Computer-assisted strategies for supporting endoscopic diagnosis of digestive system cancer

dc.contributor.advisorRomero Castro, Eduardospa
dc.contributor.authorRuano Balseca, Josué Andréspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=4_DTaBgAAAAJ&hl=esspa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Josue-Ruanospa
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2025-06-16T17:57:26Z
dc.date.available2025-06-16T17:57:26Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEl cáncer en el sistema digestivo representó alrededor del 35% de las muertes por cáncer a nivel mundial en 2020, con el cáncer colorrectal, de estómago y de páncreas ocupando el segundo, sexto y séptimo lugar en las tasas de mortalidad, respectivamente. La endoscopia (EN) sigue siendo la herramienta más útil para el tamizaje y diagnóstico de este cáncer. Los gastroenterólogos se enfrentan al reto de reconocer los patrones de la enfermedad durante los procedimientos de EN observando 12.000 fotogramas en aproximadamente 7 minutos, luego, toman decisiones diagnósticas inmediatas de acuerdo con sus hallazgos visuales durante extensas horas de trabajo. Esta tarea tan exigente ha dado lugar a una elevada tasa de lesiones mal diagnosticadas durante estos procedimientos, por ejemplo, el 11,3% de las lesiones no se detectan en el estómago, entre el 22% y el 28% en el colon y entre el 13% y el 20% en el páncreas. Las estrategias asistidas por computador basadas en inteligencia artificial permiten analizar grandes volúmenes de datos médicos no estructurados, especialmente en una unidad de gastroenterología, donde la información captada durante los procedimientos de EN supera la capacidad humana de análisis. Por lo tanto, estas estrategias pueden servir de apoyo a los procedimientos de EN como segundos lectores o mejorar la interpretación de imágenes o vídeos, sin que les afecte la condición humana de fatiga, y probablemente ayuden a mejorar el diagnóstico del cáncer. Sin embargo, el desarrollo de estrategias asistidas por computador es extremadamente difícil porque los patrones visuales de la enfermedad pueden confundirse fácilmente con los patrones sanos y están contaminados por múltiples fuentes de ruido. Las variaciones espaciales y temporales de estos patrones proceden de la variabilidad de tejido sano o patológico y de las múltiples perspectivas de cámara captadas durante la navegación EN. Esta tesis presenta el desarrollo y la evaluación de representaciones multiescala o jerárquicas que capturan dichas variaciones espaciales y temporales de los patrones patológicos o normales en los procedimientos de EN. En esta tesis se abordan cuatro problemas desafiantes para apoyar el diagnóstico del cáncer en el sistema digestivo: la exploración de representaciones multiescala de la pared del colon para localizar lesiones premalignas en colonoscopia (CO), la detección de lesiones malignas pancreáticas con una caracterización multiescala de eco patrones en EN de ultrasonido, el aprendizaje de la profundidad del colon con una estrategia de aprendizaje de currículo para estimar el tamaño de las lesiones en CO, y una caracterización espacio-temporal de la distensibilidad gástrica durante la EN superior que puede asociarse a condiciones patológicas, como la infección por Helicobacter pylori. Además, se construyeron y publicaron dos colecciones sintéticas, una para procedimientos de CO y otra para procedimientos de EN superior, así como una colección de vídeos de EN por ultrasonido, para entrenar y probar los métodos aquí presentados. Además, estas colecciones pueden servir como herramientas de formación para practicantes de gastroenterología (Texto tomado de la fuente).spa
dc.description.abstractDigestive cancer accounted for about 35% of global cancer deaths in 2020, with colorectal, stomach, and pancreatic cancer ranking second, sixth, and seventh in mortality rates, respectively. Endoscopy (EN) remains the most useful tool for screening and diagnosing this cancer. Gastroenterologist are challenged to recognize disease patterns during EN procedures by looking at 12,000 frames in 7 minutes, then, they make immediate diagnostic decisions according to their visual findings during extensive hours of work. This extremely demanding task has produced a high rate of misdiagnosed lesions during EN, e.g. 11.3% of lesions are missed in the stomach, from 22% to 28% in the colon, and from 13% to 20% in the pancreas. Artificial intelligence-powered computer-assisted strategies makes it possible to analyze large-volume and unstructured medical data, especially in a gastroenterology unit, where the information captured during EN procedures largely exceeds the human capacity of analysis. Hence, these strategies may support EN procedures as second readers or enhance image or video interpretation, unaffected by human condition of fatigue, and probably help to improve cancer diagnosis. However, developing computer-assisted strategies is highly difficult because visual disease patterns can be easily confused with healthy patterns and are contaminated by multiple noise sources. The spatial and temporal variations of these patterns come from the healthy or pathological variability and several camera perspectives captured during EN navigation. This thesis presents the development and evaluation of multi-scale representations that capture spatial and temporal variations of disease or normal patterns in EN procedures. Fourth challenging problems for supporting cancer diagnosis in the digestive system are addressed in this dissertation: exploring multi-scale representations of the colonic wall to detect pre-malignant lesions in colonoscopy (CO), detecting pancreatic malignant lesions with a multi-scale characterization of echo patterns in EN ultrasound, learning colon depth with a curriculum learning strategy to estimate the size of lesions in CO, and a spatiotemporal characterization of the gastric distensibility during upper-EN which can be associated with pathological gastric conditions, like Helicobacter pylori infection. In addition, two synthetic collections, one for CO and another for Upper-EN procedures, as well as a collection of EN ultrasound videos, were constructed and released to train and test of the methods herein presented. Moreover, these collections can serve as a training tools for gastroenterology trainees.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaApplied computingspa
dc.format.extent122 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88226
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.referencesAbdelrahim, M.; Saiga, H.; Maeda, N.; Hossain, E.; Ikeda, H. & Bhandari, P.: , 2022; Automated sizing of colorectal polyps using computer vision; Gut; 71: 7--9; doi:10.1136/GUTJNL-2021-324510; URL https://gut.bmj.com/content/71/1/spa
dc.relation.referencesAgarwal, B.; Correa, A. M. & Ho, L.: , 2008; Survival in pancreatic carcinoma based on tumor size; Pancreas; 36 (1): e15--e20.spa
dc.relation.referencesAkarsu, M. & Akarsu, C.: , 2018; Evaluation of new technologies in gastrointestinal endoscopy; JSLS: Journal of the Society of Laparoendoscopic Surgeons; 22 (1); doi:10.4293/JSLS.2017.00053.spa
dc.relation.referencesAkiba, T.; Sano, S.; Yanase, T.; Ohta, T. & Koyama, M.: , 2019; Optuna: A next-generation hyperparameter optimization framework; en Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining; págs. 2623--2631.spa
dc.relation.referencesAL., F.; GA., C.; CS., F. & KM., K.: , 2000; Cost-effectiveness of screening for colorectal cancer in the general population.; The Journal of the American Medical Association; 284(15): 1954--1961.spa
dc.relation.referencesAlbright, T. D. & Stoner, G. R.: , 1995; Visual motion perception.; Proceedings of the National Academy of Sciences; 92 (7): 2433--2440.spa
dc.relation.referencesAlhashim, I. & Wonka, P.: , 2018; High quality monocular depth estimation via transfer learning; arXiv preprint arXiv:1812.11941 ; abs/1812.11941; doi:10.48550/arXiv.1812.11941.spa
dc.relation.referencesAlonso Larraga, J.; Cossio, S.o, S.; Guerrero, A.; Cordova Pluma, V. & Casillas, J.: , 2003; The borrmann classification. interobserver and intraobserver agreement of endoscopists in an oncological hospital; Clinical and Translational Oncology; 5: 345--350.spa
dc.relation.referencesAmin, S.; DiMaio, C. J. & Kim, M. K.: , 2013; Advanced eus imaging for early detection of pancreatic cancer; Gas- trointestinal Endoscopy Clinics of North America; 23 (3): 607 -- 623; doi:https://doi.org/10.1016/j.giec.2013.03.001; URL http://www.sciencedirect.com/science/article/pii/S1052515713000196.spa
dc.relation.referencesAmouzeshi, Z.; Changiz, T.; Najimi, A.; Saberifiroozi, M.; Sadeghi, A.; Farzanehfar, M. R.; Khoshbaten, M.; Mojtahedi, K.; Sima, A.; Taghvaei, T. et al.: , 2021; Psychomotor abilities in diagnostic upper gastrointestinal endoscopy derived from procedural task analysis techniques and expert review; Journal of Education and Health Promotion; 10; doi:10.4103\%2Fjehp. jehp_1516_20.spa
dc.relation.referencesAntonelli, G.; Badalamenti, M.; Hassan, C. & Repici, A.: , 2021; Impact of artificial intelligence on colorectal polyp detection; Best Practice & Research Clinical Gastroenterology; 52-53: 101713; doi:https://doi.org/10.1016/j.bpg.2020.101713; artificial intelligence in GI-endoscopy.spa
dc.relation.referencesAshraf, A. A.; Gamal, S. M.; Ashour, H.; Aboulhoda, B. E.; Rashed, L. A.; Harb, I. A.; Abdelfattah, G. H.; El- Seidi, E. A. & Shawky, H. M.: , 2021; Investigating helicobacter pylori-related pyloric hypomotility: Functional, histological, and molecular alterations; American Journal of Physiology - Gastrointestinal and Liver Physiology; 321: G461--G476; doi: 10.1152/AJPGI.00364.2020/ASSET/IMAGES/LARGE/AJPGI.00364.2020_F012.JPEG; URL https://journals.physiology.org/ doi/10.1152/ajpgi.00364.2020.spa
dc.relation.referencesAtherton, T. J. & Kerbyson, D. J.: , 1999; Size invariant circle detection; Image and Vision computing; 17 (11): 795--803.spa
dc.relation.referencesAtick, J. J.; Griffin, P. A. & Redlich, A. N.: , 1996; Statistical approach to shape from shading: Reconstruction of three-dimensional face surfaces from single two-dimensional images; Neural Computation; 8: 10; 10.1162/neco.1996.8.6.1321spa
dc.relation.referencesBay, H.; Ess, A.; Tuytelaars, T. & Gool, L. V.: , 2008; Speeded-up robust features (surf); Computer Vision and Image Understanding; 110 (3): 346 -- 359; doi:https://doi.org/10.1016/j.cviu.2007.09.014; URL http://www.sciencedirect.com/science/ article/pii/S1077314207001555; similarity Matching in Computer Vision and Multimedia.spa
dc.relation.referencesBengio, Y.; Louradour, J.; Collobert, R. & Weston, J.: , 2009; Curriculum learning; en Proceedings of the 26th annual international conference on machine learning; págs. 41--48.spa
dc.relation.referencesBernal, J.; Sánchez, J. & Vilariño, F.: , 2012a; Towards automatic polyp detection with a polyp appearance model; 45: 3166--3182; doi:10.1016/j.patcog.2012.03.002.spa
dc.relation.referencesBernal, J.; Sánchez, J. & Vilariño, F.: , 2012b; Towards automatic polyp detection with a polyp appearance model; Pattern Recognition; 45 (9): 3166 -- 3182; best Papers of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA’2011).spa
dc.relation.referencesBernal, J.; Sánchez, F. J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C. & Vilariño, F.: , 2015; WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians; Computerized Medical Imaging and Graphics; 43: 99--111; doi:10.1016/j.compmedimag.2015.02.007.spa
dc.relation.referencesBernal, J.; Tajkbaksh, N.; Sánchez, F. J.; Matuszewski, B. J.; Chen, H.; Yu, L.; Angermann, Q.; Romain, O.; Rustad, B.; Balasingham, I.; Pogorelov, K.; Choi, S.; Debard, Q.; Maier-Hein, L.; Speidel, S.; Stoyanov, D.; Brandao, P.; Córdova, H.; Sánchez-Montes, C.; Gurudu, S. R.; Fernández-Esparrach, G.; Dray, X.; Liang, J. & Histace, A.: , 2017; Comparative validation of polyp detection methods in video colonoscopy: Results from the miccai 2015 endoscopic vision challenge; IEEE Transactions on Medical Imaging; 36 (6): 1231--1249; doi:10.1109/TMI.2017.2664042.spa
dc.relation.referencesBerzin, T. M. & Topol, E. J.: , 2020; Adding artificial intelligence to gastrointestinal endoscopy; The Lancet; 395 (10223): 485; doi:10.1016/S0140-6736(20)30294-4.spa
dc.relation.referencesBhoi, A.: , 2019; Monocular depth estimation: A survey; arXiv preprint arXiv:1901.09402 ; doi:https://doi.org/10.48550/arXiv.1901. 09402.spa
dc.relation.referencesBhurwal, A.; Rattan, P.; Sarkar, A.; Patel, A.; Haroon, S.; Gjeorgjievski, M.; Bansal, V. & Mutneja, H.: , 2021; A comparison of 9-min colonoscopy withdrawal time and 6-min colonoscopy withdrawal time: A systematic review and meta-analysis; Journal of Gastroenterology and Hepatology; 36 (12): 3260--3267; doi:https://doi.org/10.1111/jgh.15701.spa
dc.relation.referencesBian, J.; Li, Z.; Wang, N.; Zhan, H.; Shen, C.; Cheng, M.-M. & Reid, I.: , 2019; Unsupervised scale-consistent depth and ego-motion learning from monocular video; en Advances in Neural Information Processing Systems, tomo 32 (Editado por Wallach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E. & Garnett, R.); Curran Associates, Inc.spa
dc.relation.referencesBobrow, T. L.; Golhar, M.; Vijayan, R.; Akshintala, V. S.; Garcia, J. R. & Durr, N. J.: , 2022; Colonoscopy 3d video dataset with paired depth from 2d-3d registration; Medical Image Analysis; 90; doi:10.1016/j.media.2023.102956; URL http://arxiv.org/abs/2206.08903http://dx.doi.org/10.1016/j.media.2023.102956.spa
dc.relation.referencesBoeckxstaens, G.; Camilleri, M.; Sifrim, D.; Houghton, L. A.; Elsenbruch, S.; Lindberg, G.; Azpiroz, F. & Park- man, H. P.: , 2016; Fundamentals of neurogastroenterology: Physiology/motility - sensation; Gastroenterology; 150: 1292-- 1304.e2; doi:10.1053/J.GASTRO.2016.02.030/ASSET/EC8A6B3A-45DE-40CB-B48E-7C64B91E1BD7/MAIN.ASSETS/GR5.JPG; URL http://www.gastrojournal.org/article/S0016508516002213/fulltexthttp://www.gastrojournal.org/article/S0016508516002213/ abstracthttps://www.gastrojournal.org/article/S0016-5085(16)00221-3/abstract.spa
dc.relation.referencesBoese, A.; Wex, C.; Croner, R.; Liehr, U. B.; Wendler, J. J.; Weigt, J.; Walles, T.; Vorwerk, U.; Lohmann, C. H.; Friebe, M. & Illanes, A.: , 2022; Endoscopic imaging technology today; Diagnostics 2022, Vol. 12, Page 1262 ; 12: 1262; doi: 10.3390/DIAGNOSTICS12051262; URL https://www.mdpi.com/2075-4418/12/5/1262/htmhttps://www.mdpi.com/2075-4418/12/5/1262.spa
dc.relation.referencesBoland, M.: , 2016; Human digestion--a processing perspective; Journal of the Science of Food and Agriculture; 96 (7): 2275--2283.spa
dc.relation.referencesBorgli, H.; Thambawita, V.; Smedsrud, P. H.; Hicks, S.; Jha, D.; Eskeland, S. L. et al.: , 2020; HyperKvasir, a com- prehensive multi-class image and video dataset for gastrointestinal endoscopy; Scientific Data 2020 7:1 ; 7 (1): 1--14; doi: 10.1038/s41597-020-00622-y; URL https://www.nature.com/articles/s41597-020-00622-y.spa
dc.relation.referencesBrand, B.; Pfaff, T.; Binmoeller, K.; Sriram, P.; Fritscher-Ravens, A.; Knöfel, W.; Jäckle, S. & Soehendra, N.: , 2000; Endoscopic ultrasound for differential diagnosis of focal pancreatic lesions, confirmed by surgery; Scandinavian journal of gastroenterology; 35 (11): 1221--1228.spa
dc.relation.referencesBravo, D.; Frias, J.; Vera, F.; Trejos, J.; Martinez, C.; Gomez, M.; Gonzalez, F. & Romero, E.: , 2024; Gastrohun an endoscopy dataset of complete systematic screening protocol for the stomach; Scientific data - Under revision.spa
dc.relation.referencesBravo, D.; Frias, J.; Vera, F.; Trejos, J.; Martínez, C.; Gómez, M.; González, F. & Romero, E.: , 2025a; Gastrohun an endoscopy dataset of complete systematic screening protocol for the stomach; Scientific Data 2025 12:1 ; 12: 1--14; doi: 10.1038/s41597-025-04401-5.spa
dc.relation.referencesBravo, D.; Frias, J.; Vera, F.; Trejos, J.; Martínez, C.; Gómez, M.; González, F. & Romero, E.: , 2025b; GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach; doi:10.6084/m9.figshare.27308133.v1.spa
dc.relation.referencesBray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A. & Jemal, A.: , 2018; Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries; CA: A Cancer Journal for Clinicians; 68 (6): 394--424.spa
dc.relation.referencesBruno, M. J.: , 2003; Magnification endoscopy, high resolution endoscopy, and chromoscopy; towards a better optical diagnosis; An International Journal of Gastroenterology and Hepatology; 52: iv7--iv11; doi:10.1136/gut.52.suppl-4.iv7; URL http://gut.bmj. com/content/52/suppl_4/iv7.full.spa
dc.relation.referencesBsc, F. B.; Laversanne, . M.; Hyuna, .; Phd, S.; Ferlay, J.; Mph, R. L. S.; Soerjomataram, I.; Ahmedin, . & Dvm, J.: , 2024; Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries; CA: A Cancer Journal for Clinicians; 74: 229--263; doi:10.3322/CAAC. 21834; URL https://onlinelibrary.wiley.com/doi/full/10.3322/caac.21834https://onlinelibrary.wiley.com/doi/abs/10.3322/caac. 21834https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21834spa
dc.relation.referencesCanny, J.: , 1986; A computational approach to edge detection; IEEE Transactions on pattern analysis and machine intelligence; (6): 679--698.spa
dc.relation.referencesCao, K.; Liu, M.; Su, H.; Wu, J.; Zhu, J. & Liu, S.: , 2020; Analyzing the noise robustness of deep neural networks; IEEE transactions on visualization and computer graphics.spa
dc.relation.referencesChadebecq, F.; Tilmant, C. & Bartoli, A.: , 2013; Using the infocus-breakpoint to estimate the scale of neoplasia in colonoscopy; en Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on; págs. 354--357.spa
dc.relation.referencesChadebecq, F.; Tilmant, C. & Bartoli, A.: , 2015; How big is this neoplasia? live colonoscopic size measurement using the infocus-breakpoint; Medical image analysis; 19 (1): 58--74.spa
dc.relation.referencesChandrapalan, S.; Tahir, F.; Kimani, P.; Sinha, R. & Arasaradnam, R.: , 2018; Systematic review and meta-analysis: does colonic mural thickening on ct correlate with endoscopic findings at colonoscopy?; Frontline Gastroenterology; 9 (4): 278--284.spa
dc.relation.referencesChang, Y.-Y.; Yen, H.-H. et al.: , 2022; Upper endoscopy photodocumentation quality evaluation with novel deep learning system; Digestive Endoscopy; 34 (5): 994--1001.spa
dc.relation.referencesChaptini, L.; Chaaya, A.; Depalma, F.; Hunter, K.; Peikin, S. & Laine, L.: , 2014; Variation in polyp size estimation among endoscopists and impact on surveillance intervals; Gastrointestinal Endoscopy; 80: 652--659; doi:10.1016/J.GIE.2014.01.053.spa
dc.relation.referencesChawla, J.; Thakurdesai, N.; Godase, A.; Reza, M.; Crandall, D. & Jung, S.-H.: , 2021; Error diagnosis of deep monocular depth estimation models; en 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; págs. 5344--5649; doi:https://doi.org/10.48550/arXiv.2112.05533.spa
dc.relation.referencesChen, C.-H.: , 2017; Eus in diagnosis and treatment of gi tract; Ultrasound in Medicine & Biology; 43: S147; doi:https: //doi.org/10.1016/j.ultrasmedbio.2017.08.1477; URL http://www.sciencedirect.com/science/article/pii/S0301562917318380.spa
dc.relation.referencesChen, S.-L.; Huang, H.-Y. & Luo, C.-H.: , 2011; Time multiplexed vlsi architecture for real-time barrel distortion correction in video-endoscopic images; Circuits and Systems for Video Technology, IEEE Transactions on; 21 (11): 1612 --1621; doi: 10.1109/TCSVT.2011.2129850.spa
dc.relation.referencesChen, Y.; Wu, G.; Qu, C.; Ye, Z.; Kang, Y. & Tian, X.: , 2023; A multifaceted comparative analysis of image and video technologies in gastrointestinal endoscope and their clinical applications; Frontiers in Medicine; 10: 1226748; doi:10.3389/FMED. 2023.1226748/BIBTEX.spa
dc.relation.referencesCheng, K.; Ma, Y.; Sun, B.; Li, Y. & Chen, X.: , 2021; Depth Estimation for Colonoscopy Images with Self-supervised Learning from Videos; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 12906 LNCS: 119--128; doi:10.1007/978-3-030-87231-1_12.spa
dc.relation.referencesChiloiro, M.; Russo, F.; Riezzo, G.; Leoci, C.; Clemente, C.; Messa, C. & Leo, A. D.: , 2001; Effect of helicobacter pylori infection on gastric emptying and gastrointestinal hormones in dyspeptic and healthy subjects; Digestive Diseases and Sciences; 46: 46--53; doi:10.1023/A:1005601623363/METRICS; URL https://link.springer.com/article/10.1023/A:1005601623363.spa
dc.relation.referencesChung, A. & Kwan, V.: , 2009; Endoscopic ultrasound: an overview of its role in current clinical practice; Australasian Journal of Ultrasound in Medicine; 12: 21; doi:10.1002/J.2205-0140.2009.TB00050.X; URL /pmc/articles/PMC5024835/https://www.ncbi.nlm. nih.gov/pmc/articles/PMC5024835/.spa
dc.relation.referencesCondessa, F. & Bioucas-Dias, J.: , 2012; Segmentation and detection of colorectal polyps using local polynomial approximation; en Image Analysis and Recognition, tomo 7325 de Lecture Notes in Computer Science (Editado por Campilho, A. & Kamel, M.); Springer Berlin Heidelberg; ISBN 978-3-642-31297-7; págs. 188--197.spa
dc.relation.referencesCorso, G.; Montagna, G.; Figueiredo, J.; Vecchia, C. L.; Romario, U. F.; Fernandes, M. S.; Seixas, S.; Roviello, F.; Trovato, C.; Guerini-Rocco, E.; Fusco, N.; Pravettoni, G.; Petrocchi, S.; Rotili, A.; Massari, G.; Magnoni, F.; Lorenzi, F. D.; Bottoni, M.; Galimberti, V.; Sanches, J. M.; Calvello, M.; Seruca, R. & Bonanni, B.: , 2020; Hereditary gastric and breast cancer syndromes related to cdh1 germline mutation: A multidisciplinary clinical review; Cancers 2020, Vol. 12, Page 1598 ; 12: 1598; doi:10.3390/CANCERS12061598.spa
dc.relation.referencesCui, X.-W.; Chang, J.-M.; Kan, Q.-C.; Chiorean, L.; Ignee, A. & Dietrich, C. F.: , 2015; Endoscopic ultrasound elastography: Current status and future perspectives; World journal of gastroenterology; 21 (47): 13212.spa
dc.relation.referencesDahiya, D. S.; Shah, Y. R.; Ali, H.; Chandan, S.; Gangwani, M. K.; Canakis, A.; Ramai, D.; Hayat, U.; Pinnam, B. S. M.; Iqbal, A.; Malik, S.; Singh, S.; Jaber, F.; Alsakarneh, S.; Mohamed, I.; Ali, M. A.; Al-Haddad, M. & Inamdar, S.: , 2024; Basic principles and role of endoscopic ultrasound in diagnosis and differentiation of pancreatic cancer from other pancreatic lesions: A comprehensive review of endoscopic ultrasound for pancreatic cancer; Journal of Clinical Medicine; 13; doi:10.3390/JCM13092599; URL /pmc/articles/PMC11084399//pmc/articles/PMC11084399/?report=abstracthttps://www.ncbi.nlm.nih. gov/pmc/articles/PMC11084399/.spa
dc.relation.referencesDallongeville, A.; Corno, L.; Silvera, S.; Boulay-Coletta, I. & Zins, M.: , 2019; Initial diagnosis and staging of pancreatic cancer including main differentials; Seminars in Ultrasound, CT and MRI ; 40 (6): 436 -- 468; doi:https://doi.org/10.1053/j.sult.2019.08.001; URL http://www.sciencedirect.com/science/article/pii/S0887217119300496.spa
dc.relation.referencesDas, A.; Nguyen, C. C.; Li, F. & Li, B.: , 2008; Digital image analysis of eus images accurately differentiates pancreatic cancer from chronic pancreatitis and normal tissue; Gastrointestinal Endoscopy; 67 (6): 861 -- 867; doi:https://doi.org/10.1016/j.gie.2007.08.036; URL http://www.sciencedirect.com/science/article/pii/S0016510707026430.spa
dc.relation.referencesde la Salud, O. P.: , 2010; Salud en las Américas 2007 ; tomo 2; OPS.spa
dc.relation.referencesDeloose, E.; Janssen, P.; Depoortere, I. & Tack, J.: , 2012; The migrating motor complex: control mechanisms and its role in health and disease; Nature Reviews Gastroenterology & Hepatology 2012 9:5 ; 9: 271--285; doi:10.1038/nrgastro.2012.57; URL https://www.nature.com/articles/nrgastro.2012.57.spa
dc.relation.referencesDeng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K. & Fei-Fei, L.: , 2009; ImageNet: A Large-Scale Hierarchical Image Database; en CVPR09.spa
dc.relation.referencesDeWitt, J.; Devereaux, B. M.; Lehman, G. A.; Sherman, S. & Imperiale, T. F.: , 2006; Comparison of endoscopic ultrasound and computed tomography for the preoperative evaluation of pancreatic cancer: A systematic review; Clinical Gastroenterology and Hepatology; 4: 717 -- 725.spa
dc.relation.referencesDice, L. R.: , 1945; Measures of the amount of ecologic association between species; Ecology; 26 (3): 297--302.spa
dc.relation.referencesDietrich, C.; Săftoiu, A. & Jenssen, C.: , 2014; Real time elastography endoscopic ultrasound (rte-eus), a comprehensive review; European Journal of Radiology; 83 (3): 405 -- 414; doi:https://doi.org/10.1016/j.ejrad.2013.03.023; URL http://www.sciencedirect. com/science/article/pii/S0720048X13001721.spa
dc.relation.referencesDijkers, J.; van Wijk, C.; Vos, F.; Florie, J.; Nio, Y.; Venema, H.; Truyen, R. & van Vliet, L.: , 2005; Segmentation and size measurement of polyps in ct colonography; Medical Image Computing and Computer-Assisted Intervention - MICCAI : 712--719.spa
dc.relation.referencesDilaghi, E.; Lahner, E.; Annibale, B. & Esposito, G.: , 2022; Systematic review and meta-analysis: Artificial intelligence for the diagnosis of gastric precancerous lesions and helicobacter pylori infection; Digestive and Liver Disease; 54: 1630--1638; doi:10.1016/J.DLD.2022.03.007.spa
dc.relation.referencesDosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.; Hazırbaş, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D. & Brox, T.: , 2015; Flownet: Learning optical flow with convolutional networks; en Proceedings of the IEEE international conference on computer vision; págs. 2758--2766.spa
dc.relation.referencesDrachmann, A. H. & Yoshida, H.: , 2003; Virtual colonoscopy: past, present,and future; Radiologic Clinics of North America: 337--393.spa
dc.relation.referencesDray, X.; Toth, E.; de Lange, T. & Koulaouzidis, A.: , 2021; Artificial intelligence, capsule endoscopy, databases, and the sword of damocles; Endoscopy International Open; 9 (11): E1754--E1755; doi:10.1097/MEG.000000000000; URL https: //www.nature.com/articles/s41597-.spa
dc.relation.referencesDrozdzal, M.; Vorontsov, E.; Chartrand, G.; Kadoury, S. & Pal, C.: , 2016; The importance of skip connections in biomedical image segmentation; en Deep learning and data labeling for medical applications; Springer; págs. 179--187; doi: 10.1007/978-3-319-46976-8.spa
dc.relation.referencesD’Onofrio, M.; Crosara, S.; Robertis, R. D.; Canestrini, S.; Demozzi, E. & Mucelli, R. P.: , 2014; Elastography of the pancreas; European Journal of Radiology; 83: 415 -- 419.spa
dc.relation.referencesEdwards, P. J.; Psychogyios, D.; Speidel, S.; Maier-Hein, L. & Stoyanov, D.: , 2022; Serv-ct: A disparity dataset from cone-beam ct for validation of endoscopic 3d reconstruction; Medical Image Analysis; 76: 102302; doi:10.1016/J.MEDIA.2021.102302.spa
dc.relation.referencesEigen, D.; Puhrsch, C. & Fergus, R.: , 2014; Depth map prediction from a single image using a multi-scale deep network.; en NIPS ; págs. 2366--2374.spa
dc.relation.referencesEinspahr, J. G.; Alberts, D. S.; Gapstur, S. M.; Bostick, R. M.; Emerson, S. S. & Gerner, E. W.: , 1997; Surrogate end-point biomarkers as measures of colon cancer risk and their use in cancer chemoprevention trials.; Cancer Epidemiology and Prevention Biomarkers; 6 (1): 37--48.spa
dc.relation.referencesFaknak, N.; Pittayanon, R.; Tiankanon, K.; Lerttanatum, N.; Sanpavat, A.; Klaikaew, N. & Rerknimitr, R.: , 2022; Performance status of targeted biopsy alone versus sydney protocol by non-nbi expert gastroenterologist in gastric intestinal metaplasia diagnosis; Endoscopy International Open; 10: E273; doi:10.1055/A-1783-9081; URL /pmc/articles/PMC9010080//pmc/ articles/PMC9010080/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010080/.spa
dc.relation.referencesFarraye, F. A.; Waye, J. D.; Moscandrew, M.; Heeren, T. C. & Odze, R. D.: , 2007; Variability in the diagnosis and management of adenoma-like and non-adenoma-like dysplasia-associated lesions or masses in inflammatory bowel disease: an internet-based study; Gastrointestinal Endoscopy; 66 (3): 519 -- 529.spa
dc.relation.referencesFass, O.; Rogers, B. D. & Gyawali, C. P.: , 2024; Artificial intelligence tools for improving manometric diagnosis of esophageal dysmotility; Current Gastroenterology Reports; 26: 115--123; doi:10.1007/S11894-024-00921-Z/METRICS; URL https://link. springer.com/article/10.1007/s11894-024-00921-z.spa
dc.relation.referencesFock, K. M.; Khoo, T. K.; Chia, K. S. & Sim, C. S.: , 1997; Helicobacter pylori infection and gastric emptying of indigestible solids in patients with dysmotility-like dyspepsia; Scandinavian Journal of Gastroenterology; 32: 676--680; doi:10.3109/00365529708996517.spa
dc.relation.referencesFreedman, D.; Blau, Y.; Katzir, L.; Aides, A.; Shimshoni, I.; Veikherman, D.; Golany, T.; Gordon, A.; Corrado, G.; Matias, Y. & Rivlin, E.: , 2020; Detecting Deficient Coverage in Colonoscopies; IEEE TRANSACTIONS ON MEDICAL IMAGING; 39 (11): 3451; doi:10.1109/TMI.2020.2994221.spa
dc.relation.referencesFuccio, L.; Guido, A.; Larghi, A.; Antonini, F.; Lami, G. & Fabbri, C.: , 2014; The role of endoscopic ultrasound in the radiation treatment of pancreatic tumor; Expert Review of Gastroenterology & Hepatology; 8 (7): 793--802.spa
dc.relation.referencesGanz, M.; Yang, X. & Slabaugh, G.: , 2012; Automatic segmentation of polyps in colonoscopic narrow-band imaging data; Biomedical Engineering, IEEE Transactions on; 59 (8): 2144--2151.spa
dc.relation.referencesGarcía-Vega, A.; Espinosa, R.; Ochoa-Ruiz, G.; Bazin, T.; Falcón-Morales, L.; Lamarque, D. & Daul, C.: , 2022; A Novel Hybrid Endoscopic Dataset for Evaluating Machine Learning-Based Photometric Image Enhancement Models; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 13612 LNAI: 267--281; doi:10.1007/978-3-031-19493-1_22/COVER; URL https://link.springer.com/chapter/10.1007/978-3-031-19493-1_22.spa
dc.relation.referencesGeiger, A.; Lenz, P.; Stiller, C. & Urtasun, R.: , 2013; Vision meets robotics: The kitti dataset; The International Journal of Robotics Research; 32 (11): 1231--1237; doi:10.1177/0278364913491297.spa
dc.relation.referencesGiese, M. A. & Poggio, T.: , 2003; Neural mechanisms for the recognition of biological movements; Nature Reviews Neuroscience; 4 (3): 179--192.spa
dc.relation.referencesGlover, B.; Teare, J. & Patel, N.: , 2020; A systematic review of the role of non-magnified endoscopy for the assessment of h. pylori infection; Endoscopy International Open; 08: E105--E114; doi:10.1055/A-0999-5252; URL http://www.thieme-connect.com/ products/ejournals/html/10.1055/a-0999-5252http://www.thieme-connect.de/DOI/DOI?10.1055/a-0999-5252.spa
dc.relation.referencesGodard, C.; Mac Aodha, O.; Firman, M. & Brostow, G. J.: , 2019; Digging into self-supervised monocular depth estimation; en Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); págs. 3828--3838; doi:https://doi.org/10. 48550/arXiv.1806.01260.spa
dc.relation.referencesGoeman, J. J. & Solari, A.: , 2011; Multiple testing for exploratory research; https://doi.org/10.1214/11-STS356 ; 26: 584--597; doi:10.1214/11-STS356; URL https://projecteuclid.org/journals/statistical-science/volume-26/issue-4/ Multiple-Testing-for-Exploratory-Research/10.1214/11-STS356.fullhttps://projecteuclid.org/journals/statistical-science/ volume-26/issue-4/Multiple-Testing-for-Exploratory-Research/10.1214/11-STS356.short.spa
dc.relation.referencesGollIfer, R. M.; Menys, A.; Makanyanga, J.; Puylaert, C. A.; Vos, F. M.; Stoker, J.; Atkinson, D. & Taylor, S. A.: , 2018; Relationship between mri quantified small bowel motility and abdominal symptoms in crohn’s disease patients-a validation study; British Journal of Radiology; 91; doi:10.1259/BJR.20170914; URL https://dx.doi.org/10.1259/bjr.20170914.spa
dc.relation.referencesGong, D.; Wu, L. et al.: , 2020; Detection of colorectal adenomas with a real-time computer-aided system (endoangel): a randomised controlled study; The Lancet Gastroenterology & Hepatology; 5 (4): 352--361.spa
dc.relation.referencesGopalswamy, N.; Shenoy, V. N.; Choudhry, U.; Markert, R. J.; Peace, N.; Bhutani, M. S. & Barde, C. J.: , 1997; Is in vivo measurement of size of polyps during colonoscopy accurate?; Gastrointestinal Endoscopy; 46 (6): 497 -- 502.spa
dc.relation.referencesGoyal, H.; Mann, R.; Gandhi, Z.; Perisetti, A.; Ali, A.; Aman Ali, K.; Sharma, N.; Saligram, S.; Tharian, B. & Inamdar, S.: , 2020; Scope of artificial intelligence in screening and diagnosis of colorectal cancer; Journal of Clinical Medicine; 9 (10); doi:10.3390/jcm9103313.spa
dc.relation.referencesGraves, A.; Bellemare, M. G.; Menick, J.; Munos, R. & Kavukcuoglu, K.: , 2017; Automated curriculum learning for neural networks; en international conference on machine learning; PMLR; págs. 1311--1320.spa
dc.relation.referencesGregersen, H. & Kassab, G.: , 1996; Biomechanics of the gastrointestinal tract; Neurogastroenterology & Motility; 8: 277--297; doi:10.1111/J.1365-2982.1996.TB00267.X.spa
dc.relation.referencesGuda, N. M.; Partington, S. & Vakil, N.: , 2004; Inter-and intra-observer variability in the measurement of length at endoscopy: Implications for the measurement of barrett’s esophagus; Gastrointestinal endoscopy; 59 (6): 655--658.spa
dc.relation.referencesHacohen, G. & Weinshall, D.: , 2019; On The Power of Curriculum Learning in Training Deep Networks; en International Conference on Machine Learning; PMLR; págs. 2535--2544.spa
dc.relation.referencesHan, S.: , 2019; Achieving competence in endoscopy; ACG case reports journal; 6 (8).spa
dc.relation.referencesHanbay, K. & Talu, M. F.: , 2018; A novel active contour model for medical images via the hessian matrix and eigenvalues; Computers & Mathematics with Applications; 75: 3081--3104; doi:10.1016/J.CAMWA.2018.01.033.spa
dc.relation.referencesHarel, J.; Koch, C. & Perona, P.: , 2007; Graph-based visual saliency; en Advances in neural information processing systems; págs. 545--552.spa
dc.relation.referencesHassan, C.; Antonelli, G.; Dumonceau, J.-M.; Regula, J.; Bretthauer, M.; Chaussade, S.; Dekker, E.; Ferlitsch, M.; Gimeno-Garcia, A.; Jover, R. et al.: , 2020; Post-polypectomy colonoscopy surveillance: European society of gastrointestinal endoscopy (esge) guideline - update 2020; Endoscopy; 52: 687--700; doi:10.1055/A-1185-3109; URL https://pubmed.ncbi.nlm.nih. gov/32572858/.spa
dc.relation.referencesHaumesser, C.; Zarandi-Nowroozi, M.; Taghiakbari, M.; Djinbachian, R.; Abou Khalil, M.; Sidani, S.; Liu Chen Kiow, J.; Panzini, B.; Popescu Crainic, I. & von Renteln, D.: , 2023; Comparing size measurements of simulated colorectal polyp size and morphology groups when using a virtual scale endoscope or visual size estimation: Blinded randomized controlled trial; Digestive Endoscopy; 35: 638--644; doi:10.1111/DEN.14498; URL https://onlinelibrary.wiley.com/doi/full/10.1111/den. 14498https://onlinelibrary.wiley.com/doi/abs/10.1111/den.14498https://onlinelibrary.wiley.com/doi/10.1111/den.14498.spa
dc.relation.referencesHe, K.; Zhang, X.; Ren, S. & Sun, J.: , 2016; Deep residual learning for image recognition; en Proceedings of the IEEE conference on computer vision and pattern recognition; págs. 770--778.spa
dc.relation.referencesHennemuth, A.; Seeger, A.; Friman, O.; Miller, S.; Klumpp, B.; Oeltze, S. & Peitgen, H.-O.: , 2008; A comprehensive approach to the analysis of contrast enhanced cardiac mr images; Medical Imaging, IEEE Transactions on; 27 (11): 1592--1610spa
dc.relation.referencesHerr, D.; Obert, B.; Rosenkranz, M. & Chen, H.: , 2021; Challenges and Corresponding Solutions of Generative Adversarial Networks (GANs): A Survey Study You may also like Anomaly detection with variational quantum generative adversarial networks Challenges and Corresponding Solutions of Generative Adversarial Networks (GANs): A Survey Study; Journal of Physics: Conference Series; 1827: 12066; doi:10.1088/1742-6596/1827/1/012066.spa
dc.relation.referencesHirooka, Y.; Hashimoto, S. & Miyahara, R.: , 2020; Ultrasonographic diagnosis of pancreatic diseases: this is all you need; Journal of Medical Ultrasonics; 47: 357--358; doi:10.1007/S10396-020-01035-5/METRICS; URL https://link.springer.com/article/10. 1007/s10396-020-01035-5.spa
dc.relation.referencesHoltmann, G.; Gschossmann, J.; Guerra, G.; Goebell, H. & Talley, N. J.: , 1995; Perception of gastric distension. influence of mode of distension on perception thresholds and gastric compliance; Digestive diseases and sciences; 40: 2673--2677; doi: 10.1007/BF02220459.spa
dc.relation.referencesHong, D.; Tavanapong, W.; Wong, J.; Oh, J. & Groen, P.: , 2009; 3d reconstruction of colon segments from colonoscopy images; en Bioinformatics and BioEngineering, 2009. BIBE ’09. Ninth IEEE International Conference on; págs. 53 --60; doi:10.1109/BIBE.2009.50.spa
dc.relation.referencesHong, D.; Tavanapong, W.; Wong, J.; Oh, J. & De Groen, P. C.: , 2014; 3d reconstruction of virtual colon structures from colonoscopy images; Computerized Medical Imaging and Graphics; 38 (1): 22--33; doi:https://doi.org/10.1016/j.compmedimag. 2013.10.005.spa
dc.relation.referencesHorn, B.; Klaus, B. & Horn, P.: , 1986; Robot vision; MIT press.spa
dc.relation.referencesHuang, G.; Liu, Z. & Weinberger, K. Q.: , 2017; Densely connected convolutional networks; en Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); págs. 4700--4708; doi:10.1109/CVPR.2017.243.spa
dc.relation.referencesHuizinga, J. D.; Pervez, M.; Nirmalathasan, S. & Chen, J. H.: , 2021; Characterization of haustral activity in the human colon; American Journal of Physiology - Gastrointestinal and Liver Physiology; 320 (6): G1067--G1080; doi:10.1152/AJPGI.00063.2021.spa
dc.relation.referencesHuo, J.; Zhou, C.; Yuan, B.; Yang, Q. & Wang, L.: , 2023; Real-time dense reconstruction with binocular endoscopy based on stereonet and orb-slam; Sensors 2023, Vol. 23, Page 2074 ; 23: 2074; doi:10.3390/S23042074; URL https://www.mdpi.com/ 1424-8220/23/4/2074/htmhttps://www.mdpi.com/1424-8220/23/4/2074.spa
dc.relation.referencesHurlstone, D.; Cross, S.; Adam, I.; Shorthouse, A.; Brown, S.; Sanders, D. & Lobo, A.: , 2004; Efficacy of high magnification chromoscopic colonoscopy for the diagnosis of neoplasia in flat and depressed lesions of the colorectum: a prospective analysis; Gut; 53 (2): 284--290.spa
dc.relation.referencesHwang, S.; Oh, J.; Tavanapong, W.; Wong, J. & De Groen, P. C.: , 2007; Polyp detection in colonoscopy video using elliptical shape feature; en 2007 IEEE International Conference on Image Processing, tomo 2; IEEE; págs. II--465.spa
dc.relation.referencesIandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T. & Keutzer, K.: , 2014; Densenet: Implementing efficient convnet descriptor pyramids; arXiv preprint arXiv:1404.1869.spa
dc.relation.referencesIglesias-García, J.; Lariño-Noia, J. & Domínguez-Muñoz, J. E.: , 2017; New imaging techniques: Endoscopic ultrasound-guided elastography; Gastrointestinal Endoscopy Clinics of North America; 27: 551 -- 567.spa
dc.relation.referencesIhnatsenka, B. & Boezaart, A.: , 2010; Ultrasound: Basic understanding and learning the language; International journal of shoulder surgery; 4: 55--62; doi:10.4103/0973-6042.76960.spa
dc.relation.referencesIkeuchi, K. & Horn, B. K.: , 1981; Numerical shape from shading and occluding boundaries; Artificial intelligence; 17 (1-3): 141--184.spa
dc.relation.referencesİncetan, K.; Celik, I. O.; Obeid, A.; Gokceler, G. I.; Ozyoruk, K. B.; Almalioglu, Y.; Chen, R. J.; Mahmood, F.; Gilbert, H.; Durr, N. J. et al.: , 2021; Vr-caps: a virtual environment for capsule endoscopy; Medical image analysis; 70: 101990; doi:https://doi.org/10.1016/j.media.2021.101990.spa
dc.relation.referencesInoue, H.; Kashida, H.; Kudo, S.; Sasako, M.; Shimoda, T.; Watanabe, H.; Yoshida, S.; Guelrud, M.; Lightdale, C.; Wang, K. et al.: , 2003; The paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach and colon.; Gastrointest. Endoscopy; 58: S3--S43.spa
dc.relation.referencesItoh, H.; Oda, M.; Mori, Y.; Misawa, M.; Kudo, S. E.; Imai, K.; Ito, S.; Hotta, K.; Takabatake, H.; Mori, M.; Natori, H. & Mori, K.: , 2021; Unsupervised colonoscopic depth estimation by domain translations with a Lambertian- reflection keeping auxiliary task; International Journal of Computer Assisted Radiology and Surgery; 16 (6): 989--1001; doi: https://doi.org/10.1007/s11548-021-02398-x.spa
dc.relation.referencesItoh, H.; Oda, M.; Jiang, K.; Mori, Y.; Misawa, M.; Kudo, S. E.; Imai, K.; Ito, S.; Hotta, K. & Mori, K.: , 2022; Uncertainty meets 3d-spatial feature in colonoscopic polyp-size determination; Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization; 10: 289--298; doi:10.1080/21681163.2021.2004445.spa
dc.relation.referencesIwahori, Y.; Hattori, A.; Adachi, Y.; Bhuyan, M. K.; Woodham, R. J. & Kasugai, K.: , 2015; Automatic Detection of Polyp Using Hessian Filter and HOG Features; Procedia Computer Science; 60 (1): 730--739; doi:10.1016/J.PROCS.2015.08.226.spa
dc.relation.referencesIzzy, M.; Virk, M.; Saund, A.; Tejada, J.; Kargoli, F. & Anand, S.: , 2015; Accuracy of endoscopists’ estimate of polyp size: A continuous dilemma; World Journal of Gastrointestinal Endoscopy; 7 (8): 824; doi:10.4253/wjge.v7.i8.824.spa
dc.relation.referencesJain, A. G.; Saleem, T.; Kumar, R.; Khetpal, N.; Zafar, H.; Rashid, M. U.; Ali, S.; Majeed, U. & Ahmad, S.: , 2019; en Breaking Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy, tomo 5; págs. 1 -- 11.spa
dc.relation.referencesJaramillo, M.; Ruano, J.; Gómez, M. & Romero, E.: , 2020; Endoscopic ultrasound database of the pancreas; en 16th International Symposium on Medical Information Processing and Analysis, tomo 11583; International Society for Optics and Photonics; pág. 115830G.spa
dc.relation.referencesJemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E. & Forman, D.: , 2011; Global cancer statistics; CA: A Cancer Journal for Clinicians; 61 (2): 69--90; doi:10.3322/caac.20107; URL http://dx.doi.org/10.3322/caac.20107.spa
dc.relation.referencesJha, D.; Smedsrud, P. H.; Riegler, M. A.; Halvorsen, P.; de Lange, T.; Johansen, D. & Johansen, H. D.: , 2020; Kvasir-seg: A segmented polyp dataset; Lecture Notes in Computer Science; 11962 LNCS: 451--462; doi:10.1007/978-3-030-37734-2_37/COVER; URL https://link.springer.com/chapter/10.1007/978-3-030-37734-2_37.spa
dc.relation.referencesJiang, L.; Meng, D.; Zhao, Q.; Shan, S. & Hauptmann, A. G.: , 2015; Self-paced curriculum learning; en Twenty-Ninth AAAI Conference on Artificial Intelligence.spa
dc.relation.referencesKannala, J. & Brandt, S.: , 2006; A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses; Pattern Analysis and Machine Intelligence, IEEE Transactions on; 28 (8): 1335 --1340; doi:10.1109/TPAMI.2006.153.spa
dc.relation.referencesKarargyris, A.; Karargyris, O. & Bourbakis, N.: , 2010; 3d representation of the digestive tract surface in wireless capsule endoscopy videos; en BioInformatics and BioEngineering (BIBE), 2010 IEEE International Conference on; págs. 279 --280; doi:10.1109/BIBE.2010.9.spa
dc.relation.referencesKarkanis, S. A.; Iakovidis, D. K.; Maroulis, D. E.; Karras, D. A. & Tzivras, M.: , 2003; Computer-aided tumor detection in endoscopic video using color wavelet features; IEEE transactions on information technology in biomedicine; 7 (3): 141--152.spa
dc.relation.referencesKarnul, A. M. & Murthy, C. K.: , 2022; A Study of Variations of the Stomach in Adults and Growth of the Fetal Stomach; Cureus; 14 (8); doi:10.7759/CUREUS.28517; URL https://pubmed.ncbi.nlm.nih.gov/36185902/.spa
dc.relation.referencesKatona, B. W. & Lynch, J. P.: , 2018; Chapter 66 - mechanisms of gastrointestinal malignancies; en Physiology of the Gastroin- testinal Tract (Sixth Edition) (Editado por Said, H. M.); Academic Press; sixth edition edición; ISBN 978-0-12-809954-4; págs. 1615--1642; doi:https://doi.org/10.1016/B978-0-12-809954-4.00066-9; URL https://www.sciencedirect.com/science/article/pii/ B9780128099544000669.spa
dc.relation.referencesKaufman, A. & Wang, J.: , 2008; 3d surface reconstruction from endoscopic videos; en Visualization in Medicine and Life Sciences (Editado por Linsen, L.; Hagen, H. & Hamann, B.); Mathematics and Visualization; Springer Berlin Heidelberg; ISBN 978-3-540-72630-2; págs. 61--74.spa
dc.relation.referencesKaul, V.; Enslin, S. & Gross, S. A.: , 2020; History of artificial intelligence in medicine; Gastrointestinal Endoscopy; 92 (4): 807--812; doi:10.1016/J.GIE.2020.06.040.spa
dc.relation.referencesKazerouni, I. A.; Dooly, G. & Toal, D.: , 2021; Ghost-unet: An asymmetric encoder-decoder architecture for semantic segmentation from scratch; IEEE Access; 9: 97457--97465.spa
dc.relation.referencesKeilberg, D. & Ottemann, K. M.: , 2016; How helicobacter pylori senses, targets and interacts with the gastric epithelium; Environmental microbiology; 18: 791--806; doi:10.1111/1462-2920.13222; URL https://pubmed.ncbi.nlm.nih.gov/26768806/.spa
dc.relation.referencesKhalaf, K.; Terrin, M.; Jovani, M.; Rizkala, T.; Spadaccini, M.; Pawlak, K. M.; Colombo, M.; Andreozzi, M.; Fugazza, A.; Facciorusso, A.; Grizzi, F.; Hassan, C.; Repici, A. & Carrara, S.: , 2023; A comprehensive guide to artificial intelligence in endoscopic ultrasound; Journal of Clinical Medicine 2023, Vol. 12, Page 3757 ; 12: 3757; doi:10.3390/JCM12113757; URL https://www.mdpi.com/2077-0383/12/11/3757/htmhttps://www.mdpi.com/2077-0383/12/11/3757.spa
dc.relation.referencesKhashab, M. A.; Pickhardt, P. J.; Kim, D. H. & Rex, D. K.: , 2009; Colorectal anatomy in adults at computed tomography colonography: Normal distribution and the effect of age, sex, and body mass index; Endoscopy; 41 (8): 674--678; doi:10.1055/ S-0029-1214899/ID/16.spa
dc.relation.referencesKhuc, T.; Agarwal, A.; Li, F.; Kantsevoy, S.; Curtin, B.; Hagan, M.; Harris, M.; Maheshwari, A.; Raina, A.; Zhou, E. & Thuluvath, P.: , 2023; Accuracy and inter-observer agreement among endoscopists for visual identification of colorectal polyps using endoscopy images; Digestive Diseases and Sciences; 68: 616--622; doi:10.1007/S10620-022-07643-0/METRICS; URL https://link.springer.com/article/10.1007/s10620-022-07643-0.spa
dc.relation.referencesKim, G. H.; Bang, S. J. et al.: , 2015; Is screening and surveillance for early detection of gastric cancer needed in korean americans?; The Korean Journal of Internal Medicine; 30 (6): 747.spa
dc.relation.referencesKim, H.-K.; Yoo, K.-Y.; Park, J. H. & Jung, H.-Y.: , 2019; Asymmetric encoder-decoder structured fcn based lidar to color image generation; Sensors; 19 (21): 4818.spa
dc.relation.referencesKim, N. H.; Jung, Y. S.; Jeong, W. S.; Yang, H.-J.; Park, S.-K.; Choi, K. & Park, D. I.: , 2017; Miss rate of colorectal neoplastic polyps and risk factors for missed polyps in consecutive colonoscopies; Intestinal research; 15 (3): 411; doi:10.5217/ir.2017.15.3.411.spa
dc.relation.referencesKitano, M.; Yoshida, T.; Itonaga, M.; Tamura, T.; Hatamaru, K. & Yamashita, Y.: , 2018; Impact of endoscopic ultrasonog- raphy on diagnosis of pancreatic cancer; Journal of Gastroenterology 2018 54:1 ; 54: 19--32; doi:10.1007/S00535-018-1519-2; URL https://link.springer.com/article/10.1007/s00535-018-1519-2.spa
dc.relation.referencesKitano, M.; Yoshida, T.; Itonaga, M.; Tamura, T.; Hatamaru, K. & Yamashita, Y.: , 2019; Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer; Journal of gastroenterology; 54 (1): 19--32.spa
dc.relation.referencesKou, W.; Galal, G. O.; Klug, M. W.; Mukhin, V.; Carlson, D. A.; Etemadi, M.; Kahrilas, P. J. & Pandolfino, J. E.: , 2022; Deep learning–based artificial intelligence model for identifying swallow types in esophageal high-resolution manometry; Neurogastroenterology & Motility; 34: e14290; doi:10.1111/NMO.14290; URL https://onlinelibrary.wiley.com/doi/full/10.1111/ nmo.14290https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.14290https://onlinelibrary.wiley.com/doi/10.1111/nmo.14290.spa
dc.relation.referencesKuwahara, T.; Hara, K.; Mizuno, N.; Okuno, N.; Matsumoto, S.; Obata, M.; Kurita, Y.; Koda, H.; Toriyama, K.; Onishi, S. et al.: , 2019; Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary mucinous neoplasms of the pancreas; Clinical and translational gastroenterology; 10 (5).spa
dc.relation.referencesKuwahara, T.; Hara, K.; Mizuno, N.; Haba, S.; Okuno, N.; Koda, H.; Miyano, A. & Fumihara, D.: , 2020; Current status of artificial intelligence analysis for endoscopic ultrasonography; Digestive Endoscopy.spa
dc.relation.referencesKuwahara, T.; Hara, K.; Mizuno, N.; Haba, S.; Okuno, N.; Koda, H.; Miyano, A. & Fumihara, D.: , 2021; Current status of artificial intelligence analysis for endoscopic ultrasonography; Digestive Endoscopy; 33 (2): 298--305.spa
dc.relation.referencesKwak, M. S.; Cha, J. M.; Jeon, J. W.; Yoon, J. Y. & Park, J. W.: , 2022; Artificial intelligence-based mea- surement outperforms current methods for colorectal polyp size measurement; Digestive Endoscopy; 34: 1188--1195; doi: 10.1111/DEN.14318; URL https://onlinelibrary.wiley.com/doi/full/10.1111/den.14318https://onlinelibrary.wiley.com/doi/abs/ 10.1111/den.14318https://onlinelibrary.wiley.com/doi/10.1111/den.14318.spa
dc.relation.referencesLadabaum, U.; Dominitz, J. A.; Kahi, C. & Schoen, R. E.: , 2020; Strategies for colorectal cancer screening; Gastroenterology; 158 (2): 418--432; doi:10.1053/j.gastro.2019.06.043.spa
dc.relation.referencesLandazbal, G., (Ed.): , 2011; Endoscopia y patologí biliodigestiva; tomo 1; Asociación Colombiana de Cirugía.spa
dc.relation.referencesLappe, M.; Bremmer, F. & Van den Berg, A.: , 1999; Perception of self-motion from visual flow; Trends in cognitive sciences; 3 (9): 329--336.spa
dc.relation.referencesLarghi, A.; Lecca, P. G. & Costamagna, G.: , 2008; High-resolution narrow band imaging endoscopy; Gut; 57 (7): 976--986; doi:10.1136/gut.2007.127845; URL https://gut.bmj.com/content/57/7/976.spa
dc.relation.referencesLee, J. H. & Ahmed, O.: , 2019; Endoscopic management of pancreatic cancer; Surgical Oncology Clinics of North America; 28: 147 -- 159.spa
dc.relation.referencesLee, L. S.; Andersen, D. K.; Ashida, R.; Brugge, W. R.; Canto, M. I.; Chang, K. J.; Chari, S. T.; DeWitt, J.; Hwang, J. H.; Khashab, M. A. et al.: , 2017; Eus and related technologies for the diagnosis and treatment of pancreatic disease: research gaps and opportunities—summary of a national institute of diabetes and digestive and kidney diseases workshop; Gastrointestinal endoscopy; 86 (5): 768--778.spa
dc.relation.referencesLee, S. W.: , 2009; Laparoscopic procedures for colon and rectal cancer surgery; Clinics in colon and rectal surgery; 22 (04): 218--224; doi:10.1055/s-0029-1242461.spa
dc.relation.referencesLeufkens, A.; van Oijen, M.; Vleggaar, F. & Siersema, P.: , 2012; Factors influencing the miss rate of polyps in a back-to-back colonoscopy study; Endoscopy; 44 (05): 470--475.spa
dc.relation.referencesLi, Y.-D.; Zhu, S.-W. et al.: , 2021; Intelligent detection endoscopic assistant: An artificial intelligence-based system for monitoring blind spots during esophagogastroduodenoscopy in real-time; Digestive and Liver Disease; 53 (2): 216--223.spa
dc.relation.referencesLiang, J.; Jiang, Y.; Abboud, Y. & Gaddam, S.: , 2022; Role of endoscopy in management of upper gastrointestinal cancers; Diseases 2023, Vol. 11, Page 3 ; 11: 3; doi:10.3390/DISEASES11010003; URL https://www.mdpi.com/2079-9721/11/1/3/htmhttps: //www.mdpi.com/2079-9721/11/1/3.spa
dc.relation.referencesLiedlgruber, M.; Uhl, A. & Vecsei, A.: , 2011; Statistical analysis of the impact of distortion (correction) on an automated classification of celiac disease; en Digital Signal Processing (DSP), 2011 17th International Conference on; págs. 1 --6; doi: 10.1109/ICDSP.2011.6004900.spa
dc.relation.referencesLin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P. & Zitnick, C. L.: , 2014; Microsoft coco: Common objects in context; en European conference on computer vision; Springer; págs. 740--755.spa
dc.relation.referencesLitjens, G.; Kooi, T. et al.: , 2017; A survey on deep learning in medical image analysis; Medical image analysis; 42: 60--88.spa
dc.relation.referencesLiu, B.; Dong, J.; Wang, S.; Yu, H.; Li, Z.; Sun, P. & Zhao, L.: , 2021a; Helicobacter pylori causes delayed gastric emptying by decreasing interstitial cells of cajal; Experimental and Therapeutic Medicine; 22; doi:10.3892/ETM.2021.10095; URL /pmc/articles/PMC8111862//pmc/articles/PMC8111862/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111862/.spa
dc.relation.referencesLiu, J.; Subramanian, K. & Yoo, T.: , 2013; A robust method to track colonoscopy videos with non-informative images; International Journal of Computer Assisted Radiology and Surgery: 1--18.spa
dc.relation.referencesLiu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S. X.; Ni, D. & Wang, T.: , 2019; Deep learning in medical ultrasound analysis: A review; Engineering; 5 (2): 261 -- 275; doi:https://doi.org/10.1016/j.eng.2018.11.020; URL http://www.sciencedirect. com/science/article/pii/S2095809918301887.spa
dc.relation.referencesLiu, W.; Cao, C.; Liu, J.; Ren, C.; Wei, Y. & Guo, H.: , 2021b; Fine-grained image inpainting with scale-enhanced generative adversarial network; Pattern Recognition Letters; 143: 81--87; doi:10.1016/J.PATREC.2020.12.008.spa
dc.relation.referencesLivovsky, D. M. & Azpiroz, F.: , 2021; Gastrointestinal contributions to the postprandial experience; Nutrients 2021, Vol. 13, Page 893 ; 13: 893; doi:10.3390/NU13030893; URL https://www.mdpi.com/2072-6643/13/3/893/htmhttps://www.mdpi.com/2072-6643/ 13/3/893.spa
dc.relation.referencesLlop, E.; Guerrero, P.; Duran, A.; Barrabes, S.; Massaguer, A.; Iglesias, M.; Quer, M.; De Llorens, R. & Peracaula, R.: , 2018; Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma; World Journal of Gastroenterology; 24; doi:10.3748/wjg.v24.i24.2537.spa
dc.relation.referencesLucas, B. D. & Kanade, T.: , 1981; An iterative image registration technique with an application to stereo vision; en IJCAI’81: 7th international joint conference on Artificial intelligence, tomo 2; págs. 674--679.spa
dc.relation.referencesMa, R.; Wang, R.; Zhang, Y.; Pizer, S.; McGill, S. K.; Rosenman, J. & Frahm, J. M.: , 2021; Rnnslam: Reconstructing the 3d colon to visualize missing regions during a colonoscopy; Medical Image Analysis; 72: 102100; doi:10.1016/J.MEDIA.2021.102100.spa
dc.relation.referencesMahmood, F. & Durr, N. J.: , 2018; Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy; Medical Image Analysis; 48: 230--243; doi:https://doi.org/10.1016/j.media.2018.06.005.spa
dc.relation.referencesMalagelada, C. & Malagelada, J. R.: , 2017; Small bowel motility; Current Gastroenterology Reports; 19: 1--10; doi:10.1007/ S11894-017-0565-X/METRICS; URL https://link.springer.com/article/10.1007/s11894-017-0565-x.spa
dc.relation.referencesMalagelada, C.; lorio, F. D.; Seguí, S.; Mendez, S.; Drozdzal, M.; Vitria, J.; Radeva, P.; Santos, J.; Accarino, A.; Malagelada, J. R. & Azpiroz, F.: , 2012; Functional gut disorders or disordered gut function? small bowel dys- motility evidenced by an original technique; Neurogastroenterology & Motility; 24: 223--e105; doi:10.1111/J.1365-2982.2011. 01823.X; URL https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2982.2011.01823.xhttps://onlinelibrary.wiley.com/doi/ abs/10.1111/j.1365-2982.2011.01823.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-2982.2011.01823.x.spa
dc.relation.referencesMartínez, F.; Ruano, J.; Gómez, M. & Romero, E.: , 2015; Estimating the size of polyps during actual endoscopy procedures using a spatio-temporal characterization; Computerized Medical Imaging and Graphics; 43; doi:10.1016/j.compmedimag.2015.01.002.spa
dc.relation.referencesMartínez, L. E.; O’Brien, V. P.; Leverich, C. K.; Knoblaugh, S. E. & Salamaa, N. R.: , 2019; Nonhelical helicobacter pylori mu- tants show altered gland colonization and elicit less gastric pathology than helical bacteria during chronic infection; Infection and Im- munity; 87: 904--922; doi:10.1128/IAI.00904-18; URL /pmc/articles/PMC6589060//pmc/articles/PMC6589060/?report=abstracthttps: //www.ncbi.nlm.nih.gov/pmc/articles/PMC6589060/.spa
dc.relation.referencesMateo, J. L. & Fernández-Caballero, A.: , 2009; Finding out general tendencies in speckle noise reduction in ultrasound images; Expert Systems with Applications; 36 (4): 7786 -- 7797; doi:https://doi.org/10.1016/j.eswa.2008.11.029; URL http: //www.sciencedirect.com/science/article/pii/S0957417408008671.spa
dc.relation.referencesMathew, S.; Nadeem, S.; Kumari, S. & Kaufman, A.: , 2020; Augmenting colonoscopy using extended and directional cyclegan for lossy image translation; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); págs. 4696--4705; doi:https://doi.org/10.48550/arXiv.2003.12473.spa
dc.relation.referencesMei, M.; Ni, J.; Liu, D.; Jin, P. & Sun, L.: , 2013; Eus elastography for diagnosis of solid pancreatic masses: a meta-analysis; Gastrointestinal endoscopy; 77 (4): 578--589.spa
dc.relation.referencesMelo, R.; Barreto, J. & Falcao, G.: , 2012; A new solution for camera calibration and real time image distortion correction in medical endoscopy - initial technical evaluation; Biomedical Engineering, IEEE Transactions on; 12 (3): 634 --644; doi: 10.1109/TBME.2011.2177268.spa
dc.relation.referencesMenys, A.; Hoad, C.; Spiller, R.; Scott, S. M.; Atkinson, D.; Marciani, L. & Taylor, S. A.: , 2019; Spatio- temporal motility mri analysis of the stomach and colon; Neurogastroenterology & Motility; 31: e13557; doi:10.1111/ NMO.13557; URL https://onlinelibrary.wiley.com/doi/full/10.1111/nmo.13557https://onlinelibrary.wiley.com/doi/abs/10.1111/ nmo.13557https://onlinelibrary.wiley.com/doi/10.1111/nmo.13557.spa
dc.relation.referencesMessmann, H.; Bisschops, R.; Antonelli, G.; Libanio, D.; Sinonquel, P.; Abdelrahim, M.; Ahmad, O. F.; Areia, M.; Bergman, J. J.; Bhandari, P.; Boskoski, I.; Dekker, E.; Domagk, D.; Ebigbo, A.; Eelbode, T.; Eliakim, R.; Hafner, M.; Haidry, R. J.; Jover, R.; Kaminski, M. F.; Kuvaev, R.; Mori, Y.; Palazzo, M.; Repici, A.; Rondonotti, E.; Rutter, M. D.; Saito, Y.; Sharma, P.; Spada, C.; Spadaccini, M.; Veitch, A.; Gralnek, I. M.; Hassan, C. & Dinis-Ribeiro, M.: , 2022; Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement; Endoscopy; 54 (12): 1211--1231; doi:10.1055/A-1950-5694.spa
dc.relation.referencesMin, J. K.; Kwak, M. S. & Cha, J. M.: , 2019; Overview of Deep Learning in Gastrointestinal Endoscopy; Gut and Liver ; 13 (4): 388; doi:10.5009/GNL18384; URL /pmc/articles/PMC6622562//pmc/articles/PMC6622562/?report=abstracthttps://www.ncbi.nlm.nih. gov/pmc/articles/PMC6622562/.spa
dc.relation.referencesMisawa, M.; ei Kudo, S.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Matsuda, T.; Saito, S.; Kudo, T.; Baba, T.; Ishida, F.; Itoh, H.; Oda, M. & Mori, K.: , 2021; Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video); Gastrointestinal Endoscopy; 93: 960--967.e3; doi:10.1016/J.GIE.2020.07.060.spa
dc.relation.referencesMiura, F.; Takada, T.; Amano, H.; Yoshida, M.; Furui, S. & Takeshita, K.: , 2006; Diagnosis of pancreatic cancer; HPB; 8: 337 -- 342.spa
dc.relation.referencesMorales, T. G.; Sampliner, R. E.; Garewal, H. S.; Fennerty, M. & Aickin, M.: , 1996; The difference in colon polyp size before and after removal; Gastrointestinal Endoscopy; 43 (1): 25 -- 28; doi:10.1016/S0016-5107(96)70255-9; URL http: //www.sciencedirect.com/science/article/pii/S0016510796702559.spa
dc.relation.referencesMoss, A. & Nalankilli, K.: , 2017; Standardisation of polypectomy technique; Best Practice & Research Clinical Gastroenterology; 31: 447--453; doi:10.1016/J.BPG.2017.05.007.spa
dc.relation.referencesMoutinho-Ribeiro, P.; Iglesias-Garcia, J.; Gaspar, R. & Macedo, G.: , 2019; Early pancreatic cancer — the role of endoscopic ultrasound with or without tissue acquisition in diagnosis and staging; Digestive and Liver Disease; 51: 4 -- 9.spa
dc.relation.referencesMueller-Richter, U.; Limberger, A.; Weber, P.; Ruprecht, K.; Spitzer, W. & Schilling, M.: , 2004; Possibilities and limitations of current stereo-endoscopy; Surgical endoscopy; 18: 942--947.spa
dc.relation.referencesMussad, S.; Maradiaga, R.; Navari, L.; Kanzaki, L.; Zhang, Y. & Chakraborty, S.: , 2023; S590 examining the correlation between gastroesophageal sphincter distensibility measured by endoflip and esophageal acid exposure; American Journal of Gastroenterology; 118: S431--S432; doi:10.14309/01.AJG.0000952000.86328.FD.spa
dc.relation.referencesMuto, T.; Bussey, H. & Morson, B.: , 1975; The evolution of cancer of the colon and rectum; Cancer ; 36 (6): 2251--2270.spa
dc.relation.referencesNadeem, S. & Kaufman, A.: , 2016; Depth reconstruction and computer-aided polyp detection in optical colonoscopy video frames; arXiv preprint arXiv:1609.01329 ; doi:https://doi.org/10.1117/12.2216996.spa
dc.relation.referencesNagtegaal, I. D.; Odze, R. D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K. M.; Carneiro, F.; Cree, I. A. et al.: , 2020; The 2019 who classification of tumours of the digestive system; Histopathology; 76 (2): 182.spa
dc.relation.referencesNakai, Y.; Takahara, N.; Mizuno, S.; Kogure, H. & Koike, K.: , 2019; Current status of endoscopic ultrasound techniques for pancreatic neoplasms; Clinical Endoscopy; 52: 527--532; doi:10.5946/CE.2019.025; URL https://synapse.koreamed.org/articles/ 1151267.spa
dc.relation.referencesNamikawa, K.; Hirasawa, T.; Yoshio, T.; Fujisaki, J.; Ozawa, T.; Ishihara, S.; Aoki, T.; Yamada, A.; Koike, K.; Suzuki, H. & Tada, T.: , 2020; Utilizing artificial intelligence in endoscopy: a clinician’s guide; Expert Review of Gastroenterology & Hepatology: 689--706; doi:10.1080/17474124.2020.1779058; URL https://www.tandfonline.com/doi/abs/10.1080/17474124.2020. 1779058.spa
dc.relation.referencesNandhra, G. K.; Chaichanavichkij, P.; Birch, M. & Scott, S. M.: , 2023; Gastrointestinal transit times in health as determined using ingestible capsule systems: A systematic review; Journal of Clinical Medicine; 12: 5272; doi:10.3390/JCM12165272/S1; URL https://www.mdpi.com/2077-0383/12/16/5272/htmhttps://www.mdpi.com/2077-0383/12/16/5272.spa
dc.relation.referencesNarvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor, M. E. & Stone, P.: , 2020; Curriculum learning for reinforcement learning domains: A framework and survey; Journal of Machine Learning Research; 21: 1--50; doi:10.5555/3455716.3455897.spa
dc.relation.referencesNguyen, N.-Q.; Vo, D. M. & Lee, S.-W.: , 2020; Contour-aware polyp segmentation in colonoscopy images using detailed upsampling encoder-decoder networks; IEEE Access; 8: 99495--99508; doi:10.1109/ACCESS.2020.2995630.spa
dc.relation.referencesNishina, K.; Hirooka, K.; Wiegand, J. & Dremel, H.: , 2009; Principles and practice of endoscopic ultrasound; en Clinical Chest Ultrasound, tomo 37; Karger Publishers; págs. 110--127.spa
dc.relation.referencesNoh, J. H. & Jung, H. Y.: , 2023; Role of endoscopy in motility disorders of upper gastrointestinal tract; Journal of Neuro- gastroenterology and Motility; 29: 7; doi:10.5056/JNM22170; URL /pmc/articles/PMC9837547//pmc/articles/PMC9837547/?report= abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837547/.spa
dc.relation.referencesOkatani, T. & Deguchi, K.: , 1997; Shape reconstruction from an endoscope image by shape from shading technique for a point light source at the projection center; Computer Vision and Image Understanding; 66 (2): 119--131; doi:https://doi.org/10.1006/cviu. 1997.0613; URL https://www.sciencedirect.com/science/article/pii/S1077314297906135.spa
dc.relation.referencesO’Mahony, S.; Naylor, G. & Axon, A.: , 2000; Quality assurance in gastrointestinal endoscopy; Endoscopy; 32 (06): 483--488.spa
dc.relation.referencesOrganization, W. H.: , 2008a; Ten leading causes of death worldwide.spa
dc.relation.referencesOrganization, W. H.: , 2008b; Cause-specific mortality, 2008: World bank income group; URL http://apps.who.int/gho/data/?vid= 10015.spa
dc.relation.referencesOrganization, W. H.: , 2015; Ten leading causes of death worldwide.spa
dc.relation.referencesOwens, D. J. & Savides, T. J.: , 2010; Endoscopic ultrasound staging and novel therapeutics for pancreatic cancer; Surgical Oncology Clinics of North America; 19 (2): 255 -- 266; doi:https://doi.org/10.1016/j.soc.2009.11.009; URL http://www.sciencedirect.com/ science/article/pii/S1055320709001240.spa
dc.relation.referencesOzyoruk, K. B.; Gokceler, G. I.; Bobrow, T. L.; Coskun, G.; Incetan, K.; Almalioglu, Y.; Mahmood, F.; Curto, E.; Perdigoto, L.; Oliveira, M.; Sahin, H.; Araujo, H.; Alexandrino, H.; Durr, N. J.; Gilbert, H. B. & Turan, M.: , 2021; EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos; Medical Image Analysis; 71: 102058; doi:10.1016/J.MEDIA.2021.102058.spa
dc.relation.referencesPannala, R.; Krishnan, K.; Melson, J.; Parsi, M. A.; Schulman, A. R.; Sullivan, S.; Trikudanathan, G.; Trindade, A. J.; Watson, R. R.; Maple, J. T. & Lichtenstein, D. R.: , 2020; Emerging role of artificial intelligence in gi endoscopy; Gastrointestinal Endoscopy; 92: 1151--1152; doi:10.1016/j.gie.2020.09. 022; URL http://www.giejournal.org/article/S001651072034788X/fulltexthttp://www.giejournal.org/article/S001651072034788X/ abstracthttps://www.giejournal.org/article/S0016-5107(20)34788-X/abstract.spa
dc.relation.referencesParasa, S.; Wallace, M.; Bagci, U.; Antonino, M.; Berzin, T.; Byrne, M.; Celik, H.; Farahani, K.; Golding, M.; Gross, S.; Jamali, V.; Mendonca, P.; Mori, Y.; Ninh, A.; Repici, A.; Rex, D.; Skrinak, K.; Thakkar, S. J.; van Hooft, J. E.; Vargo, J.; Yu, H.; Xu, Z. & Sharma, P.: , 2020; Proceedings from the First Global Artificial Intelligence in Gastroenterology and Endoscopy Summit; Gastrointestinal Endoscopy; 92 (4): 938--945.e1; doi:10.1016/J.GIE.2020.04.044.spa
dc.relation.referencesParisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C. & Wermter, S.: , 2019; Continual lifelong learning with neural networks: A review; Neural Networks; 113: 54--71; doi:10.1016/J.NEUNET.2019.01.012.spa
dc.relation.referencesPark, R.; Nyland, T.; Lattimer, J.; Miller, C. & Lebel, J.: , 1981; B-mode gray-scale ultrasound: Imaging arti- facts and interpretation principles; Veterinary Radiology; 22 (5): 204--210; doi:10.1111/j.1740-8261.1981.tb01374.x; URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1740-8261.1981.tb01374.x.spa
dc.relation.referencesPeng, H.; Long, F. & Ding, C.: , 2005; Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy; IEEE Transactions on pattern analysis and machine intelligence; 27 (8): 1226--1238.spa
dc.relation.referencesPerri, F.: , 1998; Patterns of symptoms in functional dyspepsia: role of helicobacter pylori infection and delayed gastric emptying; The American Journal of Gastroenterology; 93: 2082--2088; doi:10.1016/S0002-9270(98)00478-X.spa
dc.relation.referencesPerry, J.; Burnfield, J. M. & Cabico, L. M.: , 1992; Gait analysis: normal and pathological function.spa
dc.relation.referencesPorkodi, S. P.; Sarada, V.; Maik, V. & Gurushankar, K.: , 2022; Generic image application using GANs (Generative Adversarial Networks): A Review; Evolving Systems; 1: 1--15; doi:10.1007/S12530-022-09464-Y/FIGURES/3.spa
dc.relation.referencesPrados, E. & Faugeras, O.: , 2005; Shape from shading: a well-posed problem?; en 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), tomo 2; págs. 870--877 vol. 2; doi:10.1109/CVPR.2005.319.spa
dc.relation.referencesQaseem, A.; Crandall, C. J.; Mustafa, R. A.; Hicks, L. A.; Wilt, T. J. & of the American College of Physicians*, C. G. C.: , 2019; Screening for colorectal cancer in asymptomatic average-risk adults: A guidance statement from the american college of physicians; Annals of Internal Medicine; 171 (9): 643--654; doi:10.7326/M19-0642; pMID: 31683290.spa
dc.relation.referencesQvist, N.; Rasmussen, L. & Axelsson, C. K.: , 1994; Helicobacter pylori-associated gastritis and dyspepsia: The influence on migrating motor complexes; Scandinavian Journal of Gastroenterology; 29: 133--137; doi:10.3109/00365529409090451; URL https://www.tandfonline.com/doi/abs/10.3109/00365529409090451.spa
dc.relation.referencesRamachandran, V. S.: , 1988; Perception of shape from shading; Nature; 331 (6152): 163--166.spa
dc.relation.referencesRamsey, S.; Yoon, P.; Moonesinghe, R. & Khoury, M.: , 2006; Population-based study of the prevalence of family history of cancer: Implications for cancer screening and prevention; Journal of American Collague of Medical Genetics and Genomics; 8(9): 571--575.spa
dc.relation.referencesRau, A.; Edwards, P. J.; Ahmad, O. F.; Riordan, P.; Janatka, M.; Lovat, L. B. & Stoyanov, D.: , 2019; Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy; International Journal of Computer Assisted Radiology and Surgery; 14 (7): 1167--1176; doi:10.1007/S11548-019-01962-W.spa
dc.relation.referencesRees, C. J.; Bevan, R.; Zimmermann-Fraedrich, K.; Rutter, M. D.; Rex, D.; Dekker, E.; Ponchon, T.; Bretthauer, M.; Regula, J.; Saunders, B.; Hassan, C.; Bourke, M. J. & Rösch, T.: , 2016; Expert opinions and scientific evidence for colonoscopy key performance indicators; Gut; 65 (12): 2045--2060; doi:10.1136/gutjnl-2016-312043.spa
dc.relation.referencesRenna, F.; Martins, M.; Neto, A.; Cunha, A.; Libânio, D.; Dinis-Ribeiro, M. & Coimbra, M.: , 2022; Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice; Diagnostics; 12 (5); doi:10.3390/DIAGNOSTICS12051278; URL /pmc/articles/PMC9141387//pmc/articles/PMC9141387/?report=abstracthttps://www.ncbi. nlm.nih.gov/pmc/articles/PMC9141387/.spa
dc.relation.referencesRiaz, F.; Ribeiro, M. & Coimbra, M.: , 2009; Quantitative comparison of segmentation methods for in-body images; en 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; págs. 5785--5788; doi: 10.1109/IEMBS.2009.5332540; URL http://ieeexplore.ieee.org/document/5332540/.spa
dc.relation.referencesRogers, B. & Graham, M.: , 1979; Motion parallax as an independent cue for depth perception; 8: 125 -- 134.spa
dc.relation.referencesRogers, K. et al.: , 2010; The digestive system; Britannica Educational Publishing.spa
dc.relation.referencesRosenthal, M. H.; Lee, A. & Jajoo, K.: , 2015; Imaging and endoscopic approaches to pancreatic cancer; Hematology/Oncology Clinics of North America; 29 (4): 675 -- 699; doi:https://doi.org/10.1016/j.hoc.2015.04.008; URL http://www.sciencedirect.com/ science/article/pii/S0889858815000581.spa
dc.relation.referencesRuano, J.; Barrera, C.; Bravo, D.; Gomez, M. & Romero, E.: , 2019; Localization of small neoplastic lesions in colonoscopy by estimating edge, texture and motion saliency; en Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; ISBN 9781538613115; doi:10.1109/EMBC.2019.8856864.spa
dc.relation.referencesRuano, J.; Jaramillo, M.; Gómez, M. & Romero, E.: , 2022; Robust descriptor of pancreatic tissue for automatic detection of pancreatic cancer in endoscopic ultrasonography; Ultrasound in Medicine & Biology; 48: 1602--1614; doi: 10.1016/J.ULTRASMEDBIO.2022.04.006.spa
dc.relation.referencesRuano, J.; Bravo, D.; Giraldo, D.; Gómez, M.; González, F.; Manzanera, A. & Romero, E.: , 2023a; Estimating polyp size from a single colonoscopy image using a shape-from-shading model; en 2024 IEEE 21th International Symposium on Biomedical Imaging (ISBI); pág. (In press).spa
dc.relation.referencesRuano, J.; Bravo, D.; Jaramillo, M.; Gomez, M.; Pascau, J.; Gonzalez, F. & Romero, E.: , 2023b; Generating synthetic endoscopy videos following a systematic screening protocol; Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023 ; doi:10.1109/SIPAIM56729.2023.10373417.spa
dc.relation.referencesRuano, J.; Gómez, M.; Romero, E. & Manzanera, A.: , 2023c; Leveraging a realistic synthetic database to learn shape-from-shading for estimating the colon depth in colonoscopy images; arXiv preprint arXiv:2311.05021.spa
dc.relation.referencesRuffle, J. K.; Farmer, A. D. & Aziz, Q.: , 2019; Artificial intelligence-assisted gastroenterology - promises and pitfalls; American Journal of Gastroenterology; 114: 422--428; doi:10.1038/S41395-018-0268-4; URL https://journals.lww.com/ajg/Fulltext/2019/ 03000/Artificial_Intelligence_Assisted_Gastroenterology_.12.aspx.spa
dc.relation.referencesussakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C. & Fei-Fei, L.: , 2015; ImageNet Large Scale Visual Recognition Challenge; International Journal of Computer Vision (IJCV); 115 (3): 211--252; doi:10.1007/s11263-015-0816-y.spa
dc.relation.referencesSaad, R. J. & Hasler, W. L.: , 2011; A technical review and clinical assessment of the wireless motility capsule; Gastroenterology & Hepatology; 7: 795; doi:PMC3280411.spa
dc.relation.referencesSainani, K. L.: , 2009; The problem of multiple testing; PM&R; 1: 1098--1103; doi:10.1016/J.PMRJ.2009. 10.004; URL https://onlinelibrary.wiley.com/doi/full/10.1016/j.pmrj.2009.10.004https://onlinelibrary.wiley.com/doi/abs/10. 1016/j.pmrj.2009.10.004https://onlinelibrary.wiley.com/doi/10.1016/j.pmrj.2009.10.004.spa
dc.relation.referencesSaito, Y.; Suzuki, H.; Tsugawa, H.; Suzuki, S.; Matsuzaki, J.; Hirata, K. & Hibi, T.: , 2011; Dysfunctional gastric emptying with down-regulation of muscle-specific micrornas in helicobacter pylori-infected mice; Gastroenterology; 140: 189--198; doi:10.1053/J.GASTRO.2010.08.044.spa
dc.relation.referencesSalvatori, S.; Marafini, I.; Laudisi, F.; Monteleone, G. & Stolfi, C.: , 2023; Helicobacter pylori and gastric cancer: Pathogenetic mechanisms; International Journal of Molecular Sciences; 24; doi:10.3390/IJMS24032895; URL /pmc/articles/PMC9917787//pmc/ articles/PMC9917787/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917787/.spa
dc.relation.referencesSarnelli, G.; Cuomo, R.; Janssens, J. & Tack, J.: , 2003; Symptom patterns and pathophysiological mechanisms in dyspeptic patients with and without helicobacter pylori; Digestive Diseases and Sciences; 48: 2229--2236; doi:10.1023/B:DDAS.0000007856. 71462.6C/METRICS; URL https://link.springer.com/article/10.1023/B:DDAS.0000007856.71462.6c.spa
dc.relation.referencesSawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T. & Przybyłowicz, K. E.: , 2021; A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis; Cancers; 13 (9); doi:10.3390/cancers13092025.spa
dc.relation.referencesSelnes, O.; Bjørsum-Meyer, T.; Histace, A.; Baatrup, G. & Koulaouzidis, A.: , 2022; Annotation tools in gastrointestinal polyp annotation; Diagnostics 2022, Vol. 12, Page 2324 ; 12: 2324; doi:10.3390/DIAGNOSTICS12102324; URL https://www.mdpi. com/2075-4418/12/10/2324/htmhttps://www.mdpi.com/2075-4418/12/10/2324.spa
dc.relation.referencesSeo, J. Y.; Hong, H.; Ryu, W. S.; Kim, D.; Chun, J. & Kwak, M. S.: , 2023; Development and validation of a convolutional neural network model for diagnosing helicobacter pylori infections with endoscopic images: a multicenter study; Gastrointestinal Endoscopy; 97: 880--888.e2; doi:10.1016/J.GIE.2023.01.007.spa
dc.relation.referencesShandro, B. M.; Emrith, K.; Slabaugh, G.; Poullis, A. & Smith, M. L.: , 2020; Optical imaging technology in colonoscopy: Is there a role for photometric stereo?; World Journal of Gastrointestinal Endoscopy; 12 (5): 138; doi:10.4253/wjge.v12.i5.138.spa
dc.relation.referencesSharma, P. & Hassan, C.: , 2022; Artificial intelligence and deep learning for upper gastrointestinal neoplasia; Gastroenterology; 162: 1056--1066; doi:10.1053/J.GASTRO.2021.11.040.spa
dc.relation.referencesShaw, S. M. & Kimmey, M. B.: , 2000; General principles of endoscopic ultrasonographic imaging; Techniques in Gastrointestinal Endoscopy; 2: 50--55; doi:10.1053/TG.2000.5430.spa
dc.relation.referencesShi, Y. & Sheng, P.: , 2021; J-net: Asymmetric encoder-decoder for medical semantic segmentation; Security and Communication Networks; 2021.spa
dc.relation.referencesShichijo, S.; Endo, Y.; Aoyama, K.; Takeuchi, Y.; Ozawa, T.; Takiyama, H.; Matsuo, K.; Fujishiro, M.; Ishihara, S.; Ishihara, R. & Tada, T.: , 2019; Application of convolutional neural networks for evaluating helicobacter pylori infection status on the basis of endoscopic images; Scandinavian Journal of Gastroenterology; 54: 158--163; doi:10.1080/00365521.2019.1577486; URL https://www.tandfonline.com/doi/abs/10.1080/00365521.2019.1577486.spa
dc.relation.referencesShiina, T.; Nightingale, K. R. & et al.: , 2015; Wfumb guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology; Ultrasound in Medicine & Biology; 41 (5): 1126 -- 1147; doi:https://doi.org/10.1016/j. ultrasmedbio.2015.03.009; URL http://www.sciencedirect.com/science/article/pii/S0301562915002227.spa
dc.relation.referencesShimoda, R.; Akutagawa, T.; Tomonaga, M.; Murano, T.; Shinmura, K.; Yoshioka, M.; Teramura, Y.; Kiy- omi, F. & Ikematsu, H.: , 2022; Estimating colorectal polyp size with a virtual scale endoscope and visual estimation during colonoscopy: Prospective, preliminary comparison of accuracy; Digestive Endoscopy; 34: 1471--1477; doi:10.1111/ DEN.14351; URL https://onlinelibrary.wiley.com/doi/full/10.1111/den.14351https://onlinelibrary.wiley.com/doi/abs/10.1111/ den.14351https://onlinelibrary.wiley.com/doi/10.1111/den.14351.spa
dc.relation.referencesShin, Y.; Qadir, H. A.; Aabakken, L.; Bergsland, J. & Balasingham, I.: , 2018; Automatic colon polyp detection using region based deep cnn and post learning approaches; IEEE Access; 6: 40950--40962.spa
dc.relation.referencesShirani, M.; Pakzad, R.; Haddadi, M. H.; Akrami, S.; Asadi, A.; Kazemian, H.; Moradi, M.; Kaviar, V. H.; Zomorodi, A. R.; Khoshnood, S.; Shafieian, M.; Tavasolian, R.; Heidary, M. & Saki, M.: , 2023; The global prevalence of gastric cancer in helicobacter pylori-infected individuals: a systematic review and meta-analysis; BMC Infectious Diseases; 23: 1--30; doi:10. 1186/S12879-023-08504-5/FIGURES/4; URL https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-023-08504-5http: //creativecommons.org/publicdomain/zero/1.0/.spa
dc.relation.referencesShussman, N. & Wexner, S. D.: , 2014; Colorectal polyps and polyposis syndromes; Gastroenterology Report; 2 (1): 1--15; doi:10.1093/gastro/got041.spa
dc.relation.referencesShyam Menon, A.; Trudgill, N. & Menon, S.: , 2014; How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis; Endoscopy International Open; 2 (02): E46--E50; doi:10.1055/S-0034-1365524; URL http://www.thieme-connect. com/products/ejournals/html/10.1055/s-0034-1365524http://www.thieme-connect.de/DOI/DOI?10.1055/s-0034-1365524.spa
dc.relation.referencesSilva, J.; Histace, A.; Romain, O.; Dray, X. & Granado, B.: , 2014; Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer; International journal of computer assisted radiology and surgery; 9 (2): 283--293.spa
dc.relation.referencesSimon, K.: , 2016; Colorectal cancer development and advances in screening; Clinical interventions in aging; 11: 967; doi: http://doi.org/10.2147/CIA.S109285.spa
dc.relation.referencesSingh, A. & Faulx, A. L.: , 2016; Endoscopic evaluation in the workup of pancreatic cancer; Surgical Clinics of North Amer- ica; 96 (6): 1257 -- 1270; doi:https://doi.org/10.1016/j.suc.2016.07.006; URL http://www.sciencedirect.com/science/article/pii/ S0039610916520477.spa
dc.relation.referencesSinha, P.; Ostrovsky, Y. & Meyers, E.: , 2006; Parsing visual scenes via dynamic cues; Journal of Vision; 6 (6): 95.spa
dc.relation.referencesSoetikno, R.; Chiu, H. M.; Asokkumar, R.; Sanduleanu, S.; Tanaka, S.; Rastogi, A.; Uedo, N.; Hammad, H. & Triadafilopoulos, G.: , 2021; Use of the aces (appearance, classification, enhanced endoscopy, and safe resection) algorithm for the recognition and management of malignant polyps—a letter in response to the multi-society task force on colorectal cancer recommendations; Gastrointestinal Endoscopy; 93: 1194--1198; doi:10.1016/j.gie.2020.12.020.spa
dc.relation.referencesSpeidel, S.; Bodenstedt, S.; Vasconcelos, F. & Stoyanov, D.: , 2020; Chapter 29 - interventional imaging: Vision; en Handbook of Medical Image Computing and Computer Assisted Intervention (Editado por Zhou, S. K.; Rueckert, D. & Fichtinger, G.); The Elsevier and MICCAI Society Book Series; Academic Press; ISBN 978-0-12-816176-0; págs. 721--745; doi:https: //doi.org/10.1016/B978-0-12-816176-0.00034-X; URL https://www.sciencedirect.com/science/article/pii/B978012816176000034X.spa
dc.relation.referencesStolzenberg-Solomon, R. Z. & Amundadottir, L. T.: , 2015; Epidemiology and inherited predisposition for sporadic pancreatic adenocarcinoma; Hematology/Oncology Clinics of North America; 29 (4): 619 -- 640.spa
dc.relation.referencesSun, L.; Tu, H.; Chen, T.; Yuan, Q.; Liu, J.; Dong, N. & Yuan, Y.: , 2017; Three-dimensional combined biomarkers assay could improve diagnostic accuracy for gastric cancer; Scientific reports; 7 (1): 1--7.spa
dc.relation.referencesSung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A. & Bray, F.: , 2021; Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries; CA: A Cancer Journal for Clinicians; 71 (3): 209--249; doi:https://doi.org/10.3322/caac.21660.spa
dc.relation.referencesSurendranath, A. & Jayagopi, D. B.: , 2018; Curriculum learning for depth estimation with deep convolutional neural networks; ACM International Conference Proceeding Series; 2018-March: 95--100; doi:10.1145/3177148.3180085; URL https://dl.acm.org/ doi/10.1145/3177148.3180085.spa
dc.relation.referencesSuzuki, H. & Moayyedi, P.: , 2013; Helicobacter pylori infection in functional dyspepsia; Nature Reviews Gastroenterology & Hepatology; 10: 168--174; doi:10.1038/nrgastro.2013.9; URL https://www.nature.com/articles/nrgastro.2013.9.spa
dc.relation.referencesSuzuki, S.; Yamada, K.; Yamashita, K.; Endo, M. & Takemoto, T.: , 1972; Gastroscopic dynamics of gastric mucosa in relation to intragastric pressure; Endoscopy; 4: 20--28; doi:10.1055/S-0028-1098154/BIB.spa
dc.relation.referencesSuzuki, T.; Hirano, M. & Yamamoto, Y.: , 2005; Examination of visceral perception and gastric tone by gastric stimulation using air inflation during endoscopy; http://dx.doi.org/10.1177/147323000503300203 ; 33: 160--169; doi:10.1177/147323000503300203.spa
dc.relation.referencesSwanston, M. T. & Gogel, W. C.: , 1986; Perceived size and motion in depth from optical expansion; Perception & psychophysics; 39 (5): 309--326.spa
dc.relation.referencesSăftoiu, A.; Vilmann, P.; Gorunescu, F.; Gheonea, D. I.; Gorunescu, M.; Ciurea, T.; Popescu, G. L.; Iordache, A.; Hassan, H. & Iordache, S.: , 2008; Neural network analysis of dynamic sequences of eus elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer; Gastrointestinal Endoscopy; 68 (6): 1086 -- 1094; doi: https://doi.org/10.1016/j.gie.2008.04.031; URL http://www.sciencedirect.com/science/article/pii/S0016510708017768.spa
dc.relation.referencesSăftoiu, A.; Vilmann, P.; Gorunescu, F.; Janssen, J.; Hocke, M.; Larsen, M.; Iglesias–Garcia, J.; Arcidiacono, P.; Will, U.; Giovannini, M.; Dietrich, C. F.; Havre, R.; Gheorghe, C.; McKay, C.; Gheonea, D. I. & Ciurea, T.: , 2012; Efficacy of an artificial neural network–based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses; Clinical Gastroenterology and Hepatology; 10 (1): 84 -- 90.e1; doi:https://doi.org/10.1016/j.cgh.2011.09.014; URL http://www.sciencedirect.com/science/article/pii/S1542356511010184.spa
dc.relation.referencesSăftoiu, A.; Vilmann, P.; Dietrich, C. F.; Iglesias-Garcia, J.; Hocke, M.; Seicean, A.; Ignee, A.; Hassan, H.; Streba, C. T.; Ioncică, A. M.; Gheonea, D. I. & Ciurea, T.: , 2015; Quantitative contrast-enhanced harmonic eus in differential diagnosis of focal pancreatic masses (with videos); Gastrointestinal Endoscopy; 82 (1): 59 -- 69; doi:https://doi.org/10.1016/j.gie.2014.11.040; URL http://www.sciencedirect.com/science/article/pii/S0016510714024924.spa
dc.relation.referencesTadepalli, U. S.; Feihel, D.; Miller, K. M.; Itzkowitz, S. H.; Freedman, J. S.; Kornacki, S.; Cohen, L. B.; Bamji, N. D.; Bodian, C. A. & Aisenberg, J.: , 2011; A morphologic analysis of sessile serrated polyps observed during routine colonoscopy (with video); Gastrointestinal Endoscopy; 74 (6): 1360--1368; doi:https://doi.org/10.1016/j.gie.2011.08.008.spa
dc.relation.referencesTaha, B.; Werghi, N. & Dias, J.: , 2017; Automatic Polyp Detection in Endoscopy Videos: A Survey; Biomedical Engineering; doi:10.2316/P.2017.852-031.spa
dc.relation.referencesTajbakhsh, N. & Gurudu, S.and Liang, J.: , 2016; Automated polyp detection in colonoscopy videos using shape and context information; IEEE transactions on medical imaging; 35 (2): 630--644.spa
dc.relation.referencesTakhar, A. S.; Palaniappan, P.; Dhingsa, R. & Lobo, D. N.: , 2004; Recent developments in diagnosis of pancreatic cancer; BMJ ; 329 (7467): 668--673; doi:10.1136/bmj.329.7467.668.spa
dc.relation.referencesTakiyama, H.; Ozawa, T. et al.: , 2018; Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks; Scientific reports; 8 (1): 1--8.spa
dc.relation.referencesTan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C. & Liu, C.: , 2018; A survey on deep transfer learning; en International conference on artificial neural networks; Springer; págs. 270--279spa
dc.relation.referencesTan, M. & Le, Q.: , 2019a; Efficientnet: Rethinking model scaling for convolutional neural networks; en International Conference on Machine Learning; PMLR; págs. 6105--6114.spa
dc.relation.referencesTerada, Y.; Miyasaka, T.; Nakao, A.; Funayama, S.; Ichikawa, S.; Takamura, T.; Tamada, D.; Morisaka, H. & Onishi, H.: , 2022; Clinical evaluation of super-resolution for brain MRI images based on generative adversarial networks; Informatics in Medicine Unlocked; 32: 101030; doi:10.1016/J.IMU.2022.101030.spa
dc.relation.referencesTestoni, P. A.; Bagnolo, F.; Bologna, P.; Colombo, E.; Bonassi, U.; Lella, F. & Buizza, M.: , 1996; Higher prevalence of helicobacter pylori infection in dyspeptic patients who do not have gastric phase iii of the migrating motor complex; Scandinavian Journal of Gastroenterology; 31: 1063--1068; doi:10.3109/00365529609036888; URL https://www.tandfonline.com/doi/abs/10.3109/ 00365529609036888.spa
dc.relation.referencesTonozuka, R.; Itoi, T.; Nagata, N.; Kojima, H.; Sofuni, A.; Tsuchiya, T.; Ishii, K.; Tanaka, R.; Nagakawa, Y. & Mukai, S.: , 2020a; Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study; Journal of Hepato-Biliary-Pancreatic Sciencesspa
dc.relation.referencesTseng, Y.; Lin, L.; Mo, S.; Zhao, S.; Shen, Q.; Song, H.; Cui, H.; Zhang, J.; Zheng, W.; Luo, Z.; Luo, F. & Liu, J.: , 2023; Unveiling the neuroinflammatory pathogenesis of persistent functional dyspepsia in h. pylori infection: Insights on mmp-9 as a therapeutic target; Clinical and Translational Medicine; 13; doi:10.1002/CTM2.1456.spa
dc.relation.referencesUtsumi, T.; Horimatsu, T.; Nishikawa, Y.; Teramoto, A.; Hirata, D.; Iwatate, M.; Tanaka, S.; Ikezawa, N.; Esaki, M.; Osera, S. et al.: , 2021; Factors associated with inaccurate size estimation of colorectal polyps: A multicenter cross-sectional study; Journal of Gastroenterology and Hepatology; 36: 2224--2229; doi:10.1111/JGH. 15464; URL https://onlinelibrary.wiley.com/doi/full/10.1111/jgh.15464https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh. 15464https://onlinelibrary.wiley.com/doi/10.1111/jgh.15464.spa
dc.relation.referencesvan der Sommen, F.; Curvers, W. L. & Nagengast, W. B.: , 2018; Novel Developments in Endoscopic Mucosal Imaging; Gastroenterology; 154 (7): 1876--1886; doi:10.1053/J.GASTRO.2018.01.070.spa
dc.relation.referencesVan Rijn, J. C.; Reitsma, J. B.; Stoker, J.; Bossuyt, P. M.; Van Deventer, S. J. & Dekker, E.: , 2006; Polyp miss rate determined by tandem colonoscopy: a systematic review; Official journal of the American College of Gastroenterology| ACG; 101 (2): 343--350; doi:10.1111/j.1572-0241.2006.00390.x.spa
dc.relation.referencesVania, M.; Tama, B. A.; Maulahela, H. & Lim, S.: , 2023; Recent advances in applying machine learning and deep learning to detect upper gastrointestinal tract lesions; IEEE Access; 11: 66544--66567; doi:10.1109/ACCESS.2023.3290997.spa
dc.relation.referencesVisaggi, P.; Bortoli, N. D.; Barberio, B.; Savarino, V.; Oleas, R.; Rosi, E. M.; Marchi, S.; Ribolsi, M. & Savarino, E.: , 2022; Artificial intelligence in the diagnosis of upper gastrointestinal diseases; Journal of Clinical Gastroenterology; 56: 23--35; doi:10.1097/MCG.0000000000001629.spa
dc.relation.referencesVries, A.; Bipat, S.; Dekker, E.; Liedenbaum, M.; Florie, J.; Fockens, P.; Kraan, R.; Mathus-Vliegen, E.; Reitsma, J.; Truyen, R.; Vos, F.; Zwinderman, A. & Stoker, J.: , 2010; Polyp measurement based on ct colonography and colonoscopy: variability and systematic differences; European Radiology; 20 (6): 1404--1413.spa
dc.relation.referencesWallach, H. & O’connell, D.: , 1953; The kinetic depth effect; Journal of Experimental Psychology; 45 (4): 205--217.spa
dc.relation.referencesWalling, A. & Freelove, R.: , 2017; Pancreatitis and pancreatic cancer; Primary Care: Clinics in Office Practice; 44 (4): 609 -- 620; doi:https://doi.org/10.1016/j.pop.2017.07.004; URL http://www.sciencedirect.com/science/article/pii/S0095454317300982.spa
dc.relation.referencesWang, C.; Buenaposada, J. M.; Zhu, R. & Lucey, S.: , 2018; Learning depth from monocular videos using direct methods; en Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); págs. 2022--2030; doi:https: //doi.org/10.48550/arXiv.1712.00175.spa
dc.relation.referencesWang, Y.; Chen, J. D. & Nojkov, B.: , 2023; Diagnostic methods for evaluation of gastric motility—a mini review; Diagnostics; 13; doi:10.3390/DIAGNOSTICS13040803; URL /pmc/articles/PMC9955554//pmc/articles/PMC9955554/?report=abstracthttps://www. ncbi.nlm.nih.gov/pmc/articles/PMC9955554/.spa
dc.relation.referencesWang, Z.: , 2020; Review of real-time three-dimensional shape measurement techniques; Measurement; 156: 107624; doi:10.1016/J. MEASUREMENT.2020.107624.spa
dc.relation.referencesWani, S.; Muthusamy, V. R. & Komanduri, S.: , 2014; Eus-guided tissue acquisition: an evidence-based approach (with videos); Gastrointestinal Endoscopy; 80: 939 -- 959.e7.spa
dc.relation.referencesWani, S.; Hall, M.; Keswani, R. N.; Aslanian, H. R.; Casey, B.; Burbridge, R.; Chak, A.; Chen, A. M.; Cote, G.; Edmundowicz, S. A.; Faulx, A. L.; Hollander, T. G.; Lee, L. S.; Mullady, D.; Murad, F.; Muthusamy, V. R.; Pfau, P. R.; Scheiman, J. M.; Tokar, J.; Wagh, M. S.; Watson, R. & Early, D.: , 2015; Variation in aptitude of trainees in endoscopic ultrasonography, based on cumulative sum analysis; Clinical Gastroenterology and Hepatology; 13 (7): 1318 -- 1325.e2; doi:https://doi.org/10.1016/j.cgh.2014.11.008; URL http://www.sciencedirect.com/science/article/pii/S1542356514016218.spa
dc.relation.referencesWani, S.; Han, S.; Simon, V. & et al.: , 2019; Setting minimum standards for training in eus and ercp: results from a prospective multicenter study evaluating learning curves and competence among advanced endoscopy trainees; Gastrointestinal Endoscopy; 89 (6): 1160 -- 1168.e9; doi:https://doi.org/10.1016/j.gie.2019.01.030; URL http://www.sciencedirect.com/science/article/pii/ S0016510719300732.spa
dc.relation.referencesWei, M. T.; Louie, C. Y.; Chen, Y.; Pan, J. Y.; Quan, S. Y.; Wong, R.; Brown, R.; Clark, M.; Jensen, K.; Lau, H. & Friedland, S.: , 2022; Randomized controlled trial investigating cold snare and forceps polypectomy among small polyps in rates of complete resection: The tinypolyp trial; The American journal of gastroenterology; 117: 1305--1310; doi:10.14309/AJG. 0000000000001799; URL https://pubmed.ncbi.nlm.nih.gov/35467557/.spa
dc.relation.referencesWessler, S.; Krisch, L. M.; Elmer, D. P. & Aberger, F.: , 2017; From inflammation to gastric cancer – the importance of hedgehog/gli signaling in helicobacter pylori-induced chronic inflammatory and neoplastic diseases; Cell Communication and Signaling 2017 15:1 ; 15: 1--13; doi:10.1186/S12964-017-0171-4; URL https://biosignaling.biomedcentral.com/articles/10.1186/ s12964-017-0171-4.spa
dc.relation.referencesWidya, A. R.; Monno, Y.; Okutomi, M.; Suzuki, S.; Gotoda, T. & Miki, K.: , 2021; Stomach 3d reconstruction using virtual chromoendoscopic images; IEEE Journal of Translational Engineering in Health and Medicine; 9; doi:10.1109/JTEHM.2021. 3062226.spa
dc.relation.referencesWimmer, G.; Häfner, M. & Uhl, A.: , 2020; Improving cnn training on endoscopic image data by extracting additionally training data from endoscopic videos; Computerized Medical Imaging and Graphics; 86: 101798; doi:https://doi.org/10.1016/j.compmedimag. 2020.101798.spa
dc.relation.referencesWozniak, S.; Pawlus, A.; Grzelak, J.; Chobotow, S.; Paulsen, F.; Olchowy, C. & Zaleska-Dorobisz, U.: , 2022; Acute colonic flexures: the basis for developing an artificial intelligence-based tool for predicting the course of colonoscopy; Anatomical Science International; 98: 136--142; doi:10.1007/s12565-022-00681-8.spa
dc.relation.referencesWu, L.; Zhou, W. et al.: , 2019; A deep neural network improves endoscopic detection of early gastric cancer without blind spots; Endoscopy; 51 (06): 522--531spa
dc.relation.referencesWu, Q.; Wu, H.; Zhou, X.; Tan, M.; Xu, Y.; Yan, Y. & Hao, T.: , 2017; Online transfer learning with multiple homogeneous or heterogeneous sources; IEEE Transactions on Knowledge and Data Engineering; 29 (7): 1494--1507.spa
dc.relation.referencesXu, J.; Zhao, R.; Yu, Y.; Zhang, Q.; Bian, X.; Wang, J.; Ge, Z. & Qian, D.: , 2021; Real-time automatic polyp detection in colonoscopy using feature enhancement module and spatiotemporal similarity correlation unit; Biomedical Signal Processing and Control; 66: 102503; doi:https://doi.org/10.1016/j.bspc.2021.102503.spa
dc.relation.referencesYamakawa, M. & Shiina, T.: , 2001; Strain estimation using the extended combined autocorrelation method; Japanese Journal of Applied Physics; 40: 3872--3876; doi:10.1143/JJAP.40.3872.spa
dc.relation.referencesYao, J.; Miller, M.; Franaszek, M. & Summers, R.: , 2004; Colonic polyp segmentation in ct colonography-based on fuzzy clustering and deformable models; Medical Imaging, IEEE Transactions on; 23 (11): 1344--1352; doi:10.1109/TMI.2004.826941.spa
dc.relation.referencesYao, K.: , 2013a; The endoscopic diagnosis of early gastric cancer; Annals of Gastroenterology : Quarterly Publication of the Hellenic Society of Gastroenterology; 26 (1): 11; URL /pmc/articles/PMC3959505//pmc/articles/PMC3959505/?report=abstracthttps: //www.ncbi.nlm.nih.gov/pmc/articles/PMC3959505/.spa
dc.relation.referencesYao, K.: , 2013b; The endoscopic diagnosis of early gastric cancer; Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology; 26 (1): 11.spa
dc.relation.referencesYao, K.; Uedo, N. et al.: , 2020; Guidelines for endoscopic diagnosis of early gastric cancer; Digestive Endoscopy; 32 (5): 663--698.spa
dc.relation.referencesYasuda, K.; Mukai, H. & Nakajima, M.: , 1995; Endoscopic ultrasonography diagnosis of pancreatic cancer; Gastrointestinal Endoscopy Clinics of North America; 5 (4): 699 -- 712; doi:https://doi.org/10.1016/S1052-5157(18)30391-X; URL http://www. sciencedirect.com/science/article/pii/S105251571830391X.spa
dc.relation.referencesYu, L.; Chen, H.; Dou, Q.; Qin, J. & Heng, P. A.: , 2016; Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos; IEEE journal of biomedical and health informatics; 21 (1): 65--75.spa
dc.relation.referencesZhang, J.; Zhu, L.; Yao, L.; Ding, X.; Chen, D.; Wu, H.; Lu, Z.; Zhou, W.; Zhang, L.; An, P.; Xu, B.; Tan, W.; Hu, S.; Cheng, F. & Yu, H.: , 2020; Deep-learning–based pancreas segmentation and station recognition system in eus: development and validation of a useful training tool (with video); Gastrointestinal Endoscopy; doi:https://doi.org/10.1016/j.gie.2020.04.071; URL http://www.sciencedirect.com/science/article/pii/S0016510720342711.spa
dc.relation.referencesZhang, M.-M.; Yang, H.; Jin, Z.-D.; Yu, J.-G.; Cai, Z.-Y. & Li, Z.-S.: , 2010; Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of eus images; Gastrointestinal Endoscopy; 72 (5): 978 -- 985; doi:https://doi.org/10.1016/j.gie.2010.06.042; URL http://www.sciencedirect.com/ science/article/pii/S0016510710018316spa
dc.relation.referencesZhang, Q.; Gao, P.; Han, B.; Xu, J. & Shen, Y.: , 2018; Polypectomy for complete endoscopic resection of small colorectal polyps; Gastrointestinal Endoscopy; 87 (3): 733--740; doi:https://doi.org/10.1016/j.gie.2017.06.010.spa
dc.relation.referencesZhang, R.; Tsai, P.-S.; Cryer, J. & Shah, M.: , 1999a; Shape-from-shading: a survey; IEEE Transactions on Pattern Analysis and Machine Intelligence; 21 (8): 690--706; doi:10.1109/34.784284.spa
dc.relation.referencesZhang, S.; Zhao, L.; Huang, S.; Ye, M. & Hao, Q.: , 2021; A template-based 3d reconstruction of colon structures and textures from stereo colonoscopic images; IEEE Transactions on Medical Robotics and Bionics; 3: 85--95; doi:10.1109/TMRB.2020.3044108; URL https://ieeexplore.ieee.org/document/9291464.spa
dc.relation.referencesZhao, L.; Botha, C. P.; Bescos, J. O.; Truyen, R.; Vos, F. M. & Post, F. H.: , 2006; Lines of curvature for polyp detection in virtual colonoscopy; IEEE Transactions on Visualization and Computer Graphics; 12: 885--892; doi:10.1109/TVCG.2006.158.spa
dc.relation.referencesZhou, T.; Brown, M.; Noah, G.; Google, S. & Lowe Google, D. G.: , 2017; Unsupervised learning of depth and ego- motion from video; en Proceedings of the IEEE conference on computer vision and pattern recognition; págs. 1851--1858; doi:https://doi.org/10.48550/arXiv.1704.07813.spa
dc.relation.referencesZhu, M.; Xu, C.; Yu, J.; Wu, Y.; Li, C.; Zhang, M.; Jin, Z. & Li, Z.: , 2013; Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (eus) images: A diagnostic test; PLOS ONE ; 8 (5): 1--6; doi:10.1371/journal.pone.0063820; URL https://doi.org/10.1371/journal.pone.0063820.spa
dc.relation.referencesZhuang, H.; Bao, A.; Tan, Y.; Wang, H.; Xie, Q.; Qiu, M.; Xiong, W. & Liao, F.: , 2021; Application and prospect of artificial intelligence in digestive endoscopy; https://doi-org.ezproxy.unal.edu.co/10.1080/17474124.2022.2020646 ; 16 (1): 21--31; doi: 10.1080/17474124.2022.2020646; URL https://www-tandfonline-com.ezproxy.unal.edu.co/doi/abs/10.1080/17474124.2022.2020646.spa
dc.relation.referencesZullo, A.; Hassan, C.; Francesco, V. D.; Repici, A.; Manta, R.; Tomao, S.; Annibale, B. & Vaira, D.: , 2014; Helicobacter pylori and functional dyspepsia: An unsolved issue?; World Journal of Gastroenterology : WJG; 20: 8957; doi:10.3748/WJG.V20. I27.8957; URL /pmc/articles/PMC4112897//pmc/articles/PMC4112897/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4112897/.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.decsEndoscopía Gastrointestinalspa
dc.subject.decsEndoscopy, Gastrointestinaleng
dc.subject.decsEndoscopía del Sistema Digestivospa
dc.subject.decsEndoscopy, Digestive Systemeng
dc.subject.decsNeoplasias Gástricasspa
dc.subject.decsStomach Neoplasmseng
dc.subject.decsSistemas Inteligentesspa
dc.subject.decsIntelligent Systemseng
dc.subject.decsInteligencia Artificial Generativaspa
dc.subject.decsGenerative Artificial Intelligenceeng
dc.subject.decsDetección Precoz del Cáncerspa
dc.subject.decsEarly Detection of Cancereng
dc.subject.lembINTELIGENCIA ARTIFICIAL-APLICACIONES MEDICASspa
dc.subject.lembArtificial intelligence - Medical applicationseng
dc.subject.lembMEDICINA-PROCESAMIENTO DE DATOSspa
dc.subject.lembMedicine - data processingeng
dc.subject.proposalDiagnóstico asistido por computadorspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalCáncer pancreáticospa
dc.subject.proposalCáncer colorectalspa
dc.subject.proposalCcáncer gástricospa
dc.subject.proposalEndoscopiaspa
dc.subject.proposalSegundo lectorspa
dc.subject.proposalRepresentaciones multi-escalaspa
dc.subject.proposalRepresentaciones jerárquicasspa
dc.subject.proposalCaracterización espacio-temporalspa
dc.subject.proposalDetecciónspa
dc.subject.proposalEstimación de tamañospa
dc.subject.proposalEstimación de profundidadspa
dc.subject.proposalBase de datos sintéticaspa
dc.subject.proposalProtocolo sistemático de tamizajespa
dc.subject.proposalComputer-assited diagnosiseng
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalPancreatic cancereng
dc.subject.proposalColorectum cancereng
dc.subject.proposalGastric cancereng
dc.subject.proposalEndoscopyeng
dc.subject.proposalSecond readereng
dc.subject.proposalMulti-scale representationseng
dc.subject.proposalHierarchical representationseng
dc.subject.proposalSpatio-temporal characterizationeng
dc.subject.proposalDetectioneng
dc.subject.proposalSize estimationeng
dc.subject.proposalDepth estimationeng
dc.subject.proposalSynthetic databaseeng
dc.subject.proposalSystematic screening protocolseng
dc.titleComputer-assisted strategies for supporting endoscopic diagnosis of digestive system cancereng
dc.title.translatedEstrategias asistidas por computador para soportar el diagnostico endoscópico del cáncer en el sistema digestivospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1107051815.2025.pdf
Tamaño:
35.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: