Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos

dc.contributor.advisorMarín-Cadavid, Jairo Humberto
dc.contributor.advisorSuaza-Tabares, Yoder Alberto
dc.contributor.authorRios Álvarez, Santiago
dc.contributor.orcidRíos-Álvarez, Santiago [0000000303751961]spa
dc.contributor.researchgroupMateriales Cerámicos y Vítreosspa
dc.date.accessioned2024-07-31T21:32:54Z
dc.date.available2024-07-31T21:32:54Z
dc.date.issued2022-03-11
dc.descriptionIlustracionesspa
dc.description.abstractIn the present thesis, a exhaustive analysis of the electronic, optical and thermal properties of diamond-shaped semiconductor quantum rings with elliptical crater was performed by varying both the morphology and the external elds to which the systems are exposed. First, an electron con ned in a GaAs/Ga0.7Al0.3As quantum ring was considered, whose shape resembles quantum dots obtained by various growth techniques. The Lamé curve was used to represent the outer contour of the quantum ring in a more realistic way. Topological parameters associated with the size of the ring, the proportions of the crater and the shape of the contour were assigned. To carry out this study, a Schrödinger equation was proposed to show the interaction with external elds and geometrical con nement, being able to observe phenomena such as the Stark effect, the Aharonov-Bohm effect and the formation of anticrossing points. The Hamiltonian approach is based on the effective mass approximation, and then resorts to nite element computational methods to solve the differential equation. The analysis performed from the variations and parametric sweeps in both morphologies and external elds were taken to different situations, such as the topological analysis as an alternative to predict the properties of the quantum ring, the behavior of the nanostructure when it con nes an atomic system with a donor impurity, the manipulation of the thermal properties from the conformation of a statistical assembly with the electronic states and the optical responses of the proposed systems due to fluctuations in the probability densities caused by the topological and external eld variations.eng
dc.description.abstractEn la presente tesis se realizó un análisis exhaustivo de las propiedades electrónicas, ópticas y térmicas de anillos cuánticos semiconductores con forma de diamante y con cráter elíptico, variando tanto la morfología como los campos externos a los que se exponen los sistemas. En primer lugar, se consideró un electrón confi nado en un anillo cuántico de GaAs/Ga0.7Al0.3As, cuya forma se asemeja a los puntos cuánticos obtenidos mediante diversas técnicas de crecimiento. Se utilizó la curva de Lamé para representar el contorno externo del anillo cuántico de una forma más realista. Se asignaron parámetros topológicos asociados con el tamaño del anillo, las proporciones del cráter y la forma del contorno. Para llevar a cabo dicho estudio, se planteó una ecuación de Schrödinger que dé muestra de la interacción con campos externos y con el con namiento geométrico, pudiendo observar fenómenos como el efecto Stark, el efecto Aharonov-Bohm y la formaci on de puntos de anti-crossing. El planteamiento del Hamiltoniano se fundamenta en la aproximación de masa efectiva, para luego recurrir a métodos computacionales por elementos finitos para resolver la ecuación diferencial. El análisis realizado a partir de las variaciones y los barridos param etricos tanto en las morfologías como en los campos externos se llevaron a distintas situaciones, como el análisis topológico como alternativa para predecir las propiedades del anillo cuántico, el comportamiento de la nanoestructura cuando con na un sistema atómico con una impureza donadora, la manipulación de las propiedades térmicas a partir de la conformación de un ensamble estadístico con los estados electrónicos y las respuestas ópticas de los sistemas propuestos a raíz de las fluctuaciones en las densidades de probabilidad provocadas por las variaciones topológicas y de campos externos.
dc.description.curricularareaÁrea Curricular en Físicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaSistemas de baja dimensionalidadspa
dc.format.extent108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86672
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAcosta, R. E. ; Morales, A. L. ; Duque, C. M. ; Mora-Ramos, M. E. ; Duque, C. A.: Optical absorption and refractive index changes in a semiconductor quantum ring: Electric eld and donor impurity e ects. In: Phys. Status Solidi B, n °4 254 (2016), S. 744-754spa
dc.relation.referencesAharonov, Y. ; Bohm, D.: Signi cance of Electromagnetic Potentials in the Quantum Theory. In: Phys. Rev., n °3 115 (1959), S. 485-491spa
dc.relation.referencesBaghdasaryan, D. A. ; Hayrapetyan, D. B. ; Kazaryan, E. M. ; Sarkisyan, H. A.: Thermal and magnetic properties of electron gas in toroidal quantum dot. In: Physica E. 101 (2018), S. 1{-4spa
dc.relation.referencesBanyai, L. ; Koch, S. W.: Semiconductor Quantum dots. Singapore : World Scienti c, 1993spa
dc.relation.referencesBayer, M. ; Korkusinski, M. ; Hawrylak, P. ; Gutbrod, T. ; Michel, M. ; Forchel, A.: Optical Detection of the Aharonov-Bohm Effect on a Charged Particle in a Nanoscale Quantum Ring. In: Physical Review Letters 90 (2003), S. 18{21spa
dc.relation.referencesBejan, D. ; Stan, C. ; Niculescu, E. C.: Optical properties of an elliptic quantum ring: Eccentricity and electric fi eld effects. In: Optical Materials 381 (2018), S. 207-219spa
dc.relation.referencesBejan, D. ; Stan, C.: Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field. In: The European Physical Journal Plus 134 (2019)spa
dc.relation.referencesBimberg, D. ; Pohl, U. W.: Quantum dots: promises and accomplish. In: Mater. Today, n°9 14 (2006), S. 388-397spa
dc.relation.referencesBoyacioglu, A. B. et C. B. et Chatterjee: Heat capacity and entropy of a GaAs quantum dot with Gaussian con finement. In: J. Appl. Phys. 112, 083514 (2012), S. 1-6spa
dc.relation.referencesBoyd, R. W. ; Gaeta, A. L. ; Giese, E.: Nonlinear Optics. Wiley, 2007spa
dc.relation.referencesDahan, P. ; Malits, P.: E ect of symmetry on the electronic properties of arbitrarily shaped quantum rings in a magnetic field. In: Physica E. 56 (2014), S. 165-171spa
dc.relation.referencesDuque, C. M. ; Morales, A. L. ; Mora-Ramos, M. E. ; Duque, C. A.: Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. In: J. Lumin. 143 (2013), S. 81-88spa
dc.relation.referencesEsaki, L. ; Tsu, R.: Superlattice and Negative Differential Conductivity in Semiconductors. (1970), S. 61-65spa
dc.relation.referencesFomin, V.: Physics of Quantum Dots. 2018spa
dc.relation.referencesFuhrer, A. ; Luscher, S. ; Ihn, T. ; Heinzel, T. ; Ensslin, K. ; Wegscheider, W. ; Bichler, M.: Energy spectra of quantum rings. In: Nature 413 (2001), S. 822-825spa
dc.relation.referencesGarcía, J. M. ; Medeiros-Ribeiro, G. ; Schmidt, K. ; Ngo, T. ; Feng, J. L. ; Lorke, A. ; Kotthaus, J. ; Petroff, P. M.: Intermixing and shape changes during the formation of InAs self-assembled quantum dots. In: Appl. Phys. Lett. 71 (1997), S. 2014-2016spa
dc.relation.referencesGrynberg, G. ; Aspect, A. ; Fabre, C.: Introduction to Quantum Optics. Cambridge, 2010spa
dc.relation.referencesGumber, S. ; Kumar, M. ; Gambhir, M. ; Mohan, M. ; Kumar-Jha, P.: Thermal and magnetic properties of cylindrical quantum dot with asymmetric con nement. In: Can. J. Phys. 93 (2015), S. 1264{1268spa
dc.relation.referencesHarrison, P. ; Valavanis, A.: Quantum Wells, Wires and Dots. Leeds : Wiley, 2016spa
dc.relation.referencesHernández, N. ; López, R. ; Álvarez, J. A. ; Marín, J.H. ; Fulla, M. R. ; Tobón, H.: Optical absorption computation of a D+2 arti cial molecule in GaAs/Ga1-xAlxAs nanometer-scale rings. In: Optik 245 (2021), S. 1-4spa
dc.relation.referencesHuang, S. ; Niu, Z. ; Fang, Z. ; Ni, H. ; Zheng, G. ; Xia, J.: Complex quantum ring structures formed by droplet epitaxy. In: Appl. Phys. Lett., n 389(2006); S;89-91spa
dc.relation.referencesHuang, S. ; Niu, Z. C. ; Xia, J.: Self-Assembled GaAs Quantum Rings by MBE Droplet Epitaxy. In: Solid State Phenom., n 3 121-123 (2007), S. 541-544spa
dc.relation.referencesJacak, L. ; W., Hawrylak A.: Quantum Dots. 2013spa
dc.relation.referencesJewell, J. L. ; Lee, Y. H. ; Warren, M. ; Gibbs, H. M. ; Peyghambarian, N. ; Gossard, A. C. ; Wiegmann, W.: 82 - MHz optical logic gates in a room temperature GaAs/AlGaAs multiple quantum well etalon. In: Appl. Phys. Lett, n °10 46 (1985), S. 918-920spa
dc.relation.referencesKarabulut, I. ; Baskoutas, S.: Linear and nonlinear optical absorption coe cients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. In: J. Appl. Phys. 103, 073512 (2008), S. 1-5spa
dc.relation.referencesKhordad, R. ; Rastegar Sedehi, H. R.: Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. In: Journal of Low Tem- perature Physics 190 (2018), S. 200-212spa
dc.relation.referencesKirak, M.: Magnetic and thermodynamic properties of GaAs quantum dot confi ned by parabolic-inverse square plus gaussian potential. In: Journal of Magnetism and Magnetic Materials 536 (2021), S. 1-10spa
dc.relation.referencesKiravittaya, S. ; Rastelli, A. ; Schmidt, O. G.: Advanced quantum dot con figurations. In: Rep. Prog. Phys. 72 (2009), S. 1-34spa
dc.relation.referencesLafaurie-Ponce, L. G. ; Suaza, Y. A. ; Pérez, J. A. ; Ávila, A. ; Rincón, M. ; Marín, J. H.: Thermal Properties of a Hydrogen Molecular Ion in Quantum Rings Under Electric and Intense Laser Fields. In: SSRN 1 (2021)spa
dc.relation.referencesLampert, M. A.: Mobile and Immobile Effective-Mass-Particle Complexes in Nonmetallic Solids. In: Phys. Rev. Lett., n 12 1 (1958), S. 450{453spa
dc.relation.referencesLee, C. M. ; Li, J. Q. ; Ruan, W. Y. ; Lee, R. C. H.: Optical spectra and intensities of a magnetic quantum ring bound to an off-center neutral donor D0. In: Physical Review B. 73 (2006), S. 212407- 212411spa
dc.relation.referencesLiang, S. ; W., Xie ; Shen, H.: Optical properties in a two-dimensional quantum ring: Con nement potential and Aharonov Bohm effect. In: Optics Communications 284 (2011), S. 5818-5828spa
dc.relation.referencesLima, R. P. A. ; M., Amado: Electronic states of on- and off-center donors in quantum rings of nite width. In: J. Lumin., n° 5-6 128 (2021), S. 858-861spa
dc.relation.referencesLorke, A. ; Johannes-Luyken, R. ; Govorov, A. O. ; Kotthaus, J. P. ; Garcia, J. M. ; Petroff, P. M.: Spectroscopy of Nanoscopic Semiconductor Rings. In: Phys. Rev. Lett., n°10 84 (2000), S. 2223-2226spa
dc.relation.referencesLucjan, J. ; Pawel, H. ; Arkadiusz, W.: Quantum Dots. 2014spa
dc.relation.referencesMichler, P.: Single Semiconductor Quantum Dots. 2009spa
dc.relation.referencesNasri, D.: On the eccentricity effects on the intraband optical transitions in two dimensional quantum rings with and without donor impurity. In: Phys. B Condens. Matter 540 (2021), S. 51-57spa
dc.relation.referencesPatrick Tung, K. H. ; Huang, J. ; Danner, A.: Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy. In: Journal of Nanoscience and Nanotechnology 16(6) (2016), S. 6465-6469spa
dc.relation.referencesRadhouene, M. ; Najjara, M. ; Kumar-Chhipa, M. ; Robinsond, S. ; Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. In: Journal of Applied Physics, n°103 7 (2017), S. 311-1316spa
dc.relation.referencesRadhouene, M. ; Najjara, M. ; Kumar-Chhipa, M. ; Robinsond, S. ; Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. In: Optik 172 (2018), S. 924-929spa
dc.relation.referencesRadu, A. ; Kirakosyan, A. A. ; Laroze, D. ; Baghramyan, H. M. ; Barseghyan, M. G.: Electronic and intraband optical properties of single quantum rings under intense laser field radiation. In: Appl. Phys. 116 (2014)spa
dc.relation.referencesRadu, A. ; Kirakosyan, A. A. ; Laroze, D. ; Barseghyan, M. G.: The effects of the intense laser and homogeneous electric fields on the electronic and intraband optical properties of a GaAs/Ga0.7Al0.3As quantum ring. In: Semicond. Sci. Technol. 30 (2015)spa
dc.relation.referencesRahmatullaha ; Abbas, M. ; Ziauddin ; Qamar, S.: Spatially structured transparency and transfer of optical vortices via four-wave mixing in a quantum-dot nanostructure. In: Physical Review A. 023821 101 (2020), S. 1-8spa
dc.relation.referencesSalazar-Santa, J. D. ; Fonnegra-García, D. ; Marín, J. H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. In: Opt. Quantum Electron, n°4 53 (2021), S. 176spa
dc.relation.referencesSalazar-Santa, J. D. ; Fonnegra-García, D. ; Marín, J. H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. In: Opt. Quant. Electron. 53 (2021), S. 176spa
dc.relation.referencesSalinas, S. R. A.: Introduction to Statistical Physics. Springer, 2007spa
dc.relation.referencesShuai, K. ; Yi-Ming, L ; Ting-Yun, S.: H+2 Like impurities con ned by spherical quantum dots: a candidate for charge qubits. In: Commun Theor. Phys, n°3 50 (2008), S. 767-770spa
dc.relation.referencesVinasco, J. A. ; Radu, A. ; Kasapoglu, E. ; Restrepo, R. L. ; Morales, A. L. ; Feddi, E. ; Mora-Ramos, M. E. ; Duque, C. A.: Effects of Geometry on the Electronic Properties of Semiconductor Elliptical Quantum Rings. In: Sci. Rep. 8 (2018), S. 13299spa
dc.relation.referencesWang, Z. M.: Self-Assembled Quantum Dots. 2008spa
dc.relation.referencesWood, T. H. ; Burrus, C. A. ; Miller, D. A. B. ; Chemia, D. S. ; Damen, T. C. ; Gossard, A. C. ; Wiegmann, W.: High - speed optical modulation with GaAs/GaAlAs quantum wells in a p-diode structure. In: Appl. Phys. Lett, n 11 44 (1984), S. 16-18spa
dc.relation.referencesWu, X. ; S., Gray ; Pelton, M.: Quantum-dot-induced transparency in a nanoscale plasmonic resonator. In: Optics Express, n°23 18 (2010), S. 23633-23645spa
dc.relation.referencesXie, W.: Effect of an electric eld on the nonlinear optical recti cation of a quantum ring. In: Phys. B Condens. Ma 443 (2014), S. 60-62spa
dc.relation.referencesYun, K. ; Sheng, W. ; Li-Xianli, J.: Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. In: Semicond. 36 (2015), S. 032003spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembFisica cuantica
dc.subject.lembTeoria cuantica
dc.subject.lembOptica cuantica
dc.subject.lembOperador de Schrodinger
dc.subject.proposalAnillos cuánticosspa
dc.subject.proposalAnillos acopladosspa
dc.subject.proposalImpureza donadoraspa
dc.subject.proposalComplejo molecularspa
dc.subject.proposalSusceptibilidad eléctricaspa
dc.subject.proposalRespuesta ópticaspa
dc.subject.proposalEfecto Aharanov-Bohmspa
dc.subject.proposalEfecto Starkspa
dc.subject.proposalPropiedades térmicasspa
dc.subject.proposalAnti-crossingspa
dc.subject.proposalQuantum ringseng
dc.subject.proposalDonor impurityeng
dc.subject.proposalMolecular complexeng
dc.subject.proposalElectric susceptibilityeng
dc.subject.proposalOptical responseeng
dc.subject.proposalAharanov-Bohm effecteng
dc.subject.proposalStark effecteng
dc.subject.proposalThermal propertieseng
dc.titleEstudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externoseng
dc.title.translatedStudy of electronic, optical and thermal properties of diamond-shaped quantum rings under the presence of external fieldseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152214259.2023.pdf
Tamaño:
46.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: