento para generación eólica,” Universidad Nacional de Colombia, 2017.spa
dc.relation.references[21] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, “Optimal prediction intervals of wind power generation,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1166–1174, 2014, doi: 10.1109/TPWRS.2013.2288100.spa
dc.relation.references[22] H. Demolli, A. S. Dokuz, A. Ecemis, and M. Gokcek, “Wind power forecasting based on daily wind speed data using machine learning algorithms,” Energy Convers. Manag., vol. 198, no. July, p. 111823, 2019, doi: 10.1016/j.enconman.2019.111823.spa
dc.relation.references[23] T. G. Barbounis, J. B. Theocharis, M. C. Alexiadis, and P. S. Dokopoulos, “Long-term wind speed and power forecasting using local recurrent neural network models,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 273–284, 2006, doi: 10.1109/TEC.2005.847954.spa
dc.relation.references[24] C. Potter and M. Negnevitsky, “Very short-term wind forecasting for tasmanian power generation,” 2006 IEEE Power Eng. Soc. Gen. Meet. PES, vol. 21, no. 2, pp. 965–972, 2006, doi: 10.1109/pes.2006.1709044.spa
dc.relation.references[25] G. Giebel and E. Al., “The State of the Art in Short-Term Prediction of Wind Power,” ANEMOS.plus, no. January, pp. 1–110, 2011, doi: 10.13140/RG.2.1.2581.4485.spa
dc.relation.references[26] IEEE PES, “Open Data Sets « IEEE PES Intelligent Systems Subcommittee.” [Online]. Available: https://site.ieee.org/pes-iss/data-sets/.spa
dc.relation.references[27] NASA, “NASA POWER - Prediction Of Worldwide Energy Resources.” 2019, [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/.spa
dc.relation.references[28] “Solcast, 2019,” Global solar irradiance data and PV system power output data. https://solcast.com/.spa
dc.relation.references[29] “WunderMap® | Interactive Weather Map and Radar | Weather Underground.” 2019, [Online]. Available: https://www.wunderground.com.spa
dc.relation.references[30] W. B. Langdon, R. Poli, N. F. McPhee, and J. R. Koza, “Genetic programming: An introduction and tutorial, with a survey of techniques and applications,” in Studies in Computational Intelligence, vol. 115, 2008, pp. 927–1028.spa
dc.relation.references[31] S. Nguyen, M. Zhang, D. Alahakoon, and K. C. Tan, “Visualizing the evolution of computer programs for genetic programming [Research Frontier],” IEEE Comput. Intell. Mag., vol. 13, no. 4, pp. 77–94, 2018, doi: 10.1109/MCI.2018.2866731.spa
dc.relation.references[32] I. Icke and J. C. Bongard, “Improving genetic programming based symbolic regression using deterministic machine learning,” 2013 IEEE Congr. Evol. Comput. CEC 2013, no. June, pp. 1763–1770, 2013, doi: 10.1109/CEC.2013.6557774.spa
dc.relation.references[33] J. Žegklitz and P. Pošík, “Symbolic regression in dynamic scenarios with gradually changing targets,” Appl. Soft Comput. J., vol. 83, p. 105621, 2019, doi: 10.1016/j.asoc.2019.105621.spa
dc.relation.references[34] S. Chatterjee and A. S. Hadi, Regression Analysis by Example, 5th Editio. Wiley, 2013.spa
dc.relation.references[35] E. Cortés Pérez, A. Nuñez Rodríguez, R. E. Moreno De La Torre, O. Lastres Danguillecourt, and J. R. Dorrego Portela, “Forecast of Wind Speed with a Backpropagation Artificial Neural Network in the Isthmus of Tehuantepec Region in the State of Oaxaca, Mexico.,” Acta Univ., vol. 22, pp. 7–14, Dec. 2012, [Online]. Available: https://www.redalyc.org/articulo.oa?id=41623190001.spa
dc.relation.references[36] C. A. Martínez, “Problemas abiertos en la aplicación de la Regresión Simbólica en el pronóstico de series de tiempo,” Nacional de Colombia Sede Medellín, 2011.spa
dc.relation.references[37] E. Pérez, D. Bautista, F. Acevedo, and J. Pimentel, “Programación Genética Aplicada al Pronóstico de Viento en la Región del Istmo de Tehuantepec.,” 2° Congr. Int. Energías Renov., vol. 1, pp. 1–11, 2016, [Online]. Available: http://www.unistmo.edu.mx/~neto_144/papers/CIER_2016_Articulo.pdf.spa
dc.relation.references[38] J. Garcia, D. Alvarez, and S. Rivera, “Ensemble based optimization for electric demand forecast: Genetic programming and heuristic algorithms,” Rev. Int. Metod. Numer. para Calc. y Disen. en Ing., vol. 36, no. 3, pp. 1–12, 2020, doi: 10.23967/j.rimni.2020.07.001.spa
dc.relation.references[39] S. Manrique-Naranjo, M. Guzman, and S. Rodriguez, “Hybrid inference algorithm by combining genetic programming methods and nonlinear regression techniques,” no. June, 2018, doi: 10.17654/ETAI070010001. [40] A. Patelli, Genetic programming techniques for nonlinear systems identification, Rum Ed. 2011.spa
dc.relation.references[41] J. R. Koza, “Genetic programming as a means for programming computers by natural selection,” Stat. Comput., vol. 4, no. 2, pp. 87–112, 1994, doi: 10.1007/BF00175355.spa
dc.relation.references[42] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004.spa
dc.relation.references[43] S. Lumbreras and A. Ramos, “Offshore wind farm electrical design: a review,” Wind Energy, vol. 16, no. 3, pp. 459–473, Apr. 2013, doi: https://doi.org/10.1002/we.1498.spa
dc.relation.references[44] J. Tambke, M. Lange, U. Focken, J. O. Wolff, and J. A. T. Bye, “Forecasting offshore wind speeds above the North Sea,” Wind Energy, vol. 8, no. 1, pp. 3–16, 2005, doi: 10.1002/we.140.spa
dc.relation.references[45] J. Liu, X. Wang, and Y. Lu, “A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system,” Renew. Energy, vol. 103, pp. 620–629, 2017, doi: 10.1016/j.renene.2016.10.074.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalPronósticospa
dc.subject.proposalEnergía eólicaspa
dc.subject.proposalGeneración eólica offshorespa
dc.subject.proposalProgramación genéticaspa
dc.subject.proposalRegresión simbólicaspa
dc.subject.proposalForecasteng
dc.subject.proposalWind Powereng
dc.subject.proposalOffshore Wind Generationeng
dc.subject.proposalGenetic Programmingeng
dc.subject.proposalSymbolic Regressioneng
dc.subject.unescoEnergía eólica
dc.subject.unescoWind power
dc.subject.unescoFuente de energía renovable
dc.subject.unescoRenewable energy sources
dc.titlePronóstico de velocidad de viento para generación eólica Offshore basado en programación genéticaspa
dc.title.translatedWind speed forecast for offshore wind generation based on genetic programmingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1140876722.2021.pdf
Tamaño:
3.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: