Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida

dc.contributor.advisorLopera Castro, Sergio H.
dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.authorVargas Clavijo, Johanna
dc.contributor.researchgroupYacimientos de Hidrocarburosspa
dc.contributor.researchgroupFenómenos de Superficie - Michael Polanyispa
dc.date.accessioned2021-09-24T17:24:14Z
dc.date.available2021-09-24T17:24:14Z
dc.date.issued2021-09
dc.descriptionilustraciones, digramas
dc.description.abstractColloidal suspension agglomeration and filtration occur in many natural phenomena and engineering applications. The most common colloidal theory problem is stabilizing a colloidal dispersion. Agglomeration reduction through interparticle force control. If the particles agglomerate, the agglomerated sizes increase, randomly increasing the sedimentation (or deposition) rate. Drilling fluids are composed of a base fluid, water, and solid particles suspended, calcium carbonate - CaCO3.In most cases, polymers are used to disperse the solid material. However, factors such as mud contamination, size, solid concentration solids, changes in pH, etc., can alter the surface charge, affect the colloidal stability, and alter the drilling fluid properties. An alternative to the current improves the drilling fluids properties is the potential employment of nanoparticle technology. However, few fundamental studies are available in the literature or omit the interactions between particles for colloidal suspensions. Thus, the thesis focuses principally on the colloidal stability in the polymer-CaCO3 system and the solid packing in the filtration process in the presence of nanoparticles (NPs). SiO2 NPs are a common material widely used in drilling fluid improvement. The colloidal stability of the water-based drilling muds (WBM) in the presence of SiO2 NPs was evaluated by monitoring rheological and filtration properties varying the particle size, concentration, and charge surface NPs. The NPs with the smallest size, highest total acidity, and the most negative value of zeta potential had the highest capacities of filtration volume and filter cake thickness reduction. These factors favor the dispersion forces, allowing the reduction of aggregates, favoring an ordered particle deposition with superior coverage. Once they have formed the filter cake, the attractive forces predominate the system, reducing the empty spaces between particles. Also, NPs are retained in the porous surface due to the affinity between the rock silica groups and the SiO2 NPs active sites. Hence, the SiO2 NPs could interact in the following order with each item evaluated: Polymer < CaCO3 < rock. In the case of the polymer, it interacts the most with the rock, followed by NPs and then CaCO3. NPs do not generate significant changes in the rheological profiles of the WBM. However, the yield point and gel strength, which are strengthened at low shear rates, were improved with the presence of NPs, the attractive forces predominate. The lower the distance between SiO2 NPs-polymer, the greater the force of attraction between the molecules. This study provides a broader landscape of the role of SiO2 NPs in the improvement and design of drilling fluids to a field application. Strategies and methodologies for application and scaling the WBM with NPs in the drilling are proposed.eng
dc.description.abstractLa aglomeración y el proceso de filtración en suspensiones coloidales ocurre en muchos fenómenos naturales y aplicaciones de ingeniería. El problema más común de la teoría coloidal es la estabilización de una dispersión; reducción de la aglomeración mediante el control de las fuerzas entre partículas. Si las partículas se aglomeran, los tamaños de aglomerados aumentan, aumentando la velocidad de sedimentación (o deposición) de forma aleatoria en la superficie. Los fluidos de perforación están compuestos por un fluido base, agua y partículas sólidas suspendidas, carbonato de calcio - CaCO3. En la mayoría de los casos, se utilizan polímeros para favorecer la dispersión del material sólido. Sin embargo, factores como la contaminación del lodo, el tamaño, la concentración de sólidos, los cambios de pH, etc., pueden alterar la carga superficial y afectar la estabilidad coloidal y alterar las propiedades del fluido de perforación. Una alternativa a la mejora actual de las propiedades de los fluidos de perforación es el uso de la nanotecnología. Sin embargo, pocos estudios teóricos están disponibles en la literatura u omiten las interacciones entre partículas para dichas suspensiones coloidales. De esta forma, la tesis se centra principalmente en la estabilidad coloidal en el sistema polímero-CaCO3 y el empaquetamiento sólido en el proceso de filtración en presencia de nanopartículas (NPs). Las NP de sílice (SiO2) son un material común y ampliamente utilizado en el mejoramiento de fluidos de perforación. La estabilidad coloidal de los lodos de perforación base de agua (WBM, por sus siglas en inglés) en presencia de NPs de SiO2 se evaluó mediante el seguimiento de las propiedades reológicas y de filtración variando el tamaño de partícula, la concentración y las NP de superficie de carga. Las NPs con el tamaño más pequeño, la acidez total más alta y el valor más negativo de potencial zeta tuvieron las capacidades más altas de reducción del volumen de filtración y del espesor del revoque. Estos factores favorecen las fuerzas de dispersión, permitiendo la reducción de agregados, favoreciendo Resumen y Abstract X una deposición ordenada de las partículas logrando una cobertura superior. Una vez formado el revoque, las fuerzas de atracción predominan en el sistema, reduciendo los espacios vacíos entre partículas. Además, las NPs se retienen en la superficie porosa debido a la afinidad entre los grupos de sílice de la roca y los sitios activos de las NPs de SiO2. Por lo tanto, las NPs de SiO2 podrían interactuar en el siguiente orden con cada elemento evaluado: Polímero <Roca. En el caso del polímero, interactúa más con la roca, seguido de las NP y luego el CaCO3. Las NPs no generan cambios significativos en los perfiles reológicos del WBM. Sin embargo, el punto de cedencia y la resistencia gel, que se refuerzan a bajas tasas de cizallamiento, se mejoraron con la presencia de NPs, las fuerzas de atracción predominan. Cuanto menor sea la distancia entre el polímero y las NP de SiO2, mayor será la fuerza de atracción entre las moléculas. Este estudio proporciona un panorama más amplio del rol de las NPs de SiO2 en el mejoramiento de sus propiedades y el diseño de fluidos de perforación para una aplicación de campo. Se proponen estrategias y metodologías para la aplicación y escalado del WBM con NPs en la perforación de pozos. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaNanotecnología aplicada al mejoramiento de fluidos de perforaciónspa
dc.format.extentxxi, 152 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80298
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.references[1] A. Koohestanian, M. Hosseini, and Z. Abbasian, "The separation method for removing of colloidal particles from raw water," American-Eurasian J. Agric. & Environ. Sci, vol. 4, pp. 266-273, 2008. [2] V. Gitis, C. Dlugy, J. Gun, and O. Lev, "Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes," Journal of contaminant hydrology, vol. 124, pp. 43-49, 2011. [3] L. M. Vane and G. M. Zang, "Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes," Journal of Hazardous Materials, vol. 55, pp. 1-22, 1997. [4] D. Arab, P. Pourafshary, S. Ayatollahi, and A. Habibi, "Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles," International Journal of Environmental Science and Technology, vol. 11, pp. 207-216, 2014. [5] D. B. Genovese, J. E. Lozano, and M. A. Rao, "The rheology of colloidal and noncolloidal food dispersions," Journal of Food Science, vol. 72, pp. R11-R20, 2007. [6] I. J. Joye, V. A. Nelis, and D. J. McClements, "Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems," Food Hydrocolloids, vol. 44, pp. 86-93, 2015. [7] D. Çiftçi, T. Kahyaoglu, S. Kapucu, and S. Kaya, "Colloidal stability and rheological properties of sesame paste," Journal of Food Engineering, vol. 87, pp. 428-435, 2008. [8] A. Kohut, S. Ranjan, A. Voronov, W. Peukert, V. Tokarev, O. Bednarska, et al., "Design of a new invertible polymer coating on a solid surface and its effect on dispersion colloidal stability," Langmuir, vol. 22, pp. 6498-6506, 2006. [9] D. Yang, G. Liao, and S. Huang, "Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO3 Colloids and Its Application for Anti-Counterfeiting," Langmuir, vol. 35, pp. 8428-8435, 2019. [10] K. Kolman, O. Nechyporchuk, M. Persson, K. Holmberg, and R. Bordes, "Preparation of silica/polyelectrolyte complexes for textile strengthening applied to painting canvas restoration," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 532, pp. 420-427, 2017. [11] J. Dorman, I. Lakatos, G. Szentes, and A. Meidl, "Mitigation of formation damage and wellbore instability in unconventional reservoirs using improved particle size analysis and design of drilling fluids," in SPE European Formation Damage Conference and Exhibition, 2015. [12] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Study on the effect of pore blocking mechanisms on formation damage," in SPE Production Operations Symposium, 1987. [13] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Experimental determination of formation damage pore blocking mechanisms," 1988. [14] D. Jiao and M. M. Sharma, "Mechanism of cake buildup in crossflow filtration of colloidal suspensions," Journal of Colloid and Interface Science, vol. 162, pp. 454-462, 1994. [15] A. Kalantariasl, A. Zeinijahromi, and P. Bedrikovetsky, "External filter cake buildup in dynamic filtration: mechanisms and key factors," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [16] J. Eastman, "Colloid stability," Colloid science, pp. 36-49, 2005. [17] Y.-J. Yang, "Experimental and Modeling Studies of Colloidal Suspension Stability of High-Density Particles in Aqueous Solutions," 2016. [18] G. Trefalt and M. Borkovec, "Overview of DLVO theory," Laboratory of Colloid and Surface Chemistry, University of Geneva, Switzerland, pp. 1-10, 2014. [19] D. Napper and A. Netschey, "Studies of the steric stabilization of colloidal particles," Journal of Colloid and Interface Science, vol. 37, pp. 528-535, 1971. [20] C. H. Chin, A. Muchtar, C. H. Azhari, M. Razali, and M. Aboras, "Optimization of pH and dispersant amount of Y-TZP suspension for colloidal stability," Ceramics International, vol. 41, pp. 9939-9946, 2015. [21] R. López-Esparza, B. Altamirano, E. Pérez, and A. Gama Goicochea, "Importance of molecular interactions in colloidal dispersions," Advances in Condensed Matter Physics, vol. 2015, 2015. [22] J. van Duijneveldt, "Effect of polymers on colloid stability," Colloid Science, pp. 143-157, 2005. [23] P. Bedrikovetsky, "Upscaling of stochastic micro model for suspension transport in porous media," Transport in Porous Media, vol. 75, pp. 335-369, 2008. [24] L. Chequer, P. Bedrikovetsky, A. Badalyan, and V. Gitis, "Water level and mobilisation of colloids in porous media," Advances in Water Resources, vol. 143, p. 103670, 2020. [25] S. Torkzaban, S. A. Bradford, M. T. van Genuchten, and S. L. Walker, "Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining," Journal of contaminant hydrology, vol. 96, pp. 113-127, 2008. [26] A. Kalantariasl and P. Bedrikovetsky, "Stabilization of external filter cake by colloidal forces in a “well–reservoir” system," Industrial & Engineering Chemistry Research, vol. 53, pp. 930-944, 2014. [27] C. Parsons, "Characteristics of Drilling Fluids," Transactions of the AIME, vol. 92, pp. 227-233, 1931. [28] A. Suri and M. M. Sharma, "Strategies for sizing particles in drilling and completion fluids," SPE Journal, vol. 9, pp. 13-23, 2004. [29] S. Cobianco, M. Bartosek, A. Lezzi, and A. Guarneri, "How to manage drill-in fluid composition to minimize fluid losses during drilling operations," SPE Drilling & Completion, vol. 16, pp. 154-158, 2001. [30] N. C. Mahajan and B. M. Barron, "Bridging particle size distribution: A key factor in the designing of non-damaging completion fluids," in SPE Formation Damage Symposium, 1980. [31] A. Abrams, "Mud design to minimize rock impairment due to particle invasion," Journal of petroleum technology, vol. 29, pp. 586-592, 1977. [32] M. Khalil and B. Mohamed Jan, "Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling," Industrial & engineering chemistry research, vol. 51, pp. 4056-4068, 2012. [33] S. B. Hamed and M. Belhadri, "Rheological properties of biopolymers drilling fluids," Journal of Petroleum Science and Engineering, vol. 67, pp. 84-90, 2009. [34] R. Caenn, H. C. H. Darley, and G. R. Gray, "Chapter 13 - Drilling Fluid Components," in Composition and Properties of Drilling and Completion Fluids (Seventh Edition), R. Caenn, H. C. H. Darley, and G. R. Gray, Eds., ed Boston: Gulf Professional Publishing, 2017, pp. 537-595. [35] I. Ershaghi, "Modeling of Filter Cake Buildup Under Dynamic-Static Conditions," in SPE California Regional Meeting, 1980. [36] A. G. Iscan, F. Civan, and M. V. Kok, "Alteration of permeability by drilling fluid invasion and flow reversal," Journal of Petroleum Science and Engineering, vol. 58, pp. 227-244, 2007. [37] M. M. Barry, Y. Jung, J.-K. Lee, T. X. Phuoc, and M. K. Chyu, "Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids," Journal of Petroleum Science and Engineering, vol. 127, pp. 338-346, 2015. [38] Z. Vryzas, O. Mahmoud, H. A. Nasr-El-din, and V. C. Kelessidis, "Development and testing of novel drilling fluids using Fe2O3 and SiO2 nanoparticles for enhanced drilling operations," in International Petroleum Technology Conference, IPTC 2015, 2015. [39] M.-C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, "Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids," ACS applied materials & interfaces, vol. 7, pp. 5006-5016, 2015. [40] O. Mahmoud, H. A. Nasr-El-Din, Z. Vryzas, and V. C. Kelessidis, "Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications," in SPE International Conference and Exhibition on Formation Damage Control, 2016. [41] J. Aramendiz and A. Imqam, "Silica and graphene oxide nanoparticle formulation to improve thermal stability and inhibition capabilities of water-based drilling fluid applied to Woodford shale," SPE Drilling & Completion, vol. 35, pp. 164-179, 2020. [42] J. V. Clavijo, L. J. Roldán, L. Valencia, S. H. Lopera, R. D. Zabala, J. C. Cárdenas, et al., "Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part I: nanofluid design based on fluid-nanoparticle interaction," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, p. 045020, 2019. [43] M. Sedaghatzadeh and A. Khodadadi, "An improvement in thermal and rheological properties of water-based drilling fluids using multiwall carbon nanotube (MWCNT)," Iranian Journal of Oil & Gas Science and Technology, vol. 1, pp. 55-65, 2012. [44] Z. Wang, Y. Wu, P. Luo, Y. Tian, Y. Lin, and Q. Guo, "Poly (sodium p-styrene sulfonate) modified Fe3O4 nanoparticles as effective additives in water-based drilling fluids," Journal of Petroleum Science and Engineering, vol. 165, pp. 786-797, 2018. [45] M.-C. Li, Q. Wu, K. Song, C. F. De Hoop, S. Lee, Y. Qing, et al., "Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: Rheological modeling and filtration mechanisms," Industrial & Engineering Chemistry Research, vol. 55, pp. 133-143, 2015. [46] Y. Wu, Z. Wang, Z. Yan, T. Zhang, Y. Bai, P. Wang, et al., "Poly (2-acrylamide-2-methylpropanesulfonic acid)-modified SiO2 nanoparticles for water-based muds," Industrial & Engineering Chemistry Research, vol. 56, pp. 168-174, 2016. [47] O. Contreras, G. Hareland, M. Husein, R. Nygaard, and M. Al-Saba, "Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [48] J. T. Srivatsa and M. B. Ziaja, "An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant - Polymer based drilling fluid," in Society of Petroleum Engineers - International Petroleum Technology Conference 2012, IPTC 2012, 2012, pp. 2436-2454spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcColoides de polímeros
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembPolymer colloids
dc.subject.proposalColloidal Stabilityeng
dc.subject.proposalInterparticle Forceseng
dc.subject.proposalDrilling fluideng
dc.subject.proposalFilter Cakeeng
dc.subject.proposalFiltrationeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalEstabilidad Coloidalspa
dc.subject.proposalFuerzas entre partículasspa
dc.subject.proposalDaño de formaciónspa
dc.subject.proposalFluido de perforaciónspa
dc.subject.proposalFiltraciónspa
dc.subject.proposalNanopartículaspa
dc.subject.proposalReologíaspa
dc.subject.proposalRevoquespa
dc.titleAplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadidaspa
dc.title.translatedStudy of Nanoparticle/Polymer/CaCO3 Interactions to Optimize the Colloidal Suspension Stability and the Solids Packingspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBecas doctorados nacionalesspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152688360.2021.pdf
Tamaño:
8.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería – Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: