Study on the Optimization of Virtual Cathode Oscillators for High Power Microwaves Testing

dc.contributor.advisorVega Stavro, José Felixspa
dc.contributor.authorNeira Camelo, Ernestospa
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2020-03-06T19:22:25Zspa
dc.date.available2020-03-06T19:22:25Zspa
dc.date.issued2019-10-05spa
dc.description.abstractThis thesis studies the energy behavior of the Virtual Cathode Oscillators (Vircators). The overall objective focuses on determining geometric and functional parameters to maximize the energy radiated into a specific band of frequency. Initially, the problem was addressed through numerical optimization. A computational tool integrating an evolutionary algorithm with a simulator of particles was developed. The main advantage of this approach is the fact that Vircator of different typologies can be optimized. A second approach focuses on solving the problem through classic optimization techniques. The first step was to determine a mathematical model that relates the Vircator design parameters with the energy output. Then, the mathematical model was studied and optimized. Principal advantages of this approach are the low computational complexity and the fact that the model allows studying and understanding Vircators physics. The approaches presented in this thesis were validated by computational simulation and reports of experiments available in the literature. The main result of this thesis was the identification of the role of the design parameters on the energy response of the Vircators. Additionally, it was found two methodologies to optimize the Vircators’s energy responses at a determined frequency.spa
dc.description.abstractEn esta tesis se estudia el comportamiento energético de los osciladores de cátodo virtual (Vircators). El objetivo principal es identicar los parámetros de diseño que permiten maximizar la energía radiada en una banda especifica de frecuencia. El problema es abordado, inicialmente, mediante optimization numérica. En este caso, fue construida una herramienta computacional basada en algoritmos evolutivos y simulación computacional de partículas. Esta solución es funcional y no requiere de un modelo matemático del problema. Su principal ventaja es la posible inserción de variables de diseño adicionales y que podría realizar la optimización de cualquier tipo simulable de Vircator. En una segunda fase, el problema fue abordado y solucionado bajo un enfoque de optimization clásico. Para esto, como punto de partida fue necesario determinar un modelo matemático del problema. La principal ventaja de este enfoque es el bajo costo computacional. Los dos enfoques presentados en esta tesis fueron validados mediante simulación computacional y reportes experimentales presentes en la literatura. El principal resultado de esta tesis fue la identificación del papel de los parámetros de diseño en la respuesta energética de los Vircators. Además, se determinaron dos metodologías para optimizar las respuestas de energía de los Vircators a una frecuencia determinada.spa
dc.description.additionalDoctor en Ingeniería Eléctrica. Línea de Investigación: Potencia Pulsante y modelado Electromagnético.spa
dc.description.degreelevelDoctoradospa
dc.format.extent188spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationE. Neira, "Study on the Optimization of Virtual Cathode Oscillators for High Power Microwaves Testing", sep 2019spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75948
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesE. H. Choi, M. C. Choi, Y. Jung, M. W. Choug, J. J. Ko, Y. Seo, G. Cho, H. S. Uhm, and H. Suk, “High-power microwave generation from an axially extracted virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 28, pp. 2128–2134, Dec 2000.spa
dc.relation.referencesJ. J. Pantoja, F. Vega, F. Rom˜A¡n, N. P. na, and F. Rachidi, “On the differential input impedance of an electro-explosive device,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, pp. 858–864, Feb 2018.spa
dc.relation.referencesF. Vega, F. Rachidi, N. Mora, B. Daout, and M. Sallin, “Design and optimization of mesoband radiators using chain parameters,” in 2011 International Conference on Electromagnetics in Advanced Applications, pp. 1310–1313, Sept 2011.spa
dc.relation.referencesN. Mora, F. Vega, F. Roman, N. Pena, and F. Rachidi, “Application of high power electromagnetic to human safety,” in EPFL-CONF-150642, febrary 2010spa
dc.relation.referencesF. Vega and F. Rachidi, “A simple formula expressing the fields on the aperture of an impulse radiating antenna fed by a tem coplanar plates,” IEEE Transactions on Antennas and Propagation, vol. PP, no. 99, pp. 1–1, 2018.spa
dc.relation.referencesF. Vega, J. A. Rangel, Y. z. Xie, and F. Rachidi, “Design of an efficient high power electromagnetic radiator using a yagi-uda antenna connected to a switched oscillator (yu+swo),” in 2016 USNC-URSI Radio Science Meeting, pp. 35–36, June 2016.spa
dc.relation.referencesF. Vega and F. Rachidi, “A switched oscillator geometry inspired by a curvilinear space;part i: Dc considerations,” IEEE Transactions on Plasma Science, vol. 44, pp. 2240–2248, Oct 2016.spa
dc.relation.referencesJ. Benford, J. A. Swegle, and E. Schamiloglu, High power microwaves. 6000 Broken Sound Parkway NW, Suite 300: Raylor & Francis, 2 ed., 2007.spa
dc.relation.referencesR. J. Barker and E. Schamiloglu, Introduction. IEEE, 2001.spa
dc.relation.referencesK. Scott, Coaxial Vircator Geometries. PhD thesis, Texas Tech University, 5 1998.spa
dc.relation.referencesC. Moller, High Power Microwave Sources : Design and Experiments. PhD thesis, 2011.spa
dc.relation.referencesE. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskia, “Field emission and explosive electron emission processes in vacuum discharges,” Soviet Physics Uspekhi, vol. 26, no. 2, p. 138, 1983spa
dc.relation.referencesJ. Petren, “Frequency tunability of axial cavity vircators and double anode vircators,” Master’s thesis, KTH, School of Electrical Engineering (EES), 2016spa
dc.relation.referencesC. D. Child, “Discharge from hot cao,” Phys. Rev. (Series I), vol. 32, pp. 492– 511, May 1911spa
dc.relation.referencesI. Langmuir, “The effect of space charge and residual gases on thermionic currents in high vacuum,” Phys. Rev., vol. 2, pp. 450–486, Dec 1913.spa
dc.relation.referencesI. Langmuir and K. B. Blodgett, “Currents limited by space charge between coaxial cylinders,” Phys. Rev., vol. 22, pp. 347–356, Oct 1923.spa
dc.relation.referencesC. Birdsall and W. Brides, “Space-charge instabilities in electron diodes and plasma convertes,” of Applied Physics, vol. 32, pp. 2611–2618, 1961.spa
dc.relation.referencesR. Mahaffey, “High-power microwaves from a non-isochronic reflexing system,” Phys. Rev. Lett, vol. 39, p. 843, 1977.spa
dc.relation.referencesH. Brandt, “Gigawatt Microwave Emission from a Relativistic Reflex Triode,” tech. rep., 1980.spa
dc.relation.referencesA. Saxena, N. M. Singh, K. Y. Shambharkar, and F. Kazi, “Modeling of reflex triode virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 42, pp. 1509–1514, June 2014.spa
dc.relation.referencesD. J. Sullivan, “High power microwave generation from a virtual cathode oscillator (vircator),” IEEE Transactions on Nuclear Science, vol. 30, pp. 3426–3428, aug 1983.spa
dc.relation.referencesD. Sullivan, “A high frequency vircator microwave generator,” High-Power Particle Beams, pp. 557–560, 1983.spa
dc.relation.referencesJ. Walter, C. L. J. Vara and, J. Dickens, A. Neuber, and M. Kristiansen, “Initial anode optimization for a compact sealed tube vircator,” in 2011 IEEE Pulsed Power Conference, pp. 807–810, June 2011.spa
dc.relation.referencesA. Didenko, A. Zherlitsyn, and G. Melnikov, “Research of microwave generation efficiency for triode with virtual cathode (vircator triode),” in 12th International Conference on High-Power Particle Beams. BEAMS’98. Proceedings (Cat. No.98EX103), vol. 1, pp. 65–68, IEEE, 1998.spa
dc.relation.referencesJ. Krile and M. Kristiansen, “Energy efficiency of High Power Microwave systems,” in 2011 IEEE Pulsed Power Conference, pp. 679–683, IEEE, jun 2011.spa
dc.relation.referencesJ. J. Mankowski, X. Chen, J. C. Dickens, and M. Kristiansen, “Experimental optimization of a Reflex Triode Virtual Cathode Oscillator,” 2004.spa
dc.relation.referencesM. U. Karlsson, M. Jansson, F. Olsson, and D. Aberg, “Optimization of the energy efficiency for a coaxial vircator,” 2009.spa
dc.relation.referencesY. Chen, J. Mankowski, J. Walter, M. Kristiansen, and R. Gale, “Cathode and Anode Optimization in a Virtual Cathode Oscillator,” 2007.spa
dc.relation.referencesE. Neira and F. Vega, “Optimization of a vircator using a novel evolutionary algorithm designed to reducing the number of evaluations,” in 2015 Asia-EM, JEJE, Sur Korea,, Agu. 2015.spa
dc.relation.referencesE. Neira, Y.-Z. Xie, and F. Vega, “On the virtual cathode oscillatorˆ aTMs energy optimization,” AIP Advances, vol. 8, no. 12, p. 125210, 2018.spa
dc.relation.referencesE. Neira, F. Vega, J. Pantoja, and F. Rachidi, “Optimization of a vircator using a novel evolutionary algorithm designed to reducing the number of evaluations,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 1643–1646, Sep. 2015.spa
dc.relation.referencesE. Neira and F. Vega, “Identification of parameters to improve the total energy radiated by a vircator maintaining the design frequency,,” in 2014, EAPPC, Kumamoto, Japan, Agu 2014.spa
dc.relation.referencesE. Neira and F. Vega, “Study of the space-charge-limited current on circular diodes applied to virtual cathode oscillator,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 938–942, Sep. 2016.spa
dc.relation.referencesE. Neira and F. Vega, “Solution for the space-charge-limited current in coaxial vacuum diodes,” Physics of Plasmas, vol. 24, no. 5, p. 052117, 2017spa
dc.relation.referencesE. Neira and F. Vega, “On the use of xoopic for the simulation of virtual cathode oscillators,” in European Electromagnetics Symposium 2016, Agu 2016.spa
dc.relation.referencesR. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London Series A, vol. 119, pp. 173–181, may 1928.spa
dc.relation.referencesR. G. Forbes and J. Deane, “Reformulation of the standard theory of fowlernordheim tunnelling and cold field electron emission,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2087, pp. 2907–2927, 2007.spa
dc.relation.referencesM. S. Sodha, Electron Emission from Dust. New Delhi: Springer India, 2014.spa
dc.relation.referencesL. N. Slivkov, Elektroizolyatsiya i razryad v vakuume (Electrical Insulation and Discharges in vacuum). Atomizdat, 1972.spa
dc.relation.referencesS. P. Bugaev, E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskia, “Explosive emission of electrons,” Soviet Physics Uspekhi, vol. 18, no. 1, p. 51, 1975.spa
dc.relation.referencesC. Carr, Space Charge Limited Emission Studies Using Coulomb’s Law. PhD thesis, Naval Postgraduate School, Monterrey, California, 6 2004.spa
dc.relation.referencesH. R. Jory and A. W. Trivelpiece, “Exact relativistic solution for the onedimensional diode,” Journal of Applied Physics, vol. 40, no. 10, p. 39243926, 1969.spa
dc.relation.referencesZ. Yang, G. Liu, H. Shao, T. Yan, and Y. Zhang, “Relativistic solutions for oneand two-dimensional space-charge limited current in coaxial diode,” Physics of Plasmas, vol. 20, no. 5, p. 053103, 2013.spa
dc.relation.referencesX. Chen, J. Dickens, L. L. Hatfield, E. Choi, and M. Kristiansen, “Approximate analytical solutions for the space-charge-limited current in one-dimensional and two-dimensional cylindrical diodes,” Physics of Plasmas, vol. 11, no. 6, p. 32783283, 2004.spa
dc.relation.referencesY. Li, F. He, C. Liu, and J. Sun, “2d child-langmuir law for planar diode with finiteradius emitter,” in IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings (IEEE Cat. No.04EX839), pp. 263–264, Sept 2004.spa
dc.relation.referencesK. B. Song, J. E. Lim, Y. Seo, and E. H. Choi, “Output characteristics of the axially extracted virtual cathode oscillator with a cathode-wing,” IEEE Transactions on Plasma Science, vol. 37, pp. 304–310, Feb 2009.spa
dc.relation.referencesY. Y. Lau, “Simple theory for the two-dimensional child-langmuir law,” Phys. Rev. Lett., vol. 87, p. 278301, Dec 2001.spa
dc.relation.referencesJ. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach, “Two-dimensional childlangmuir law,” Phys. Rev. Lett., vol. 77, pp. 4668–4670, Nov 1996.spa
dc.relation.referencesG. R. Hadley, T. P. Wright, and A. V. Farnsworth, “Pinching limits and scaling laws for high current diodes,” in 1975 International Topical Conference on Electron Beam Research Technology, vol. 1, pp. 255–261, Nov 1975.spa
dc.relation.referencesE. Neira, Y. . Xie, and F. Vega, “On the vircator peak power optimization,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 1513–1516, Sep. 2017.spa
dc.relation.referencesS. Putnam, Theoretical Studies of Intense Relativistic Electron Beam-Plasma Interactions. 2700 Merced Street, San Leandro, CA, US: Physics International Company, 1 ed., 1972.spa
dc.relation.referencesA. Roy, R. Menon, S. Mitra, S. Kumar, V. Sharma, K. V. Nagesh, K. C. Mittal, and D. P. Chakravarthy, “Plasma expansion and fast gap closure in a high power electron beam diode,” Physics of Plasmas, vol. 16, no. 5, p. 053103, 2009.spa
dc.relation.referencesJ. E. Coleman, D. C. Moir, C. A. Ekdahl, J. B. Johnson, B. T. McCuistian, and M. T. Crawford, “Explosive emission and gap closure from a relativistic electron beam diode,” in 2013 19th IEEE Pulsed Power Conference (PPC), pp. 1–6, June 2013.spa
dc.relation.referencesT. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas. Cambridge University Press, 1 ed., 2003.spa
dc.relation.referencesV. N. Tsytovich, E. Gregory, G. Morfill, S. V. V. Sergey, and H. Hubertus, Elementary Physics of Complex Plasmas. Lecture notes in physics 731, SpringerVerlag Berlin Heidelberg, 1 ed., 2008.spa
dc.relation.referencesA. Kadish, R. J. Faehl, and C. M. Snell, “Analysis and simulation of virtual cathode oscillations,” The Physics of Fluids, vol. 29, no. 12, pp. 4192–4203, 1986.spa
dc.relation.referencesB. V. Alyokhin, A. E. Dubinov, V. D. Selemir, O. A. Shamro, K. V. Shibalko, N. V. Stepanov, and V. E. Vatrunin, “Theoretical and experimental studies of virtual cathode microwave devices,” IEEE Transactions on Plasma Science, vol. 22, pp. 945–959, Oct 1994spa
dc.relation.referencesM. A. Heald and J. B. Marion, Clasical Electromagnetic RAdiation. Thomson Learning, 3 ed., 1995spa
dc.relation.referencesJ. I. Katz, “Dimensional bounds on vircator emission,” IEEE Transactions on Plasma Science, vol. 44, pp. 3268–3270, Dec 2016.spa
dc.relation.referencesD. Biswas, “A one-dimensional basic oscillator model of the vircator,” Physics of Plasmas, vol. 16, no. 6, p. 063104, 2009.spa
dc.relation.referencesJ. B. Seaborn, Hypergeometric Functions and Their Applications. Texts in Applied Mathematics 8, Springer-Verlag New York, 1 ed., 1991.spa
dc.relation.references“Wolfram mathematical, the design of the ndsolve framework.” https://reference.wolfram.com/language/tutorial/NDSolveDesign.html. Accessed: 2016-09-30.spa
dc.relation.referencesJ. Russell and R. Cohn, Bisection Method. Book on Demand, 1 ed., 2012.spa
dc.relation.referencesA. D. Greenwood, J. F. Hammond, P. Zhang, and Y. Y. Lau, “On relativistic space charge limited current in planar, cylindrical, and spherical diodes,” Physics of Plasmas, vol. 23, no. 7, p. 072101, 2016.spa
dc.relation.referencesP. Ryser-Welch, “A review of hyper-heuristics framework,” pp. 1–7, 04 2014.spa
dc.relation.referencesS. Doncieux, J. B. Mouret, N. Bredeche, and V. Padois, New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop. Studies in Computational Intelligence 341, Springer-Verlag Berlin Heidelberg, 1 ed., 2011.spa
dc.relation.referencesN. Kokash, “An introduction to heuristic algorithms,” pp. 1–8, 2005.spa
dc.relation.referencesJ. Dreo, A. P˜ A c trowski, P. Siarry, E. Taillard, and A. Chatterjee, Metaheuristics for Hard Optimization Simulated Annea Tabu Search E. Springer, 1 ed., 2005.spa
dc.relation.referencesK. Du and M. N. S. Swamy, Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature. Birkhauser Basel, 1 ed., 2016.spa
dc.relation.referencesK. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems (IEEE Press Series on Power Engineering). IEEE Press Series on Power Engineering, Wiley-IEEE Press, 1 ed., 2008.spa
dc.relation.referencesJ. Kennedy and R. C. Eberhart, Swarm Intelligence. Elsevier, 1 ed., 2001.spa
dc.relation.referencesM. A. Guzman, A. Delgado, and J. D. Carvalho, “A novel multiobjective optimization algorithm based on bacterial chemotaxis,” Engineering Applications of Artificial Intelligence, vol. 23, no. 3, pp. 292 – 301, 2010spa
dc.relation.referencesC. A. Coello and C. Dhaenens, Advances in Multi-Objective Nature Inspired Computing. Studies in Computational Intelligence 272, Springer-Verlag Berlin Heidelberg, 1 ed., 2010.spa
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197, Apr 2002.spa
dc.relation.referencesK. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii,” in Parallel Problem Solving from Nature PPSN VI (M. Schoenauer, K. Deb, X. Yao, E. Lutton, J. J. Merelo, and H. Schwefel, eds.), (Berlin, Heidelberg), pp. 849–858, Springer Berlin Heidelberg, 2000.spa
dc.relation.referencesA. Ahmadi, F. E. Bouanani, and H. Ben-Azza, “Four parallel decoding schemas of product block codes,” Transactions On Networks And Communications, vol. 2, no. 2, pp. 49–69, 2014.spa
dc.relation.referencesJ. Valera, V. Gomez-Garay, E. Irigoyen, and E. Larzabal, “Microcontroller implementation of a multi objective genetic algorithm for real-time intelligent control,” vol. 239, 2014.spa
dc.relation.referencesH. Wiedemann, Particle Accelerator Physics. Springer, 2 ed., 2007.spa
dc.relation.referencesP. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics, Cambridge University Press, 1 ed., 2001.spa
dc.relation.referencesN. S. Frolov, S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, “Simulation of axial virtual cathode oscillator with photonic crystal foil grid structure output in cst particle studio,” in 2016 IEEE International Vacuum Electronics Conference (IVEC), pp. 1–2, April 2016.spa
dc.relation.referencesM. C. Balk, “P3-33: Simulation of a virtual cathode oscillator with cst studio suiteˆ a ” ,” in 2010 IEEE International Vacuum Electronics Conference (IVEC), pp. 395–396, May 2010.spa
dc.relation.referencesM. Maiti, D. Tiwari, A. Roy, N. Singh, and S. Wagh, “Simulation and analysis of an axial vircator using pic code,” in 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 1–5, May 2015spa
dc.relation.referencesY.-C. Lan, M.-C. Lin, Y. Hu, and T.-L. Lin, “Simulation study of vircators with field emission cathode,” in 4th IEEE International Conference on Vacuum Electronics, 2003, pp. 242–243, May 2003.spa
dc.relation.referencesG. Filipic, Principles of Particle in cell simulations. University of Ljubljana, 1 ed., 2008.spa
dc.relation.referencesR. L. Haupt, “Using matlab to control commercial computational electromagnetics software,” Aces Journal, vol. 23, no. 1, pp. 98–103, 2008.spa
dc.relation.referencesR. L. Haupt and S. Haupt, Practical Genetic Algorithms. Studies in Computational Intelligence 272, Wiley-Interscience, 2 ed., 2004.spa
dc.relation.referencesD. V. Giri, High-Power Electromagnetic Radiators: Nonlethal Weapons and Other Applications. Harvard University Press, 1 ed., 2004spa
dc.relation.referencesE. G. Baquela and A. Redchuk, Optimizacion Matematica con R, vol. 1. Madrid, Spain: Bubok Publishing S.L., first edition ed., 2013.spa
dc.relation.referencesA. Ravindran, K. M. Ragsdell, and G. V. Reklaitis, Engineering optimization: methods and applications. John Wiley & Sons, 2 ed., 2006.spa
dc.relation.referencesP. R. LeClair, Accelerating charges, radiation, and electromagnetic waves in solids. 1 ed., 2011.spa
dc.relation.referencesA. Dean, D. Voss, and D. Draguljic, Design and Analysis of Experiments. Springer, 2 ed., 2017.spa
dc.relation.referencesJ. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, “Simultaneous potential and circuital solution for 1d bounded plasma particle simulation codes,” computational physics, vol. 104, no. 2, pp. 321–328, 1993.spa
dc.relation.referencesM. C. Choi, S. H. Choi, M. W. Jung, K. K. Seo, Y. H. Seo, K. S. Cho, E. H. Choi, and H. S. Uhm, “Characteristic of vircator output at various a-k gap distances with diode perveance,” in IEEE Conference Record - Abstracts. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference (Cat. No.01CH37, pp. 503–, June 2001.spa
dc.relation.referencesD. Price, D. Fittinghoff, J. Benford, H. Sze, and W. Woo, “Operational features and microwave characteristics of the vircator ii experiment,” IEEE Transactions on Plasma Science, vol. 16, pp. 177–184, April 1988.spa
dc.relation.referencesH. A. Davis, R. D. Fulton, E. G. Sherwood, and T. J. T. Kwan, “Enhancedefficiency, narrow-band gigawatt microwave output of the reditron oscillator,” IEEE Transactions on Plasma Science, vol. 18, pp. 611–617, June 1990.spa
dc.relation.referencesC.-S. Hwang and M.-W. Wu, “A high power microwave vircator with an enhanced efficiency,” IEEE Transactions on Plasma Science, vol. 21, pp. 239–242, April 1993.spa
dc.relation.referencesH. Sze, J. Benford, T. Young, D. Bromley, and B. Harteneck, “A radially and axially extracted virtual-cathode oscillator (vircator),” IEEE Transactions on Plasma Science, vol. 13, pp. 492–497, Dec 1985.spa
dc.relation.referencesV. Baryshevsky, A. Gurinovich, E. Gurnevich, and P. Molchanov, “Experimental study of a triode reflex geometry vircator,” IEEE Transactions on Plasma Science, vol. 45, pp. 631–635, April 2017.spa
dc.relation.referencesW. Jiang, J. Dickens, and M. Kristiansen, “High power microwave generation by a coaxial vircator,” in 2000 13th International Conference on High-Power Particle Beams, pp. 1020–1023, June 2000.spa
dc.relation.referencesK. Y. Sung, W. Jeon, Y. Jung, J. E. Lim, H. S. Uhm, and E. H. Choi, “Influence of anode-cathode gap distance on output characteristics of high-power microwave from coaxial virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 33, pp. 1353–1357, Aug 2005.spa
dc.relation.referencesA. Bromborsky, F. Agee, M. Bollen, J. Cameron, C. Clark, Davis, W. Destler, S. Graybill, G. Huttlin, D. Judy, R. Kehs, R. Kribel, L. Libelo, J. Pasour, N. Pereira, J. Rogers, M. Rubush, B. Ruth, C. Schlesiger, E. Sherwood, L. Smutek, G. Still, L. Thode, and D. Weidenheimer, “On the path to a terawatt: High power microwave experiments at aurora’,” 1988.spa
dc.relation.referencesW. Jiang, K. Woolverton, J. Dickens, and M. Krisiansen, “High power microwave generation by a coaxial vircator,” in Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358), vol. 1, pp. 194– 197, June 1999.spa
dc.relation.referencesD. Biswas and R. Kumar, “Microwave power enhancement in the simulation of a resonant coaxial vircator,” IEEE Transactions on Plasma Science, vol. 38, pp. 1313–1317, June 2010.spa
dc.relation.referencesM. Balk, “Simulation of high power microwaves,” in CST, Computer Simulation Technology, may 2011.spa
dc.relation.referencesA. Roy, A. Sharma, V. Sharma, A. Patel, and D. P. Chakravarthy, “Frequency variation of a reflex-triode virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 41, pp. 238–242, Jan 2013.spa
dc.relation.referencesE. Oran, Fast Fourier Transform and Its Applications. Mathematical and Analytical Techniques with Applications to Engineering, Prentice Hall, 1988.spa
dc.relation.referencesR. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press Series on Electromagnetic Wave Theory). Piscataway, NJ 08855-133 1: IEEE press Editorial Board, 1 ed., 2001.spa
dc.relation.referencesL. S. San, “Computer simulation of low temperature plasma,” Master’s thesis, Department of physics, faculty of science, 2010.spa
dc.relation.referencesA. Solari, L. Salmaso, F. Pesarin, and D. Basso, Permutation Tests for Stochastic Ordering and ANOVA: Theory and Applications with R. 1 ed., 2009.spa
dc.relation.referencesF. J.J., Practical Regression and Anova using R. 2000.spa
dc.relation.referencesW. J. Hill and W. G. Hunter, “A review of response surface methodology: A literature survey,” Technometrics, vol. 8, no. 4, pp. 571–590, 1966.spa
dc.relation.referencesA. V. Starodubov, S. A. Makarkin, V. V. Galushka, A. M. Pavlov, A. A. Serdobintsev, A. A. Koronovskii, and Y. A. Kalinin, “Higher harmonics generation in low-voltage vircator system,” in 2018 IEEE International Vacuum Electronics Conference (IVEC), pp. 219–220, April 2018.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcFísica::Electricidad y electrónicaspa
dc.subject.proposalHigh-Power Microwaveeng
dc.subject.proposalCarga espacialspa
dc.subject.proposalHigh-Power Microwave Sourceseng
dc.subject.proposalFuentes de microondas de alta potenciaspa
dc.subject.proposalMicroondas de alta potenciaspa
dc.subject.proposalParticleseng
dc.subject.proposalPlasmaeng
dc.subject.proposalOscilladores de catodo Virtualspa
dc.subject.proposalRelativisticseng
dc.subject.proposalPartıculasspa
dc.subject.proposalVircatoreng
dc.subject.proposalPlasmaspa
dc.subject.proposalVirtual Cathode Oscillatoreng
dc.subject.proposalRelatividadspa
dc.subject.proposalVircatorspa
dc.titleStudy on the Optimization of Virtual Cathode Oscillators for High Power Microwaves Testingspa
dc.title.alternativeEstudio en la optimization de oscilladores de cathode virtual para pruebas en microondas de alta potenciaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Study on the Optimization of Virtual Cathode Oscillators for High Power Microwaves Testing.pdf
Tamaño:
2.02 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: