Cross sections computation of the reaction 7Li+154Sm at Coulomb barrier energies
dc.contributor.advisor | Pinilla Beltran, Edna Carolina | |
dc.contributor.author | Miranda Niño, Nicola Sebastian | |
dc.contributor.researchgroup | Grupo de Física Nuclear de la Universidad Nacional | |
dc.date.accessioned | 2025-08-25T15:44:32Z | |
dc.date.available | 2025-08-25T15:44:32Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | In this work, we apply the continuum discretized coupled channel (CDCC) formalism with the R-matrix method, in a three-body model, to compute the angular distribution of the elastic cross section of the 7Li+154Sm system, at collision energies Elab = 29.0 MeV, 35.0 MeV and 40.8 MeV. We ignore the rotational deformation effects of the target since they are expected to play a small role on the cross sections and their inclusion is cumbersome. Therefore, the core-target and fragment-target interactions are considered as global spherical optical potentials (GSOPs) and São Paulo potentials. Aiming at testing the CDCC method, we apply it for calculating the elastic cross sections of 6Li+144Sm system, at collision energy Elab = 30.0 MeV, and of the 7Li+144Sm system, at collision energies Elab = 29.0 MeV, 35.0 MeV and 40.8 MeV. Then, we compare our calculations with the available experimental data. On the other hand, since the CDCC approach converges slowly for Coulomb dominated inelastic cross section calculations, we apply a semiclassical approximation for computing the angular distribution of the inelastic cross section of the 7Li+154Sm system when the 154Sm target is excited from the ground state 0+ to the state with 2+ at a collision energy Elab = 30.0 MeV. As in the elastic case, for evaluating the performance of semiclassical approach, we apply the semiclassical approximation for calculating the inelastic cross section of the 11Be+64Zn test system, when the 11Be projectile is excited from the ground state jπ0 = 1/2+ to state with jπ0 = 1/2− at Ec.m = 24.5 MeV, and of the 6Li+144Sm test system, when the 144Sm target is excited from the ground state 0+ to the states with 2+ and 3− at Elab = 30.0 MeV. | eng |
dc.description.abstract | En este trabajo, se aplicó el formalismo de canales acoplados con discretización del continuo, CDCC por sus siglas en inglés, con el método de la R-matriz en un modelo de tres cuerpo para calcular la distribución angular de la sección eficaz elástica del sistema 7Li+154Sm a energías de colisión que tomaban los valores de Elab = 29.0 MeV, 35.0 MeV y 40.8 MeV. Se ignoraron los efectos de las deformaciones rotacionales del blanco debido a que se espera que estas tengan efectos despreciables y a que su introducción en el cálculo es compleja. De esta manera, las interacciones entre el core y el blanco, y entre el fragmento y el blanco serán descritas por un potencial óptico global esférico, GSOP por sus siglas en inglés, y el potencial de São Paulo. Para evaluar el método CDCC, lo aplicamos en el cálculo de la sección eficaz elástica del sistema 6Li+144Sm, a una energía de colisión Elab = 30.0 MeV, y del sistema 7Li+144Sm, con energías de colisión Elab = 29.0 MeV, 35.0 MeV y 40.8 MeV. Posteriormente, se compararon los resultados de estos cálculos con los datos experimentales disponibles. Por otro lado, dado que el método CDCC converge lentamente en el cálculo de sección eficaces inelásticas donde la interacción de Coulomb es dominante, se aplicó una aproximación semiclásica para el cálculo de la distribución angular de la sección eficaz inelástica del sistema 7Li+154Sm cuando el blanco 154Sm es excitado desde su estado base 0+ al estado con 2+ con una energía de colisión de Elab =30.0 MeV. Al igual que en el caso elástico, para evaluar el desempeño de la aproximación semiclásica, se aplicó dicha aproximación en el cálculo de la sección eficaz inelástica del sistema de prueba 11Be+64Zn, cuando el proyectil 11Be es excitado desde su estado base jπ0 = 1/2+ al estado con jπ0 = 1/2− a una energía colisión de Ec.m = 24.5 MeV, y del sistema de prueba 6Li+144Sm, cuando el blanco 144Sm es excitado desde el estado base 0+ a los estados con 2+ y 3− a una energía de colisión de Elab = 30.0 MeV (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias – Física | |
dc.format.extent | xvi, 84 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88448 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | |
dc.relation.references | Y. Sakuragi, M. Yahiro, and M. Kamimura, “Elastic Scattering and Breakup of 6Li: A New Type of Dynamical Polarization Potential,” Prog. Theor. Phys., vol. 70, no. 4, pp. 1047–1070, 1983. | |
dc.relation.references | Y. Sakuragi, M. Yahiro, and M. Kamimura, “Chapter VI. Microscopic Coupled- Channels Study of Scattering and Breakup of Light Heavy-Ions,” Prog. Theor. Phys. Suppl., vol. 89, pp. 136–211, 1986. | |
dc.relation.references | N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, and M. Yahiro, “Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions,” Phys. Rep., vol. 154, no. 3, pp. 125–204, 1987. | |
dc.relation.references | T. Druet, “Reactions involving exotic nuclei in a discretized-continuum model,” Ph.D. dissertation, Ecole Polytechnique de Bruxelles, 2014. | |
dc.relation.references | M. Gómez-Ramos and A. M. Moro, “Interplay of projectile breakup and target excitation in reactions induced by weakly bound nuclei,” Phys. Rev. C, vol. 95, no. 3, p. 034 609, 2017. | |
dc.relation.references | G. P. A. Nobre, A. Palumbo, M. Herman, D. Brown, S. Hoblit, and F. Dietrich, “Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential,” Phys. Rev. C, vol. 91, no. 2, p. 024 618, 2015. | |
dc.relation.references | M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. Dover Publications, 1965. | |
dc.relation.references | L. F. Canto and M. S. Hussein, Scattering Theory of Molecules, Atoms and Nuclei. Singapore: World Scientific Publishing, 2013. | |
dc.relation.references | J. Taylor, Scattering Theory. Dover Publications, Inc, 2006. | |
dc.relation.references | G. R. Satchler, Introduction to Nuclear Reactions. MacMillan Education LTD, 1990. | |
dc.relation.references | T. Druet, D. Baye, P. Descouvemont, and J. M. Sparenberg, “CDCC calculation with the Lagrange-mesh technique,” Nucl. Phys. A, vol. 845, no. 1, pp. 88–105, 2010. | |
dc.relation.references | D. A. Varshalovic, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988. | |
dc.relation.references | W. Ritz, “Über eine neue Methode zur Lösung gewisser Variationsprobleme der Mathematischen Physik,” J. Reine Angew. Math., vol. 135, pp. 1–61, 1909. | |
dc.relation.references | A. R. Edmonds, Angular Momentum in Quantum Mechanics. Princeton, New Jersey: Princeton University Press, 1957. | |
dc.relation.references | P. Descouvemont and D. Baye, “The R-matrix theory,” Rep. Prog. Phys., vol. 73, no. 3, p. 036 301, 2010. | |
dc.relation.references | C. A. Bertulani, Nuclear Physics in a Nutshell. United States of America: Princeton University Press, 2007. | |
dc.relation.references | L.C.Chamon et al., “Toward a global description of the nucleus-nucleus interaction,” Phys. Rev. C, vol. 66, no. 1, p. 014 610, 2002. | |
dc.relation.references | L.C.Chamon, “The São Paulo Potential,” Nucl. Phys. A, vol. 787, no. 1, pp. 198c– 205c, 2007. | |
dc.relation.references | L. C. Chamon, B. V. Carlson, and L. R. Gasques, “São Paulo potential version 2 (spp2) and Brazilian nuclear potential (BNP),” Comput. Phys. Commun., vol. 267, p. 108 061, 2021. | |
dc.relation.references | G. R. Satchler, Direct Nuclear Reactions. United States of America: Oxford University Press, 1983. | |
dc.relation.references | I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions. United Kingdom: Cambridge University Press, 2009. | |
dc.relation.references | P. Fröbrich and R. Lipperheide, Theory of Nuclear Reactions. Oxford University Press, 1996. | |
dc.relation.references | D. M. Brink, Semi-classical Methods for Nucleus-Nucleus Scattering. Camdridge, England: Cambridge University Press, 1985. | |
dc.relation.references | R. C. Barrett, “The scattering of neutrons by polarized deformed nuclei,” Nucl. Phys, vol. 51, pp. 27–32, 1964. | |
dc.relation.references | J. M. Bang and J. S. Vaagen, “The sturmian expansion: A well-depth-method for orbitals in a deformed potential,” Z. Phys. A, vol. 297, no. 3, pp. 223–236, 1980. | |
dc.relation.references | F. S. Dietrich, I. J. Thompson, and T. Kawano, “Target-state dependence of cross sections for reactions on statically deformed nuclei,” Phys. Rev. C, vol. 85, no. 4, p. 044 611, 2012. | |
dc.relation.references | A. J. Koning, S. Hilaire, and M. C. Duijvestijn, “TALYS-1.0,” in Proceedings of the International Conference on Nuclear Data for Science and Technology, EDP Sciences, 2008, pp. 211–214. | |
dc.relation.references | S. M. Al-Rawashdeh and S. B. Masadeh, “A deformed global spherical optical potential to describe the proton scattering off statically deformed heavy nuclei,” Results Phys., vol. 49, p. 106 508, 2023. | |
dc.relation.references | J. M. Blatt and L. C. Biedenharn, “The Angular Distribution of Scattering and Reaction Cross Sections,” Rev. Mod. Phys., vol. 24, no. 4, pp. 258–272, 1952. | |
dc.relation.references | K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, “Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions,” Rev. Mod. Phys., vol. 28, no. 4, pp. 432–542, 1956. | |
dc.relation.references | J. M. Eisenberg and W. Greiner, Excitation Mechanisms of the Nucleus. New York: North-Holland Publishing, 1976. | |
dc.relation.references | J. Figueira et al., “Energy dependence of the optical potential of weakly and tightly bound nuclei as projectiles on a medium-mass target,” Phys. Rev. C, vol. 81, no. 2, p. 024 613, 2010. | |
dc.relation.references | P. Descouvemont, “CDCC Fortran Code Version 2022,” 2022. | |
dc.relation.references | K. I. Kubo and M. Hirata, “DWBA treatment of cluster transfer reaction,” Nucl. Phys. A, vol. 187, no. 1, pp. 186–204, 1972. | |
dc.relation.references | A. Diaz-Torres, I. J. Thompson, and C. Beck, “How does breakup influence the total fusion of 6,7Li at the coulomb barrier?” Phys. Rev. C, vol. 68, no. 8, p. 044 607, 2003. | |
dc.relation.references | M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, “The AME 2020 atomic mass evaluation(II). Tables, graphs and references,” Chin. Phys. C., vol. 45, no. 3, p. 030 003, 2021. | |
dc.relation.references | Y. Han, Y. Shi, and Q. Shen, “Deuteron global optical model potential for energies up to 200 MeV,” Phys. Rev. C, vol. 74, no. 4, p. 044 615, 2006. | |
dc.relation.references | M. Avrigeanu, A. C. Obreja, V. A. F.L. Roman, and W. V. Oertzen, “Complementary optical-potential analysis of α-particle elastic scattering and induced reaction at low energies,” At. Data Nucl. Data Tables, vol. 95, no. 4, pp. 501–532, 2009. | |
dc.relation.references | A. M. Moro, “Model for nuclear reactions with weakly-bound systems,” in International School of Physics Enrico Fermi, 2017. | |
dc.relation.references | D. R. Tilley et al., “Energy levels of light nuclei A=5,6,7,” Nucl. Phys. A, vol. 708, no. 1, pp. 3–163, 2002. | |
dc.relation.references | B. Buck and A. C. Merchant, “Cluster model of A=7 nuclei revisited, and the astrophysical S factors for 3He (α, γ)7Be and 3He (α, γ) 7Li at zero energy,” J. Phys. G, vol. 79, no. 10, p. L211, 1988. | |
dc.relation.references | D. Y. Pang, P. Roussel-Chomaz, H. Savajols, R. L Varner, and R.Wolski, “Global optical model potential for A=3 projectiles,” Phys. Rev. C, vol. 79, no. 2, p. 024 615, 2009. | |
dc.relation.references | B. Pritycheko, M. Birch, B. Singh, and M. Horoi, “Tables of E2 Transition Probabilities from the first 2+ States in Even-Even Nuclei,” At. Data Nucl. Data Tables, vol. 107, pp. 1–139, 2016. | |
dc.relation.references | A. A. Sonzogni, “Nuclear Data Sheets for A=144,” Nucl. Data Sheets, vol. 93, no. 3, pp. 599–762, 2001. | |
dc.relation.references | T. Kibédi and R. H. Spear, “REDUCED ELECTRIC-OCTUPOLE TRANSITION PROBABILITIES B(E3; 0+1 → 3− 1 )-AN UPDATE,” At. Data Nucl. Data Tables, vol. 80, no. 1, pp. 35–82, 2002. | |
dc.relation.references | C. W. Reich, “Nuclear Data Sheets for A = 154,” Nucl. Data Sheets, vol. 110, no. 10, pp. 2257–2532, 2009. | |
dc.relation.references | D. Baye, “The Lagrange-mesh method,” Phys. Rep., vol. 565, pp. 1–105, 2015. | |
dc.relation.references | D. Baye, “Lagrange-mesh method for quantum-mechanical problems,” Phys. Status Solidi B, vol. 243, no. 5, pp. 1095–1109, 2006. | |
dc.relation.references | N. S. Miranda, “Aproximación semiclásica de la dispersion elástica de tres cuerpos en un modelo de canales acoplados con discretización del continuo,” Bachelor’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2020. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.lemb | COLISIONES (FISICA NUCLEAR) | spa |
dc.subject.lemb | Collisions (nuclear physics) | eng |
dc.subject.lemb | INTEGRALES DE COLISION | spa |
dc.subject.lemb | Collision integrals | eng |
dc.subject.lemb | COLISIONES (FISICA) | spa |
dc.subject.lemb | Collisions Phtsics | eng |
dc.subject.lemb | TEORIA DEL TRANSPORTE | spa |
dc.subject.lemb | Transport theory | eng |
dc.subject.lemb | FUNCIONES DE COULOMB | spa |
dc.subject.lemb | Coulomb functions | eng |
dc.subject.lemb | EXCITACION DE COULOMB | spa |
dc.subject.lemb | Coulomb excitation | eng |
dc.subject.proposal | Elastic cross section | eng |
dc.subject.proposal | Inelastic cross section | eng |
dc.subject.proposal | Continuum discretized coupled channel | eng |
dc.subject.proposal | Semiclassical approximation | eng |
dc.subject.proposal | Lagrange functions | eng |
dc.subject.proposal | Gauss quadrature | eng |
dc.subject.proposal | Sección eficaz elástica | spa |
dc.subject.proposal | Sección eficaz inelástica | spa |
dc.subject.proposal | Canales acoplados con discretización del continuo | spa |
dc.subject.proposal | Aproximación semiclásica | spa |
dc.subject.proposal | Funciones de Lagrange | spa |
dc.subject.proposal | Cuadratura de Gauss | spa |
dc.title | Cross sections computation of the reaction 7Li+154Sm at Coulomb barrier energies | eng |
dc.title.translated | Cálculo de las secciones eficaces de la reacción 7Li+154Sm a energías cercanas a la barrera de Coulomb | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Estudiantes | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TesisNicolaMiranda.pdf
- Tamaño:
- 5.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: