Generación de un índice espectro-temporal para la identificación de zonas afectadas por deforestación usando imágenes Landsat

dc.contributor.advisorLizarazo Salcedo, Ivan Albertospa
dc.contributor.authorHurtado Abril, Jose Leonardospa
dc.date.accessioned2020-03-18T20:16:19Zspa
dc.date.available2020-03-18T20:16:19Zspa
dc.date.issued2019spa
dc.descriptionilustraciones, gráficasspa
dc.description.abstractLa presente investigación tiene como propósito la creación de un índice espectro-temporal enfocado en la detección de áreas afectadas por deforestación en cualquier lugar y en cualquier momento del tiempo al igual que la formulación de un criterio para evaluar severidad, el cual es validado en la selva amazónica colombiana. Para ello se propusó un minucioso estudio de series de tiempo de datos satelitales Landsat con énfasis en el manejo y descarga de resultados usando el algoritmo Landtrendr mediante el análisis de variabilidad espectral de las bandas del espectro infrarrojo y los índices temáticos de vegetación normalizada, de suelo ajustado y de área quemada. Una vez generado el índice espectro-temporal basado en el análisis de series de tiempo se realizaron pruebas y validaciones en diversas zonas de la Amazonia colombiana y en diferentes intervalos temporales para evaluar la calidad de los resultados obtenidos. Se generaron mapas derivados del índice temático de deforestación usando tablas de clasificación de su grado de severidad. Finalmente, se utilizó el concepto del objeto de deforestación en un entorno de objetos geográficos donde la totalidad de la metodología y flujo de procesos propuestos se basó en los resultados derivados del índice espectro-temporal y se evaluaron usando una matriz de exactitud basada en objetos tomando como referencia los polígonos oficiales del Sistema de Monitoreo de Bosque y Carbono. (Texto tomado de la fuente).spa
dc.description.abstractThe purpose of this research is to create a spectrum-time index focused on the detection of areas analyzed by deforestation anywhere in the world and at any time in time, as well as the formulation of a criterion for assessing severity. For this, a thorough study of Landsat satellite data time series was carried out with emphasis on the management and downloading of results using the Landtrendr algorithm through the analysis of spectral variability of the infrared spectrum bands and the thematic indices of normalized soil vegetation. adjusted and burned area. Once the spectrum-time index was generated based on the analysis of time series, tests and validations were analyzed in different areas of the Colombian Amazon and at different time intervals to assess the quality of the results obtained. Maps derived from the thematic deforestation index were generated using classification tables of their degree of severity. Finally, the concept of the object of deforestation in an environment of geographical objects where the entire methodology and the flow of proposed processes was based on the results derived from the spectrum-time index and were evaluated using an accuracy matrix based on objects taking as reference the official polygons of the Forest and Carbon Monitoring System.eng
dc.description.additionalMagíster en Geomatica. Línea de Investigación: Geoinformación para el uso sostenible de los recursos naturalesspa
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxx, 152 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76106
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesArango, M., Aramburo, M. A., & Olaya, Y. (2012). Gestión y ambiente. Problemática de Los Pasivos Ambientales Mineros En Colombia, 15(3), 125–133. Retrieved from https://revistas.unal.edu.co/index.php/gestion/article/view/36286spa
dc.relation.referencesAraque, L., & Jiménez, A. (2009). Caracterización de firma espectral a partir de sensores remotos para el manejo de sanidad vegetal en el cultivo de palma de aceite. Revista Palmas, 30(3), 63–79.spa
dc.relation.referencesArmenteras, D., Gibbes, C., Anaya, J. A., & Dávalos, L. M. (2017). Integrating remotely sensed fires for predicting deforestation for REDD+. Ecological Applications, 27(4), 1294–1304. https://doi.org/10.1002/eap.1522spa
dc.relation.referencesBenz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. https://doi.org/10.1016/j.isprsjprs.2003.10.002spa
dc.relation.referencesBen Abbes, A., Bounouh, O., Farah, I. R., de Jong, R., & Martínez, B. (2018). Comparative study of three satellite image time-series decomposition methods for vegetation change detection. European Journal of Remote Sensing, 51(1), 607–615. https://doi.org/10.1080/22797254.2018.1465360spa
dc.relation.referencesBlaschke, T. (2010b). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/J.ISPRSJPRS.2009.06.004spa
dc.relation.referencesBlaschke, Thomas, & Strobl, J. (2015). What’ s wrong with pixels ? Some recent developments interfacing remote sensing and GIS. Interfacing Remote Sensing and GIS, (October), 1–7.spa
dc.relation.referencesCohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., & Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection A R T I C L E I N F O. Remote Sensing of Environment, 205, 131–140. https://doi.org/10.1016/j.rse.2017.11.015spa
dc.relation.referencesDávalos, L. M., Bejarano, A. C., Hall, M. A., Correa, H. L., Corthals, A., & Espejo, O. J. (2011). Forests and drugs: Coca-driven deforestation in tropical biodiversity hotspots. Environmental Science and Technology, 45(4), 1219–1277. https://doi.org/10.1021/es102373dspa
dc.relation.referencesDefries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B., & De Souza, C. (2007). Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. 10(4), 385–394. https://doi.org/10.1016/j.envsci.2007.01.010spa
dc.relation.referencesDutrieux, L. P., Verbesselt, J., Kooistra, L., & Herold, M. (2015). Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 112–125. https://doi.org/10.1016/J.ISPRSJPRS.2015.03.015spa
dc.relation.referencesEspejo, J. (2016). Desarrollo de una metodología para estimación de la deforestación mediante el análisis multitemporal de imágenes multiespectrales en un entorno de análisis basado en objetos geográficos ( GEOBIA ). Desarrollo de una metodología para estimación de la defor. Universidad Distrital Francisco Jose de Caldas.spa
dc.relation.referencesFraser, R. (2000). Hotspot and NDVI Differencing Synergy (HANDS) A New Technique for Burned Area Mapping over Boreal Forest. Remote Sensing of Environment, 74(3), 362–376. https://doi.org/10.1016/S0034-4257(00)00078-Xspa
dc.relation.referencesGaray Salamanca, L. J., Cabrera Leal, M., Espitia Zamora, J. E., Fierro Morales, J., Negrete Montes, R., Pardo Becerra, L. A., … Vargas Valencia, F. (2013). Minería en Colombia Fundamentos para superar el modelo extractivista. Retrieved from http://cdn.ipsnoticias.net/documentos/Mineria-en-Colombia-2013.pdfspa
dc.relation.referencesGobron, N., Pinty, B., Verstraete, M. M., & Widlowski, J.-L. (2000). Advanced Vegetation Indices Optimized for Up-Coming Sensors: Design, Performance, and Applications. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 38. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=885197spa
dc.relation.referencesHansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., … Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science (New York, N.Y.), 342(6160), 850–853. https://doi.org/10.1126/science.1244693spa
dc.relation.referencesHuete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment Fingerprinting Australian ecosystem threats from climate change and biodiversity loss View project Impacts of extreme hydro-meteorological conditions on ecosystem functioning and produ. REMOTE SENSING OF ENVIRONMEN, 25, 295–309.spa
dc.relation.referencesHussain, M., Wolfgang, L., Dyk, A., Ortlepp, S., Schmullius, C., & Tinis, S. (2018). Integrating Geographic Object Based Image Analysis with the Open Data Cube for multi-resolution, multi-sensor hyper-temporal image analysis using CCDC for deforestation monitoring in Canada.spa
dc.relation.referencesKennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008spa
dc.relation.referencesKennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., & Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sensing, 10(5), 691. https://doi.org/10.3390/rs10050691spa
dc.relation.referencesMarti, L., Sanchez-Pi, N., Molina, J. M., & Bicharra Garcia, A. C. (2014). (PDF) YASA: Yet Another Time Series Segmentation Algorithm for Anomaly Detection in Big Data Problems. Springer International Publishing, (0302–9743), 697–708. https://doi.org/10.1007/978-3-319-07617-1_61spa
dc.relation.referencesMolinier, M., Astola, H., Räty, T., & Woodcock, C. (2018). Timely and semi-automatic detection of forest logging events in boreal forest using all available landsat data. International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July, 1730–1733. https://doi.org/10.1109/IGARSS.2018.8518112spa
dc.relation.referencesNegret, P. J., Watson, J. E. M., Possingham, H. P., Sonter, L., Jones, K. R., Suarez, C., … Maron, M. (2019). Emerging evidence that armed conflict and coca cultivation influence deforestation patterns Optimal monitoring of Australian Vertebrate Fauna View project Cost-effective Conservation Planning View project Emerging evidence that armed conflict and coca cul. https://doi.org/10.1016/j.biocon.2019.07.021spa
dc.relation.referencesRamirez, S., & Lizarazo, I. (2014). classification of cloud masses from weather imagery using machine learning algorithms. https://doi.org/0120-6230spa
dc.relation.referencesRuiz Posse, E. J., Bocco, M., & Bisonard, E. M. (2012). Enfermedades del maíz producidas por virus y mollicutes en Argentina | Instituto Nacional de Tecnología Agropecuaria. INTA, 179–190. Retrieved from https://inta.gob.ar/noticias/enfermedades-del-maiz-producidas-por-virus-y-mollicutes-en-argentinaspa
dc.relation.referencesSchultz, M., Clevers, J. G. P. W., Clevers, J. G. P. W., Carter, S., Verbesselt, J., Avitabile, V., … Herold, M. (2016). Performance of vegetation indices from Landsat time series in deforestation monitoring Copernicus Global Land Service: Dynamic Land Cover View project Finite element modelling of trees based on terrestrial LiDAR scanning data View project Performance of v. International Journal of Applied Earth Observations and Geoinformation, 52, 318–327. https://doi.org/10.1016/j.jag.2016.06.020spa
dc.relation.referencesStrachan, I. B., Pattey, E., & Boisvert, J. B. (2002). Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sensing of Environment, 80(2), 213–224. https://doi.org/10.1016/S0034-4257(01)00299-1spa
dc.relation.referencesT.Ahamed, L.Tian, Y.Zhang, K. C. T. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and Bioenergy, 35(7), 2455–2469. https://doi.org/10.1016/J.BIOMBIOE.2011.02.028spa
dc.relation.referencesVerbesselt, J. (2017). Change detection and monitoring - WUR. Retrieved from https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-spa
dc.relation.referencesVerified Carbon Standard. (2018). Methodology Assessment Report: Baseline and Monitoring Methodology for Avoiding Planned Deforestation of Undrained Peat Swamp Forests Methodology Element Title Baseline and Monitoring Methodology for Avoiding Planned Deforestation of Undrained Peat Swamp . Retrieved from www.scscertified.comspa
dc.relation.referencesWillington, E., Nolasco, M., & Bocco, M. (2013). Clasificación supervisada de suelos de uso agrícola en la zona central de Córdoba (Argentina): comparación de distintos algoritmos sobre imágenes Landsat. Congreso Argentino de AgroInformatica. Retrieved from http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/CAI/17.pdfspa
dc.relation.referencesZhang, Y., Liu, Q. Y., Luan, R. S., Liu, X. B., Zhou, G. C., Jiang, J. Y., … Li, Z. F. (2012). Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006-2010. BMC Public Health, 12(1), 1. https://doi.org/10.1186/1471-2458-12-544spa
dc.relation.referencesZhu, Z., Woodcock, C. E., Holden, C., & Yang, Z. (2015). Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sensing of Environment, 162, 67–83. https://doi.org/10.1016/j.rse.2015.02.009spa
dc.relation.referencesAguayo, P. M. (2013). Apuntes de Teledetección: Índices de vegetación.spa
dc.relation.referencesAl-Khaier, F. (2003). Soil Salinity Detection Using Satellite Remote Sensing.spa
dc.relation.referencesBBC. (2019). Incendios en el Amazonas: el número récord de fuegos que afectan a Brasil y también arrasan otros países de Sudamérica - BBC News Mundo. Retrieved September 18, 2019, from https://www.bbc.com/mundo/noticias-america-latina49426794spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocImágenes por satélitesspa
dc.subject.agrovocsatellite imageryeng
dc.subject.agrovocDeforestaciónspa
dc.subject.agrovocdeforestationeng
dc.subject.agrovocAnálisis espectralspa
dc.subject.agrovocspectral analysiseng
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDeforestaciónspa
dc.subject.proposalDeforestationeng
dc.subject.proposalSeries de tiempospa
dc.subject.proposalTime serieseng
dc.subject.proposalLandtrendrspa
dc.subject.proposalLandtrendreng
dc.subject.proposalSpectrum-time indexeng
dc.subject.proposalÍndice espectro-temporalspa
dc.subject.proposalGEOBIAeng
dc.subject.proposalGEOBIAspa
dc.titleGeneración de un índice espectro-temporal para la identificación de zonas afectadas por deforestación usando imágenes Landsatspa
dc.title.alternativeGeneration of a spectro-temporal index for the identification of areas identified by deforestation using Landsat imageseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
tesis 090320.pdf
Tamaño:
7.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: