Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida
dc.contributor.advisor | Cadena Chamorro, Edith Marleny | spa |
dc.contributor.author | Vallejos Jiménez, Mario Alejandro | spa |
dc.contributor.orcid | Vallejos Jiménez, Mario Alejandro [0000-0002-5842-9702] | spa |
dc.date.accessioned | 2023-02-01T20:02:51Z | |
dc.date.available | 2023-02-01T20:02:51Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, fotografías, gráficas, tablas | spa |
dc.description.abstract | El aprovechamiento de los subproductos de la industria cafetera, como el mucílago y la pulpa, se muestra como alternativa para la obtención de compuestos de interés como la pectina, polímero ampliamente utilizado en la industria alimentaria gracias a su propiedad gelificante. El objetivo de este estudio es el desarrollo de películas biodegradables basadas en pectina de dichos subproductos, obtenidas mediante hidrólisis ácida con ácido cítrico, reforzadas con extracto de borra de café y celulosa bacteriana. El procesamiento del mucílago y la pulpa generó rendimientos de extracción de pectina en promedio de 10,98 ± 0,28 y 6,14 ± 0,18 %, caracterizándose por tener un contenido de metoxilo de 7,05 ± 0,27 y 4,85 ± 0,26 %, además de un grado de esterificación de 81,40 ± 2,08 y 72,74 ± 0,32 %, respectivamente. El desarrollo de películas reforzadas con celulosa y extracto de borra de café mostró resultados diferentes en función de las propiedades mecánicas y de solubilidad, obteniendo una resistencia a la tracción de 2,41 ± 0,16 y 3,41 ± 0,78 MPa y solubilidad de 63,52 ± 4,25 y 40,46 ± 5,26 %, en películas reforzadas basadas en pectina de mucílago y pulpa de café, respectivamente. Asimismo, se estimaron tiempos de biodegradabilidad en suelo de 3 y 16 días, siendo más estables las películas basadas en pectina de pulpa. Finalmente, la producción de películas a partir de pectina presente en estos subproductos se presenta como alternativa a un cambio progresivo de plásticos convencionales, proporcionando valor agregado a subproductos poco explorados. (Texto tomado de la fuente). | spa |
dc.description.abstract | The use of coffee industry by-products, such as mucilage and pulp, is shown as an alternative for obtaining compounds of interest such as pectin, a polymer widely used in the food industry due to its gelling properties. The objective of this study is the development of biodegradable films based on pectin from these by-products, obtained by acid hydrolysis with citric acid, reinforced with spent coffee grounds extract and bacterial cellulose. The processing of mucilage and pulp generated pectin extraction yields averaging 10.98 ± 0.28 and 6.14 ± 0.18 %, characterized by methoxyl contents of 7.05 ± 0.27 and 4.85 ± 0.26 %, in addition to an esterification degree of 81.40 ± 2.08 and 72.74 ± 0.32 %, respectively. The development of films reinforced with cellulose and spent coffee grounds extract showed different results in terms of mechanical and solubility properties, obtaining a tensile strength of 2.41 ± 0.16 and 3.41 ± 0.78 MPa and solubility of 63.52 ± 4.25 and 40.46 ± 5.26 %, in reinforced films based on mucilage pectin and coffee pulp, respectively. Likewise, biodegradability times in soil of 3 and 16 days were estimated, being more stable the films based on pulp pectin. Finally, the production of films from pectin present in these by-products is presented as an alternative to a progressive change of conventional plastics, providing added value to little explored by-products. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Bioprocesos agroindustriales | spa |
dc.description.sponsorship | MINCIENCIAS por la financiación del proyecto “Valorisation of waste from Coffee supply chain in Colombia and UK to develop novel products” con CTO No. 543-2020 de la convocatoria Institutional Links – Newton Fund – 2019 a través del Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación “FRANCISCO JOSÉ DE CALDAS”. | spa |
dc.format.extent | xvii, 103 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83227 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Adilah, A. N., Jamilah, B., Noranizan, M. A., & Nur Hanani, Z. A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006 | spa |
dc.relation.references | Akinalan Balik, B., Argin, S., M. Lagaron, J., & Torres-Giner, S. (2019). Preparation and characterization of electrospun pectin-based films and their application in sustainable aroma barrier multilayer packaging. Applied Sciences, 9(23), 2–24. https://doi.org/10.3390/app9235136 | spa |
dc.relation.references | Arriola Delia, & Garcia Ricardo. (1985). Caracterización química de la pectina obtenida de desechos del beneficio de café. Revista Científica, 3(1), 13–18. | spa |
dc.relation.references | Barreto, G. E., Púa, A. L., De Alba, D. D., & Pión, M. M. (2017). Extracción y caracterización de pectina de mango de azúcar (Mangifera indica L.). Temas Agrarios, 22(1), 78. https://doi.org/10.21897/rta.v22i1.918 | spa |
dc.relation.references | Bátori, V., Jabbari, M., Åkesson, D., Lennartsson, P. R., Taherzadeh, M. J., & Zamani, A. (2017). Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. International Journal of Polymer Science, 1–9. https://doi.org/10.1155/2017/9732329 | spa |
dc.relation.references | BeMiller, J. N. (1986). An Introduction to Pectins: Structure and Properties. American Chemical Society, 2–12. https://doi.org/10.1021/bk-1986-0310.ch001 | spa |
dc.relation.references | Bonnin, E., & Lahaye, M. (2013). Contribution of cell wall-modifying enzymes to the texture of fleshy fruits. The example of apple. Journal of the Serbian Chemical Society, 78(3), 417–427. https://doi.org/10.2298/JSC121123004B | spa |
dc.relation.references | Braham, J. E., & Bressani, R. (1978). Pulpa de café: Composición, tecnología y utilización (J. E. Braham & R. Bressani (eds.)). Instituto de Nutrición de Centro América y Panamá, INCAP*. | spa |
dc.relation.references | Canteri-Schemin, M. H., Ramos Fertonani, H. C., Waszczynskyj, N., & Wosiacki, G. (2005). Extraction of Pectin From Apple Pomace. Brazilian Archives of Biology and Technology, 48(2), 259–266. https://doi.org/10.1590/S1516-89132005000200013 | spa |
dc.relation.references | Chan, S. Y., & Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097 | spa |
dc.relation.references | Chen, Y., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2014). Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International Journal of Biological Macromolecules, 70, 498–505. https://doi.org/10.1016/j.ijbiomac.2014.07.024 | spa |
dc.relation.references | Comité de Cafeteros de Antioquia. (2022). Producción de café de Colombia cierra 2021 en 12,6 millones de sacos. Federación Nacional de Cafeteros de Colombia. https://fncantioquia.org/produccion-de-cafe-de-colombia-cierra-2021-en-126-millones-de-sacos/ | spa |
dc.relation.references | El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. D. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/j.carbpol.2015.07.024 | spa |
dc.relation.references | Endress, H.-U. (1991). Nonfood Uses of Pectin. In The Chemistry and Technology of pectin (pp. 251–268). | spa |
dc.relation.references | Faravash, R. S., & Ashtiani, F. Z. (2007). The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. International Journal of Food Science and Technology, 42, 1177–1187. https://doi.org/10.1111/j.1365-2621.2006.01324.x | spa |
dc.relation.references | Federación de cafeteros de Colombia. (2020). Regiones cafeteras de Colombia. Café de Colombia. https://www.cafedecolombia.com/particulares/regiones-cafeteras/ | spa |
dc.relation.references | Ferreira Ardila, S. (2007). Pectinas: aislamiento, caracterización y producción a partir de frutas tropicales y de los residuos de su procesamiento industrial [Universidad Nacional de Colombia]. In Facultad de Ciencias (Vol. 1). http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Archivos_Libros/Libros_Farmacia/Pectinas/pectinas.pdf | spa |
dc.relation.references | Gharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 136, 275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040 | spa |
dc.relation.references | Greenpeace. (2019). ¿Cómo llega el plástico a los océanos y qué sucede entonces? - ES | Greenpeace España. Greenpeace. https://es.greenpeace.org/es/trabajamos-en/consumismo/plasticos/como-llega-el-plastico-a-los-oceanos-y-que-sucede-entonces/ | spa |
dc.relation.references | Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096 | spa |
dc.relation.references | Kian, L. K., Jawaid, M., Ariffin, H., & Karim, Z. (2018). Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 114, 54–63. https://doi.org/10.1016/j.ijbiomac.2018.03.065 | spa |
dc.relation.references | Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J., Zhang, Z., Shen, G., & Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128–135. https://doi.org/10.1016/j.foodhyd.2019.03.011 | spa |
dc.relation.references | Liew, S. Q., Chin, N. L., & Yusof, Y. A. (2014). Extraction and Characterization of Pectin from Passion Fruit Peels. Agriculture and Agricultural Science Procedia, 2, 231–236. https://doi.org/10.1016/j.aaspro.2014.11.033 | spa |
dc.relation.references | Mellinas, C., Ramos, M., Jiménez, A., & Garrigós, M. C. (2020). Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials, 13(3), 1–17. https://doi.org/10.3390/ma13030673 | spa |
dc.relation.references | Mendes, J. F., Martins, J. T., Manrich, A., Sena Neto, A. R., Pinheiro, A. C. M., Mattoso, L. H. C., & Martins, M. A. (2019). Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydrate Polymers, 210, 92–99. https://doi.org/10.1016/j.carbpol.2019.01.058 | spa |
dc.relation.references | Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106(1), 179–189. https://doi.org/10.1016/j.carbpol.2014.02.013 | spa |
dc.relation.references | Muhammad, N. W. F., Nurrulhidayah, A. F., Hamzah, M. S., Rashidi, O., & Rohman, A. (2020). Physicochemical properties of dragon fruit peel pectin and citrus peel pectin: A comparison. Food Research, 4(Suppl. 1), 266–273. https://doi.org/10.26656/fr.2017.4(S1).S14 | spa |
dc.relation.references | Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005 | spa |
dc.relation.references | Oakenfull, D. . (1991). The Chemistry of High-Methoxyl Pectins. In I. Academic Press (Ed.), The Chemistry and Technology of pectin (pp. 87–108). | spa |
dc.relation.references | Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074 | spa |
dc.relation.references | Pinheiro, E. R., Silva, I. M. D. A., Gonzaga, L. V., Amante, E. R., Teófilo, R. F., Ferreira, M. M. C., & Amboni, R. D. M. C. (2008). Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresource Technology, 99(13), 5561–5566. https://doi.org/10.1016/j.biortech.2007.10.058 | spa |
dc.relation.references | Puerta Quintero, G. I., & Ríos Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermentación y refrigeración. Cenicafé, 62(2), 23–40. | spa |
dc.relation.references | Quader, F. B., Khan, R. A., Islam, M. A., Saha, S., & Sharmin, K. N. (2015). Development and Characterization of a Biodegradable Colored Film Based on Starch and Chitosan by Using Acacia Catechu. Journal of Environmental Science & Natural Resources, 8(2), 123–130. | spa |
dc.relation.references | Ranganna, S. (1986). Handbook of Analysis and Quality Control for Fruit and Vegetable Products (2nd ed). https://books.google.com.co/books?hl=es&lr=&id=jQN8Kpj0UOMC&oi=fnd&pg=PA1&ots=fdVlYTkIxJ&sig=_B0IwkCbswnkqfDkAkbO-vxtqZc&redir_esc=y#v=onepage&q&f=false | spa |
dc.relation.references | Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967. https://doi.org/10.1016/S0031-9422(01)00113-3 | spa |
dc.relation.references | Rodríguez Valencia, N., & Zambrano Franco, D. A. (2011). Producción de alcohol a partir del mucílago del café. Revista Cenicafé, 62(1), 56–69. http://biblioteca.cenicafe.org/bitstream/10778/541/1/arc064(02)78-93.pdf | spa |
dc.relation.references | Roy, S., & Rhim, J. W. (2021). Fabrication of pectin/agar blended functional film: Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocolloids, 118, 106823. https://doi.org/10.1016/j.foodhyd.2021.106823 | spa |
dc.relation.references | Sánchez Aldana, D., Contreras-Esquivel, J. C., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2015). Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón Mexicano. CyTA - Journal of Food, 13(1), 17–25. https://doi.org/10.1080/19476337.2014.904929 | spa |
dc.relation.references | Santos, E. E., Amaro, R. C., Bustamante, C. C. C., Guerra, M. H. A., Soares, L. C., & Froes, R. E. S. (2020). Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocolloids, 107, 105921. https://doi.org/10.1016/j.foodhyd.2020.105921 | spa |
dc.relation.references | Sengar, A. S., Rawson, A., Muthiah, M., & Kalakandan, S. K. (2020). Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrasonics Sonochemistry, 61, 104812. https://doi.org/10.1016/j.ultsonch.2019.104812 | spa |
dc.relation.references | Serrat-Díaz, M., De la Fé-Isaac, Á. D., De la Fé-Isaac, J. A., & Montero-Cabrales, C. (2018). Extracción y caracterización de pectina de pulpa de café de la variedad Robusta. Revista Cubana de Química, 30(3), 522–538. | spa |
dc.relation.references | Sood, A., & Saini, C. S. (2022). Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids, 123, 107–135. https://doi.org/10.1016/j.foodhyd.2021.107135 | spa |
dc.relation.references | Tai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2019). Aerobic biodegradation of starch–polyurethane flexible films under soil burial condition: Changes in physical structure and chemical composition. International Biodeterioration and Biodegradation, 145, 104–793. https://doi.org/10.1016/j.ibiod.2019.104793 | spa |
dc.relation.references | Thankur, B. R., Singh, R. K., Handa, A. K., & Rao, D. M. A. (1997). Chemistry and uses of pectin - A review. A Review, Critical Reviews in Food Science & Nutrition, 37(1), 47–73. https://doi.org/10.1080/10408399709527767 | spa |
dc.relation.references | Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78. https://doi.org/10.1016/S0924-2244(02)00280-7 | spa |
dc.relation.references | Valdespino-León, M., Calderón-Domínguez, G., De La Paz Salgado-Cruz, M., Rentería-Ortega, M., Farrera-Rebollo, R. R., Morales-Sánchez, E., Gaona-Sánchez, V. A., & Terrazas-Valencia, F. (2021). Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste and Biomass Valorization, 12, 2477–2494. https://doi.org/10.1007/s12649-020-01194-z | spa |
dc.relation.references | Valencia, N. R. (2000). Manejo de residuos en la agroindustria cafetera. Seminario Internacional Gestión Integral De Residuos Sólidos Y Peligrosos, Siglo Xxi, 1–10. | spa |
dc.relation.references | Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263–275. https://doi.org/10.1007/s11224-009-9442-z | spa |
dc.relation.references | Vriesmann, L. C., Teófilo, R. F., & Lúcia de Oliveira Petkowicz, C. (2012). Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Science and Technology, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018 | spa |
dc.relation.references | Wu, J., Zhong, F., Li, Y., Shoemaker, C. F., & Xia, W. (2013). Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocolloids, 30, 82–91. https://doi.org/10.1016/j.foodhyd.2012.04.002 | spa |
dc.relation.references | Yabe, T. (2018). New understanding of pectin as a bioactive dietary fiber. Journal of Food Bioactives, 3, 95–100. https://doi.org/10.31665/jfb.2018.3152 | spa |
dc.relation.references | Yapo, B M. (2007). Effect of extraction conditions on the yield , purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100, 1356–1364. https://doi.org/10.1016/j.foodchem.2005.12.012 | spa |
dc.relation.references | Yapo, Beda M. (2011). Pectic substances: From simple pectic polysaccharides to complex pectins - A new hypothetical model. Carbohydrate Polymers, 86, 373–385. https://doi.org/10.1016/j.carbpol.2011.05.065 | spa |
dc.relation.references | Ye, S., He, S., Su, C., Jiang, L., Wen, Y., Zhu, Z., & Shao, W. (2018). Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels. Molecules, 23(8), 1–9. https://doi.org/10.3390/molecules23082082 | spa |
dc.relation.references | Ye, S., Zhu, Z., Wen, Y., Su, C., Jiang, L., He, S., & Shao, W. (2019). Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers, 11(57). https://doi.org/10.3390/polym11010057 | spa |
dc.relation.references | Yu, M., Xia, Y., Zhou, M., Guo, Y., Zheng, J., & Zhang, Y. (2021). Effects of different extraction methods on structural and physicochemical properties of pectins from finger citron pomace. Carbohydrate Polymers, 258, 117662. https://doi.org/10.1016/j.carbpol.2021.117662 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Poliuronidos | spa |
dc.subject.agrovoc | polyuronides | eng |
dc.subject.agrovoc | Hidrólisis | spa |
dc.subject.agrovoc | hydrolysis | eng |
dc.subject.agrovoc | Mucilagos | spa |
dc.subject.agrovoc | mucilages | eng |
dc.subject.ddc | 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos | spa |
dc.subject.proposal | Mucílago y pulpa | spa |
dc.subject.proposal | Pectina | spa |
dc.subject.proposal | Hidrólisis ácida | spa |
dc.subject.proposal | Celulosa bacteriana | spa |
dc.subject.proposal | Extracto de borra de café | spa |
dc.subject.proposal | Grado de esterificación | spa |
dc.subject.proposal | Biodegradabilidad | spa |
dc.subject.proposal | Mucilage and pulp | eng |
dc.subject.proposal | Pectin | eng |
dc.subject.proposal | Acid hydrolysis | eng |
dc.subject.proposal | Bacterial cellulose | eng |
dc.subject.proposal | Spent coffee grounds extract | eng |
dc.subject.proposal | Degree of esterification | eng |
dc.subject.proposal | Biodegradability | eng |
dc.title | Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida | spa |
dc.title.translated | Development of biodegradable films based on pectins extracted from coffee processing by-products by acid hydrolysis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Ministerio de Ciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1124857659.2022.pdf
- Tamaño:
- 4.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: