Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries

dc.contributor.advisorCardona Alzate, Carlos Ariel
dc.contributor.authorPoveda Giraldo, Jhonny Alejandro
dc.contributor.orcidPoveda Giraldo, Jhonny Alejandro [0000000271811156]spa
dc.contributor.researchgroupProcesos Químicos Cataliticos y Biotecnológicosspa
dc.contributor.scopusPoveda Giraldo, Jhonny Alejandro [57214072021]spa
dc.date.accessioned2023-11-30T02:54:53Z
dc.date.available2023-11-30T02:54:53Z
dc.date.issued2023
dc.descriptiongráficas, tablasspa
dc.description.abstractPretreatments have been considered the first step in designing biorefineries since they facilitate biomass fractionation to produce platform products, affecting further reaction and downstream stages. However, many studies report the use and enhancement of single-step pretreatments for valorizing a specific sub-stream, hindering integral biomass valorization. Therefore, sequential pretreatments seem to be an alternative to selective biomass component fractionation for future integral valorization. This thesis focuses on analyzing the performance of sequential pretreatments in the sustainability of biorefineries through experimental and simulation approaches. After a preliminary heuristic analysis of both single-step and sequential pretreatments, different proposed sequential combinations that best-isolated cellulose, hemicellulose, and lignin platforms were experimentally evaluated. It was determined that the dilute acid - wet air oxidation (DA-WAO) combination hydrolyzed 79% of hemicellulose during the first stage and 89% of lignin in the second stage, obtaining a pretreated solid with a cellulose recovery higher than 96%. All the platforms had an accessibility of more than 80%. The cellulose, hemicellulose, and lignin-based platform products were valorized to obtain value-added products such as levulinic acid, furfural, and phenolic compounds, respectively. As a main result, it was obtained that sequential pretreatments substantially increased the conversions compared to single-step schemes and raw feedstock, obtaining yields of 60.8% for the production of furfural and 30.3% for the acid reaction of levulinic acid production. In contrast, there was a slight reduction in vanillin and syringaldehyde production yield when performing a sequential scheme compared to the single-step. The experimental results were used to simulate and assess the sustainability of biorefineries coupled to the rice value chain. Sustainability was assessed through technical, environmental, economic, and social pillars. The main result was that biorefinery schemes increase technical indicators but increase waste generation. Likewise, economic feasibility was only observed when the three lignocellulosic fractions were valorized in a biorefinery scheme when the production of phenolic compounds was involved. From the environmental perspective, it was determined that the carbon footprint of the rice value chain was 2.17 kg CO2 / kg of rice husks, where fertilizers are the major contributors, while in the processing stage, steam had the greatest influence on the environmental impact. It was also observed that biorefinery schemes based on sequential technology increase employment generation; however, industrial water consumption represents a major social risk. All dimensions were coupled to evaluate the sustainability index, where it was concluded that sequential pretreatment schemes always increase sustainability compared to single-step pretreatment schemes (Texto tomado de la fuente)eng
dc.description.abstractLos pretratamientos se han catalogado como el primer eslabón en el diseño de biorrefinerías ya que facilita el fraccionamiento de la biomasa para la producción de productos plataforma, afectando futuramente las etapas de reacción y aguas abajo. Sin embargo, muchos estudios relatan el uso y mejoramiento de pretratamientos de etapa simple para la valorización de una subcorriente, impidiendo la valorización integral de la biomasa. Por lo tanto, los pretratamientos secuenciales se ven como una alternativa para el fraccionamiento selectivo de los componentes de la biomasa para futuras valorizaciones integrales. Este trabajo se centra en analizar el desempeño de los pretratamientos secuenciales en la sostenibilidad de biorrefinerías a través de trabajo experimental y simulación. Posterior a un análisis heurístico preliminar de pretratamientos tanto de etapa simple como secuencial, se evaluó experimentalmente diferentes propuestas de combinaciones secuenciales que mejor aislaran productos plataforma de celulosa, hemicelulosa y lignina. Se determinó que la combinación acido diluido – oxidación por aire húmedo (DA-WAO) hidroliza el 79% de hemicelulosa durante la primera etapa y el 89% de lignina en la segunda etapa, obteniendo un solido pretratado con una recuperación de celulosa superior al 96%. Todas las plataformas tuvieron una accesibilidad superior al 80%. Los productos plataforma a base de celulosa, hemicelulosa y lignina fueron valorizados para la obtención de productos de valor agregado como el ácido levulínico, furfural y compuestos fenólicos, respectivamente. Como resultado principal, se obtuvo que los pretratamientos secuenciales aumentaron sustancialmente las conversiones en comparación a esquemas de etapa simple y a materia prima cruda, obteniendo rendimientos de 60.8% para la producción de furfural y 30.3% para la reacción acida de producción de ácido levulínico. En contraste, hubo una pequeña reducción en el rendimiento de producción de vainillina y siringaldehído al efectuar un esquema secuencial en comparación al simple. Los resultados experimentales fueron usados para la simulación y evaluación de la sostenibilidad de biorefinerias acoplado a la cadena de valor del arroz. La sostenibilidad fue evaluada a través de cuatro pilares: técnico, ambiental, económico y social. Como resultado principal se obtuvo que los esquemas de biorefineria aumentan indicadores técnicos pero aumentan la generación de residuos. Asimismo, únicamente se observó viabilidad económica cuando se valorizan las tres fracciones lignocelulósicas en un esquema de biorefinerias cuando se involucra la producción de comúestos fenólicos. Desde la perspectiva ambiental, se determinó que la huella de carbono de la cadena de valor del arroz fue de 2.17 kg CO2 / kg de cascarillad de arroz, donde los fertilizantes son los mayores contribuyentes, mientras que en la etapa de procesamiento el vapor fue quien mas influyó en el impacto ambiental. Asimismo, se observó que los esquemas de biorefineria basado en tecnología secuencial aumenta la generación de empleo; sin embargo, el consumo de agua industrial representa un gran riesgo social. Todos las dimensiones fueron acopladas para evaluar el índice de sostenibilidad, donde se concluyó que los esquemas a base de pretratamiento secuencial siempre aumentan la sostebilidad en comparación a los esquemas de pretratamiento de etapa simplespa
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBiotechnological Process Engineeringspa
dc.description.sponsorship"Sistema de Información de la Investigación, Extensión y Laboratorios - HERMES." Movilidad 12792 de la Universidad Nacional de Colombiaspa
dc.description.sponsorshipProyecto de investigación "Impulsando el desarrollo de biosurfactantes a través de su ciclo de vida sistemático." Número de contrato (MINCIENCIAS): 80740-903-2020spa
dc.description.sponsorshipPrograma “Reconstrucción del tejido social en zonas posconflicto en Colombia” código SIGP 57579 con el proyecto titulado "Competencias empresariales y de innovación para el desarrollo económico y la inclusión productiva de las regiones afectadas por el conflicto colombiano” código SIGP 58907. Número de contrato (MINCIENCIAS): FP44842-213-2018spa
dc.format.extentxxvi, 261 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85023
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesK. Kokkinos, V. Karayannis, and K. Moustakas, “Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment,” Science of the Total Environment, vol. 721, Jun. 2020, doi: 10.1016/j.scitotenv.2020.137754.spa
dc.relation.referencesJ. Moncada, V. Aristizábal, and C. A. Cardona, “Design strategies for sustainable biorefineries,” Biochem Eng J, vol. 116, pp. 122–134, 2016.spa
dc.relation.referencesC. A. Bollino and P. Polinori, “Sustainability,” in Energy, Sustainability and the Environment: Technology, Incentives, Behavior, Elsevier, 2011, pp. 137–164. doi: 10.1016/B978-0-12-385136-9.10006-3.spa
dc.relation.referencesU. Berardi, “Sustainability assessments of buildings, communities, and cities,” in Assessing and Measuring Environmental Impact and Sustainability, Elsevier Inc., 2015, pp. 497–545. doi: 10.1016/B978-0-12-799968-5.00015-4.spa
dc.relation.referencesJ. A. Poveda-Giraldo, S. Piedrahita-Rodríguez, N. Salgado Aristizabal, M. Salas-Moreno, and C. A. Cardona Alzate, “Prefeasibility analysis of small-scale biorefineries: the annatto and açai case to improve the incomes of rural communities,” Biomass Convers Biorefin, Nov. 2022, doi: 10.1007/s13399-022-03479-w.spa
dc.relation.referencesJ. A. Poveda-Giraldo and C. A. Cardona, “Biorefinery potential of Eucalyptus grandis to produce phenolic compounds and biogas,” Canadian Journal of Forest Research, vol. 51, no. 1, pp. 89–100, 2021, doi: 10.1139/cjfr-2020-0201.spa
dc.relation.referencesN. Phonphuak and P. Chindaprasirt, “Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks,” in Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability, Elsevier Inc., 2015, pp. 103–127. doi: 10.1016/B978-1-78242-305-8.00006-1spa
dc.relation.referencesJ. A. Poveda-Giraldo, M. C. Garcia-Vallejo, and C. A. Cardona Alzate, “Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design,” Molecules, vol. 28, no. 3, p. 1278, Jan. 2023, doi: 10.3390/molecules28031278.spa
dc.relation.referencesM. Galbe and O. Wallberg, “Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials,” Biotechnology for Biofuels, vol. 12, no. 1. BioMed Central Ltd., Dec. 23, 2019. doi: 10.1186/s13068-019-1634-1.spa
dc.relation.referencesI. Romero, J. C. López-Linares, Y. Delgado, C. Cara, and E. Castro, “Ethanol production from rape straw by a two-stage pretreatment under mild conditions,” Bioprocess Biosyst Eng, vol. 38, no. 8, pp. 1469–1478, Mar. 2015, doi: 10.1007/s00449-015-1389-4spa
dc.relation.referencesE. Z. Hoşgün, S. Biran Ay, and B. Bozan, “Effect of sequential pretreatment combinations on the composition and enzymatic hydrolysis of hazelnut shells,” Prep Biochem Biotechnol, vol. 0, no. 0, pp. 1–10, 2020, doi: 10.1080/10826068.2020.1836657.spa
dc.relation.referencesC. Zhang, F. Pang, B. Li, S. Xue, and Y. Kang, “Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks,” Bioresour Technol, vol. 138, pp. 314–320, 2013, doi: 10.1016/j.biortech.2013.03.091.spa
dc.relation.referencesT. L. K. Yong and M. Yukihiko, “Kinetic analysis of guaiacol conversion in sub- and supercritical water,” Ind Eng Chem Res, vol. 52, no. 26, pp. 9048–9059, 2013, doi: 10.1021/ie4009748.spa
dc.relation.referencesT. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” Springfield, USA, 2004. [Online]. Available: http://www.osti.gov/bridgespa
dc.relation.referencesO. Ajao, M. Marinova, O. Savadogo, and J. Paris, “Hemicellulose based integrated forest biorefineries: Implementation strategies,” Industrial Crops and Products, vol. 126. Elsevier B.V., pp. 250–260, Dec. 15, 2018. doi: 10.1016/j.indcrop.2018.10.025.spa
dc.relation.referencesJ. A. Poveda-Giraldo and C. A. Cardona Alzate, “A biorefinery for the valorization of marigold (Calendula officinalis) residues to produce biogas and phenolic compounds,” Food and Bioproducts Processing, vol. 125, pp. 91–104, 2021, doi: 10.1016/j.fbp.2020.10.015.spa
dc.relation.referencesR. Ukawa-Sato, N. Hirano, and C. Fushimi, “Design and techno–economic analysis of levulinic acid production process from biomass by using co-product formic acid as a catalyst with minimal waste generation,” Chemical Engineering Research and Design, vol. 192, pp. 389–401, Apr. 2023, doi: 10.1016/j.cherd.2023.02.046.spa
dc.relation.referencesM. Munagala, Y. Shastri, K. Nalawade, K. Konde, and S. Patil, “Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid,” Waste Management, vol. 126, pp. 52–64, May 2021, doi: 10.1016/j.wasman.2021.02.052.spa
dc.relation.referencesV. Aristizábal-Marulanda, J. C. Solarte-Toro, and C. A. Cardona Alzate, “Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia,” Bioresour Technol Rep, vol. 9, Feb. 2020, doi: 10.1016/j.biteb.2020.100397.spa
dc.relation.referencesJ. A. Poveda-Giraldo and C. A. Cardona Alzate, “Valorization of Lignocellulosic Platform Products Based on Biorefinery Schemes Through Sequential Pretreatments,” Manuscript submitted for publication.spa
dc.relation.referencesR. Alén, “Pulp Mills and Wood-Based Biorefineries,” in Industrial Biorefineries and White Biotechnology, Elsevier, 2015, pp. 91–126. doi: 10.1016/B978-0-444-63453-5.00003-3.spa
dc.relation.referencesW. A. Orjuela Garzón, M. A. Reyes Parga, and J. J. Méndez Arteaga, Agenda Prospectiva de Investigación y Desarrollo Tecnológico para la Cadena Productiva de Arroz en el Departamento del Tolima, First ed. Ibagué, Colombia: Universidad del Tolima, 2020.spa
dc.relation.referencesR. J. Wooley and V. Putsche, “Development of an ASPEN PLUS Physical Property Database for Biofuels Components - NREL/MP-425-20685,” Golden, Colorado, 1996.spa
dc.relation.referencesA. Darmawan, M. W. Ajiwibowo, M. Aziz, and K. Tokimatsu, “Efficient black liquor conversion to power and H2 based on process integration and exergy recovery,” in Energy Procedia, Elsevier Ltd, 2018, pp. 1272–1277. doi: 10.1016/j.egypro.2018.09.181.spa
dc.relation.referencesV. Aristizábal-Marulanda and C. A. Cardona A., “Experimental production of ethanol, electricity, and furfural under the biorefinery concept,” Chem Eng Sci, vol. 229, Jan. 2021, doi: 10.1016/j.ces.2020.116047.spa
dc.relation.referencesV. Aristizábal M., Á. Gómez P., and C. A. Cardona A., “Biorefineries based on coffee cut-stems and sugarcane bagasse: Furan-based compounds and alkanes as interesting products,” Bioresour Technol, vol. 196, pp. 480–489, 2015, doi: 10.1016/j.biortech.2015.07.057.spa
dc.relation.referencesE. D. Gomes, M. I. Mota, and A. E. Rodrigues, “Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin,” Sep Purif Technol, vol. 194, no. October 2017, pp. 256–264, 2018, doi: 10.1016/j.seppur.2017.11.050.spa
dc.relation.referencesM. I. F. Mota et al., “Adsorption of vanillic and syringic acids onto a macroporous polymeric resin and recovery with ethanol:water (90:10 %V/V) solution,” Sep Purif Technol, vol. 217, pp. 108–117, Jun. 2019, doi: 10.1016/j.seppur.2019.02.008.spa
dc.relation.referencesV. E. Tarabanko, Y. V. Chelbina, A. V. Kudryashev, and N. V. Tarabanko, “Separation of Vanillin and Syringaldehyde Produced from Lignins,” Separation Science and Technology (Philadelphia), vol. 48, no. 1, pp. 127–132, Jan. 2013, doi: 10.1080/01496395.2012.673671.spa
dc.relation.referencesC. A. Cardona Alzate, J. C. Solarte Toro, and Á. G. Peña, “Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries,” Catal Today, vol. 302, no. August 2017, pp. 61–72, 2018, doi: 10.1016/j.cattod.2017.09.034spa
dc.relation.referencesB. D. Mullen, D. J. Yontz, and C. M. Leibig, “Process to Prepare Levulinic Acid,” US Patent 9,073,841 B2, 2015spa
dc.relation.referencesL. A. Alonso-Gómez, J. C. Solarte-Toro, L. A. Bello-Pérez, and C. A. Cardona-Alzate, “Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material,” Food and Bioproducts Processing, vol. 121, pp. 29–42, May 2020, doi: 10.1016/J.FBP.2020.01.005.spa
dc.relation.referencesJ. C. Solarte-Toro, C. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion,” Bioresour Technol Rep, vol. 15, Sep. 2021, doi: 10.1016/j.biteb.2021.100776.spa
dc.relation.referencesM. Peters, K. Timmerhaus, and R. West, Plant Design and Economics for Chemical Engineers, Fifth Ed. New York: McGraw-Hill, 2003.spa
dc.relation.referencesJ. Sadhukhan, K. S. Ng, and E. Martinez-Hernandez, “Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis,” Bioresour Technol, vol. 215, pp. 131–143, Sep. 2016, doi: 10.1016/j.biortech.2016.04.030.spa
dc.relation.referencesM. Pérez-Fortes and E. Tzimas, “Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid,” Luxembourg, 2016. doi: 10.2790/981669.spa
dc.relation.referencesV. Aristizábal M., Á. Gómez P., and C. A. Cardona A., “Biorefineries based on coffee cut-stems and sugarcane bagasse: Furan-based compounds and alkanes as interesting products,” Bioresour Technol, vol. 196, pp. 480–489, 2015, doi: 10.1016/j.biortech.2015.07.057.spa
dc.relation.referencesC. A. García-Velásquez and C. A. Cardona, “Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment,” Energy, vol. 172, pp. 232–242, 2019, doi: 10.1016/j.energy.2019.01.073.spa
dc.relation.referencesC. A. de Dios, Secado de Granos y Secadoras. Santiago, Chile: Food and Agriculture Organization, 1996.spa
dc.relation.referencesH. J. Martínez Covaleda, Observatorio Agrocadenas: Anuario 2005. Agroindustria y Competitividad. Estructura y Dinámica en Colombia 1992-2005. Bogotá DC, Colombia: Ministerio de Agricultura y Desarrollo Rural, 2006.spa
dc.relation.referencesS. T. Asah and N. Baral, “Technicalizing non-technical participatory social impact assessment of prospective cellulosic biorefineries: Psychometric quantification and implications,” Appl Energy, vol. 232, pp. 462–472, Dec. 2018, doi: 10.1016/j.apenergy.2018.09.199.spa
dc.relation.referencesFood and Agriculture organization of the Uniter Nations, “AQUASTAT,” FAO. Accessed: Nov. 16, 2022. [Online]. Available: https://tableau.apps.fao.org/views/ReviewDashboard-v1/country_dashboard?%3Aembed=y&%3AisGuestRedirectFromVizportal=yspa
dc.relation.referencesP. E. Bustamante Ortega, R. E. García Molano, O. Maya Sánchez, J. F. Rodríguez López, and T. Aguilar Londoño, “Minería de Carbón en Colombia. Transformando el Futuro de la Industria,” Bogotá DC, Colombia, 2021.spa
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), “Inventario Nacional y Departamental de Gases Efecto Invernadero - Colombia. Tercera Comunicación Nacional de Cambio Climático,” IDEAM, Bogotá DC, Colombia, 2016.spa
dc.relation.referencesG. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: I. Taxonomy,” Ind Eng Chem Res, vol. 51, no. 5, pp. 2309–2328, Feb. 2012, doi: 10.1021/ie102116e.spa
dc.relation.referencesS. Serna-loaiza, E. Carmona-garcia, and C. A. Cardona, “Potential raw materials for biorefineries to ensure food security: The Cocoyam case,” Ind Crops Prod, vol. 126, no. April, pp. 92–102, 2018, doi: 10.1016/j.indcrop.2018.10.005.spa
dc.relation.referencesM. Tobiszewski, M. Marć, A. Gałuszka, and J. Namies̈nik, “Green chemistry metrics with special reference to green analytical chemistry,” Molecules, vol. 20, no. 6. MDPI AG, pp. 10928–10946, Jun. 01, 2015. doi: 10.3390/molecules200610928.spa
dc.relation.referencesL. Zhang, J. Ruiz-Menjivar, Q. Tong, J. Zhang, and M. Yue, “Examining the carbon footprint of rice production and consumption in Hubei, China: A life cycle assessment and uncertainty analysis approach,” J Environ Manage, vol. 300, Dec. 2021, doi: 10.1016/j.jenvman.2021.113698.spa
dc.relation.referencesG. Pratibha et al., “Identification of environment friendly tillage implement as a strategy for energy efficiency and mitigation of climate change in semiarid rainfed agro ecosystems,” J Clean Prod, vol. 214, pp. 524–535, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.251.spa
dc.relation.referencesG. W. Kim, M. A. Alam, J. J. Lee, G. Y. Kim, P. J. Kim, and M. I. Khan, “Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season,” Eur J Soil Biol, vol. 83, pp. 76–83, Nov. 2017, doi: 10.1016/j.ejsobi.2017.10.005.spa
dc.relation.referencesD. G. C. Pereira, I. A. Santana, M. M. Megda, and M. X. V. Megda, “Potassium chloride: Impacts on soil microbial activity and nitrogen mineralization,” Ciencia Rural, vol. 49, no. 5, 2019, doi: 10.1590/0103-8478cr20180556.spa
dc.relation.referencesJ. Wang, Z. Cui, Y. Li, L. Cao, and Z. Lu, “Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods,” J Clean Prod, vol. 249, Mar. 2020, doi: 10.1016/j.jclepro.2019.119315.spa
dc.relation.referencesM. Mallareddy et al., “Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies,” Water (Switzerland), vol. 15, no. 10. MDPI, May 01, 2023. doi: 10.3390/w15101802.spa
dc.relation.referencesU. Surendran, P. Raja, M. Jayakumar, and S. R. Subramoniam, “Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review,” J Clean Prod, vol. 309, Aug. 2021, doi: 10.1016/j.jclepro.2021.127272spa
dc.relation.referencesS. Brodt et al., “Life cycle greenhouse gas emissions in California rice production,” Field Crops Res, vol. 169, pp. 89–98, Dec. 2014, doi: 10.1016/j.fcr.2014.09.007.spa
dc.relation.referencesH. J. Andrade, O. Campo, and M. Segura, “Carbon footprint of the rice (Oryza sativa) production system in the municipality of Campoalegre, Huila, Colombia,” Ciencia y Tecnología Agropecuaria, vol. 15, no. 1, pp. 25–31, 2014, doi: 10.21930/rcta.vol15_num1_art:394.spa
dc.relation.referencesV. Aristizábal-Marulanda, J. A. Poveda-Giraldo, and C. A. Cardona Alzate, “Comparison of furfural and biogas production using pentoses as platform,” Science of the Total Environment, vol. 728, p. 138841, 2020, doi: 10.1016/j.scitotenv.2020.138841.spa
dc.relation.referencesM. Steen, “Greenhouse Gas Emissions From Fossil Fuel Fired Power Generation Systems,” 2019. [Online]. Available: http://www.jrc.nlspa
dc.relation.referencesN. Huotari, E. Tillman-Sutela, M. Moilanen, and R. Laiho, “Recycling of ash - For the good of the environment?,” Forest Ecology and Management, vol. 348. Elsevier B.V., pp. 226–240, Jul. 05, 2015. doi: 10.1016/j.foreco.2015.03.008.spa
dc.relation.referencesD. Misra, W. Dutta, G. Jha, and P. Ray, “Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus,” Agronomy, vol. 13, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/agronomy13020280.spa
dc.relation.referencesL. Thannimalay, S. Yusoff, and N. Z. Zawawi, “Life Cycle Assessment of Sodium Hydroxide,” Aust J Basic Appl Sci, vol. 7, no. 2, pp. 421–431, 2013.spa
dc.relation.referencesR. Duarte-Davidson, C. Courage, and L. Rushton, “Benzene in the environment: an assessment of the potential risks to the health of the population,” Occup Environ Med, vol. 58, pp. 2–13, 2001.spa
dc.relation.referencesK. Maister, C. di Noi, A. Ciroth, and M. Srocka, “PSILCA database v.3 documentation,” Berlin, 2020.spa
dc.relation.referencesS. Serna-Loaiza, A. Martínez, Y. Pisarenko, and C. A. Cardona-Alzate, “Integral use of plants and their residues: the case of cocoyam (Xanthosoma sagittifolium) conversion through biorefineries at small scale,” Environmental Science and Pollution Research, vol. 25, no. 36, pp. 35949–35959, 2018, doi: 10.1007/s11356-018-2313-7.spa
dc.relation.referencesEcopetrol, “Resultados Segundo Trimestre 2019. Resultados Sostenidos a Pesar del Entorno,” Bogotá DC, Colombia, 2020.spa
dc.relation.referencesEsenttia, “Esenttia Sostenible. Informe de Sostenibilidad 2014,” Cartegena, Colombia, 2015.spa
dc.relation.referencesH. Huang et al., “Biomass briquette fuel, boiler types and pollutant emissions of industrial biomass boiler: A review,” Particuology, vol. 77, pp. 79–90, Jun. 2023, doi: 10.1016/j.partic.2022.08.016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalSequential pretreatmenteng
dc.subject.proposalEfficacyeng
dc.subject.proposalPlatform productseng
dc.subject.proposalTechno-economic assessmenteng
dc.subject.proposalLife cycle analysiseng
dc.subject.proposalSocial analysiseng
dc.subject.proposalSustainabilityeng
dc.subject.proposalPretratamientos secuencialesspa
dc.subject.proposalEficaciaspa
dc.subject.proposalProductos plataformaspa
dc.subject.proposalEvaluación tecno-económicaspa
dc.subject.proposalAnálisis de ciclo de vidaspa
dc.subject.proposalAnálisis socialspa
dc.subject.proposalSostenibilidadspa
dc.titleSingle-step and sequential pretreatments for sustainable lignocellulosic biorefinerieseng
dc.title.translatedPretratamientos de etapa simple y secuencial para biorrefinerías lignocelulósicas sosteniblesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación (MINCIENCIAS)spa
oaire.fundernameUniversidad Nacional de Colombia sede Manizalesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1151957996.2023.pdf
Tamaño:
3.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: