Desarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácida

dc.contributor.advisorCadena Chamorro, Edith Marlenyspa
dc.contributor.authorVallejos Jiménez, Mario Alejandrospa
dc.contributor.orcidVallejos Jiménez, Mario Alejandro [0000-0002-5842-9702]spa
dc.date.accessioned2023-02-01T20:02:51Z
dc.date.available2023-02-01T20:02:51Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEl aprovechamiento de los subproductos de la industria cafetera, como el mucílago y la pulpa, se muestra como alternativa para la obtención de compuestos de interés como la pectina, polímero ampliamente utilizado en la industria alimentaria gracias a su propiedad gelificante. El objetivo de este estudio es el desarrollo de películas biodegradables basadas en pectina de dichos subproductos, obtenidas mediante hidrólisis ácida con ácido cítrico, reforzadas con extracto de borra de café y celulosa bacteriana. El procesamiento del mucílago y la pulpa generó rendimientos de extracción de pectina en promedio de 10,98 ± 0,28 y 6,14 ± 0,18 %, caracterizándose por tener un contenido de metoxilo de 7,05 ± 0,27 y 4,85 ± 0,26 %, además de un grado de esterificación de 81,40 ± 2,08 y 72,74 ± 0,32 %, respectivamente. El desarrollo de películas reforzadas con celulosa y extracto de borra de café mostró resultados diferentes en función de las propiedades mecánicas y de solubilidad, obteniendo una resistencia a la tracción de 2,41 ± 0,16 y 3,41 ± 0,78 MPa y solubilidad de 63,52 ± 4,25 y 40,46 ± 5,26 %, en películas reforzadas basadas en pectina de mucílago y pulpa de café, respectivamente. Asimismo, se estimaron tiempos de biodegradabilidad en suelo de 3 y 16 días, siendo más estables las películas basadas en pectina de pulpa. Finalmente, la producción de películas a partir de pectina presente en estos subproductos se presenta como alternativa a un cambio progresivo de plásticos convencionales, proporcionando valor agregado a subproductos poco explorados. (Texto tomado de la fuente).spa
dc.description.abstractThe use of coffee industry by-products, such as mucilage and pulp, is shown as an alternative for obtaining compounds of interest such as pectin, a polymer widely used in the food industry due to its gelling properties. The objective of this study is the development of biodegradable films based on pectin from these by-products, obtained by acid hydrolysis with citric acid, reinforced with spent coffee grounds extract and bacterial cellulose. The processing of mucilage and pulp generated pectin extraction yields averaging 10.98 ± 0.28 and 6.14 ± 0.18 %, characterized by methoxyl contents of 7.05 ± 0.27 and 4.85 ± 0.26 %, in addition to an esterification degree of 81.40 ± 2.08 and 72.74 ± 0.32 %, respectively. The development of films reinforced with cellulose and spent coffee grounds extract showed different results in terms of mechanical and solubility properties, obtaining a tensile strength of 2.41 ± 0.16 and 3.41 ± 0.78 MPa and solubility of 63.52 ± 4.25 and 40.46 ± 5.26 %, in reinforced films based on mucilage pectin and coffee pulp, respectively. Likewise, biodegradability times in soil of 3 and 16 days were estimated, being more stable the films based on pulp pectin. Finally, the production of films from pectin present in these by-products is presented as an alternative to a progressive change of conventional plastics, providing added value to little explored by-products.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBioprocesos agroindustrialesspa
dc.description.sponsorshipMINCIENCIAS por la financiación del proyecto “Valorisation of waste from Coffee supply chain in Colombia and UK to develop novel products” con CTO No. 543-2020 de la convocatoria Institutional Links – Newton Fund – 2019 a través del Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación “FRANCISCO JOSÉ DE CALDAS”.spa
dc.format.extentxvii, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83227
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAdilah, A. N., Jamilah, B., Noranizan, M. A., & Nur Hanani, Z. A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006spa
dc.relation.referencesAkinalan Balik, B., Argin, S., M. Lagaron, J., & Torres-Giner, S. (2019). Preparation and characterization of electrospun pectin-based films and their application in sustainable aroma barrier multilayer packaging. Applied Sciences, 9(23), 2–24. https://doi.org/10.3390/app9235136spa
dc.relation.referencesArriola Delia, & Garcia Ricardo. (1985). Caracterización química de la pectina obtenida de desechos del beneficio de café. Revista Científica, 3(1), 13–18.spa
dc.relation.referencesBarreto, G. E., Púa, A. L., De Alba, D. D., & Pión, M. M. (2017). Extracción y caracterización de pectina de mango de azúcar (Mangifera indica L.). Temas Agrarios, 22(1), 78. https://doi.org/10.21897/rta.v22i1.918spa
dc.relation.referencesBátori, V., Jabbari, M., Åkesson, D., Lennartsson, P. R., Taherzadeh, M. J., & Zamani, A. (2017). Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. International Journal of Polymer Science, 1–9. https://doi.org/10.1155/2017/9732329spa
dc.relation.referencesBeMiller, J. N. (1986). An Introduction to Pectins: Structure and Properties. American Chemical Society, 2–12. https://doi.org/10.1021/bk-1986-0310.ch001spa
dc.relation.referencesBonnin, E., & Lahaye, M. (2013). Contribution of cell wall-modifying enzymes to the texture of fleshy fruits. The example of apple. Journal of the Serbian Chemical Society, 78(3), 417–427. https://doi.org/10.2298/JSC121123004Bspa
dc.relation.referencesBraham, J. E., & Bressani, R. (1978). Pulpa de café: Composición, tecnología y utilización (J. E. Braham & R. Bressani (eds.)). Instituto de Nutrición de Centro América y Panamá, INCAP*.spa
dc.relation.referencesCanteri-Schemin, M. H., Ramos Fertonani, H. C., Waszczynskyj, N., & Wosiacki, G. (2005). Extraction of Pectin From Apple Pomace. Brazilian Archives of Biology and Technology, 48(2), 259–266. https://doi.org/10.1590/S1516-89132005000200013spa
dc.relation.referencesChan, S. Y., & Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097spa
dc.relation.referencesChen, Y., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2014). Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International Journal of Biological Macromolecules, 70, 498–505. https://doi.org/10.1016/j.ijbiomac.2014.07.024spa
dc.relation.referencesComité de Cafeteros de Antioquia. (2022). Producción de café de Colombia cierra 2021 en 12,6 millones de sacos. Federación Nacional de Cafeteros de Colombia. https://fncantioquia.org/produccion-de-cafe-de-colombia-cierra-2021-en-126-millones-de-sacos/spa
dc.relation.referencesEl Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. D. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/j.carbpol.2015.07.024spa
dc.relation.referencesEndress, H.-U. (1991). Nonfood Uses of Pectin. In The Chemistry and Technology of pectin (pp. 251–268).spa
dc.relation.referencesFaravash, R. S., & Ashtiani, F. Z. (2007). The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. International Journal of Food Science and Technology, 42, 1177–1187. https://doi.org/10.1111/j.1365-2621.2006.01324.xspa
dc.relation.referencesFederación de cafeteros de Colombia. (2020). Regiones cafeteras de Colombia. Café de Colombia. https://www.cafedecolombia.com/particulares/regiones-cafeteras/spa
dc.relation.referencesFerreira Ardila, S. (2007). Pectinas: aislamiento, caracterización y producción a partir de frutas tropicales y de los residuos de su procesamiento industrial [Universidad Nacional de Colombia]. In Facultad de Ciencias (Vol. 1). http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Archivos_Libros/Libros_Farmacia/Pectinas/pectinas.pdfspa
dc.relation.referencesGharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 136, 275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040spa
dc.relation.referencesGreenpeace. (2019). ¿Cómo llega el plástico a los océanos y qué sucede entonces? - ES | Greenpeace España. Greenpeace. https://es.greenpeace.org/es/trabajamos-en/consumismo/plasticos/como-llega-el-plastico-a-los-oceanos-y-que-sucede-entonces/spa
dc.relation.referencesHosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096spa
dc.relation.referencesKian, L. K., Jawaid, M., Ariffin, H., & Karim, Z. (2018). Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 114, 54–63. https://doi.org/10.1016/j.ijbiomac.2018.03.065spa
dc.relation.referencesLei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J., Zhang, Z., Shen, G., & Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128–135. https://doi.org/10.1016/j.foodhyd.2019.03.011spa
dc.relation.referencesLiew, S. Q., Chin, N. L., & Yusof, Y. A. (2014). Extraction and Characterization of Pectin from Passion Fruit Peels. Agriculture and Agricultural Science Procedia, 2, 231–236. https://doi.org/10.1016/j.aaspro.2014.11.033spa
dc.relation.referencesMellinas, C., Ramos, M., Jiménez, A., & Garrigós, M. C. (2020). Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials, 13(3), 1–17. https://doi.org/10.3390/ma13030673spa
dc.relation.referencesMendes, J. F., Martins, J. T., Manrich, A., Sena Neto, A. R., Pinheiro, A. C. M., Mattoso, L. H. C., & Martins, M. A. (2019). Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydrate Polymers, 210, 92–99. https://doi.org/10.1016/j.carbpol.2019.01.058spa
dc.relation.referencesMinjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106(1), 179–189. https://doi.org/10.1016/j.carbpol.2014.02.013spa
dc.relation.referencesMuhammad, N. W. F., Nurrulhidayah, A. F., Hamzah, M. S., Rashidi, O., & Rohman, A. (2020). Physicochemical properties of dragon fruit peel pectin and citrus peel pectin: A comparison. Food Research, 4(Suppl. 1), 266–273. https://doi.org/10.26656/fr.2017.4(S1).S14spa
dc.relation.referencesMurthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005spa
dc.relation.referencesOakenfull, D. . (1991). The Chemistry of High-Methoxyl Pectins. In I. Academic Press (Ed.), The Chemistry and Technology of pectin (pp. 87–108).spa
dc.relation.referencesPereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074spa
dc.relation.referencesPinheiro, E. R., Silva, I. M. D. A., Gonzaga, L. V., Amante, E. R., Teófilo, R. F., Ferreira, M. M. C., & Amboni, R. D. M. C. (2008). Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresource Technology, 99(13), 5561–5566. https://doi.org/10.1016/j.biortech.2007.10.058spa
dc.relation.referencesPuerta Quintero, G. I., & Ríos Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermentación y refrigeración. Cenicafé, 62(2), 23–40.spa
dc.relation.referencesQuader, F. B., Khan, R. A., Islam, M. A., Saha, S., & Sharmin, K. N. (2015). Development and Characterization of a Biodegradable Colored Film Based on Starch and Chitosan by Using Acacia Catechu. Journal of Environmental Science & Natural Resources, 8(2), 123–130.spa
dc.relation.referencesRanganna, S. (1986). Handbook of Analysis and Quality Control for Fruit and Vegetable Products (2nd ed). https://books.google.com.co/books?hl=es&lr=&id=jQN8Kpj0UOMC&oi=fnd&pg=PA1&ots=fdVlYTkIxJ&sig=_B0IwkCbswnkqfDkAkbO-vxtqZc&redir_esc=y#v=onepage&q&f=falsespa
dc.relation.referencesRidley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967. https://doi.org/10.1016/S0031-9422(01)00113-3spa
dc.relation.referencesRodríguez Valencia, N., & Zambrano Franco, D. A. (2011). Producción de alcohol a partir del mucílago del café. Revista Cenicafé, 62(1), 56–69. http://biblioteca.cenicafe.org/bitstream/10778/541/1/arc064(02)78-93.pdfspa
dc.relation.referencesRoy, S., & Rhim, J. W. (2021). Fabrication of pectin/agar blended functional film: Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocolloids, 118, 106823. https://doi.org/10.1016/j.foodhyd.2021.106823spa
dc.relation.referencesSánchez Aldana, D., Contreras-Esquivel, J. C., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2015). Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón Mexicano. CyTA - Journal of Food, 13(1), 17–25. https://doi.org/10.1080/19476337.2014.904929spa
dc.relation.referencesSantos, E. E., Amaro, R. C., Bustamante, C. C. C., Guerra, M. H. A., Soares, L. C., & Froes, R. E. S. (2020). Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocolloids, 107, 105921. https://doi.org/10.1016/j.foodhyd.2020.105921spa
dc.relation.referencesSengar, A. S., Rawson, A., Muthiah, M., & Kalakandan, S. K. (2020). Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrasonics Sonochemistry, 61, 104812. https://doi.org/10.1016/j.ultsonch.2019.104812spa
dc.relation.referencesSerrat-Díaz, M., De la Fé-Isaac, Á. D., De la Fé-Isaac, J. A., & Montero-Cabrales, C. (2018). Extracción y caracterización de pectina de pulpa de café de la variedad Robusta. Revista Cubana de Química, 30(3), 522–538.spa
dc.relation.referencesSood, A., & Saini, C. S. (2022). Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids, 123, 107–135. https://doi.org/10.1016/j.foodhyd.2021.107135spa
dc.relation.referencesTai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2019). Aerobic biodegradation of starch–polyurethane flexible films under soil burial condition: Changes in physical structure and chemical composition. International Biodeterioration and Biodegradation, 145, 104–793. https://doi.org/10.1016/j.ibiod.2019.104793spa
dc.relation.referencesThankur, B. R., Singh, R. K., Handa, A. K., & Rao, D. M. A. (1997). Chemistry and uses of pectin - A review. A Review, Critical Reviews in Food Science & Nutrition, 37(1), 47–73. https://doi.org/10.1080/10408399709527767spa
dc.relation.referencesTharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78. https://doi.org/10.1016/S0924-2244(02)00280-7spa
dc.relation.referencesValdespino-León, M., Calderón-Domínguez, G., De La Paz Salgado-Cruz, M., Rentería-Ortega, M., Farrera-Rebollo, R. R., Morales-Sánchez, E., Gaona-Sánchez, V. A., & Terrazas-Valencia, F. (2021). Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste and Biomass Valorization, 12, 2477–2494. https://doi.org/10.1007/s12649-020-01194-zspa
dc.relation.referencesValencia, N. R. (2000). Manejo de residuos en la agroindustria cafetera. Seminario Internacional Gestión Integral De Residuos Sólidos Y Peligrosos, Siglo Xxi, 1–10.spa
dc.relation.referencesVoragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263–275. https://doi.org/10.1007/s11224-009-9442-zspa
dc.relation.referencesVriesmann, L. C., Teófilo, R. F., & Lúcia de Oliveira Petkowicz, C. (2012). Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Science and Technology, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018spa
dc.relation.referencesWu, J., Zhong, F., Li, Y., Shoemaker, C. F., & Xia, W. (2013). Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocolloids, 30, 82–91. https://doi.org/10.1016/j.foodhyd.2012.04.002spa
dc.relation.referencesYabe, T. (2018). New understanding of pectin as a bioactive dietary fiber. Journal of Food Bioactives, 3, 95–100. https://doi.org/10.31665/jfb.2018.3152spa
dc.relation.referencesYapo, B M. (2007). Effect of extraction conditions on the yield , purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100, 1356–1364. https://doi.org/10.1016/j.foodchem.2005.12.012spa
dc.relation.referencesYapo, Beda M. (2011). Pectic substances: From simple pectic polysaccharides to complex pectins - A new hypothetical model. Carbohydrate Polymers, 86, 373–385. https://doi.org/10.1016/j.carbpol.2011.05.065spa
dc.relation.referencesYe, S., He, S., Su, C., Jiang, L., Wen, Y., Zhu, Z., & Shao, W. (2018). Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels. Molecules, 23(8), 1–9. https://doi.org/10.3390/molecules23082082spa
dc.relation.referencesYe, S., Zhu, Z., Wen, Y., Su, C., Jiang, L., He, S., & Shao, W. (2019). Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers, 11(57). https://doi.org/10.3390/polym11010057spa
dc.relation.referencesYu, M., Xia, Y., Zhou, M., Guo, Y., Zheng, J., & Zhang, Y. (2021). Effects of different extraction methods on structural and physicochemical properties of pectins from finger citron pomace. Carbohydrate Polymers, 258, 117662. https://doi.org/10.1016/j.carbpol.2021.117662spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocPoliuronidosspa
dc.subject.agrovocpolyuronideseng
dc.subject.agrovocHidrólisisspa
dc.subject.agrovochydrolysiseng
dc.subject.agrovocMucilagosspa
dc.subject.agrovocmucilageseng
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.proposalMucílago y pulpaspa
dc.subject.proposalPectinaspa
dc.subject.proposalHidrólisis ácidaspa
dc.subject.proposalCelulosa bacterianaspa
dc.subject.proposalExtracto de borra de caféspa
dc.subject.proposalGrado de esterificaciónspa
dc.subject.proposalBiodegradabilidadspa
dc.subject.proposalMucilage and pulpeng
dc.subject.proposalPectineng
dc.subject.proposalAcid hydrolysiseng
dc.subject.proposalBacterial celluloseeng
dc.subject.proposalSpent coffee grounds extracteng
dc.subject.proposalDegree of esterificationeng
dc.subject.proposalBiodegradabilityeng
dc.titleDesarrollo de películas biodegradables a base de pectinas extraídas de los subproductos del beneficio del café por hidrólisis ácidaspa
dc.title.translatedDevelopment of biodegradable films based on pectins extracted from coffee processing by-products by acid hydrolysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Cienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1124857659.2022.pdf
Tamaño:
4.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: