On Sectional-Hyperbolic Sets
| dc.contributor.advisor | Bautista Díaz, Serafín | spa |
| dc.contributor.author | Sánchez Rubio, Yeison Alexander | spa |
| dc.contributor.researchgroup | SISDIMUNAL | spa |
| dc.date.accessioned | 2020-07-20T17:21:27Z | spa |
| dc.date.available | 2020-07-20T17:21:27Z | spa |
| dc.date.issued | 2020-07-19 | spa |
| dc.description.abstract | Sea M una variedad compacta Rimeniana de dimensión mayor o igual que tres. Dado X un campo vectorial C1 , transversal hacia el interior en la frontera (si no es vacı́a), llamamos Xt el flujo inducido sobre M . Un conjunto alfa lı́mite de un punto p en M , es el conjunto formado por aquellos puntos donde nace su órbita y su conjunto omega lı́mite está formado por aquellos puntos donde muere su órbita. En cualquier caso, decimos que estos son conjuntos lı́mite. Un subconjunto Λ de M es invariante si Xt (Λ) = Λ para todo t ∈ R. Nosotros decimos que un subconjunto compacto invariante Λ de M , es transitivo si es el conjunto omega limite de un punto en él; es atracting si hay una vecindad U de Λ tal que X t (U ) ⊆ U para todo t ≥ 0 y Λ es la intersección de las órbitas futuras de U; es un atractor si Λ es transitivo y atracting; y es Lyapunov estable si para toda vecindad U de Λ hay otra vecindad V de Λ de modo que la órbita futura de cualquier punto de V permanece en U . Un conjunto compacto invariante, es seccional-hiperbólico si exhibe en su fibrado tangente, una descomposición continua y dominada que consta de dos subfibrados, uno de los cuales es un contractor (que llamamos estable), y el otro en el que el área de paralelogramos crece exponencialmente (que llamamos central). Cuando la dimensión del subfibrado central es dos, decimos que el conjunto seccional-hiperbólico es codimensión uno. Una singularidad en un conjunto seccional-hiperbólico es Lorenz-like si esta es acumula por órbitas futuras de puntos en el conjunto, y es de tipo frontera, si estas órbitas acumulan la singularidad solo por uno de las componentes conexas generadas por su variedad estable. Los principales resultados de este trabajo son: Todo conjunto seccional-hiperbólico Lyapunov estable codimensión uno satisface la propiedad de conexión. Todo conjunto limite seccional-hiperbólico Lyapunov estable codimensión uno con una única singularidad Lorenz-like la cual es de tipo frontera es un conjunto atracting. Todo punto de un conjunto seccional-hiperbólico codimensión uno atractor con singularidades, puede ser aproximado por puntos en el conjunto cuyo omega limite es una singularidad. Todo punto de un conjunto seccional-hiperbólico codimensión uno atractor con una una única singularidad Lorenz-like la cual es de tipo frontera puede ser aproximado por puntos en el conjunto cuyo omega limite es una singularidad. Todo conjunto seccional-hiperbólico codimensión uno atractor con una una única singularidad Lorenz-like la cual es de tipo frontera, no satisface la propiedad de sombreamiento. | spa |
| dc.description.abstract | Let M be a Riemannian compact manifold M of dimension greater or equal than three. Given X a C 1 vector field, inwardly transverse to the boundary (if is nonempty), we call X t its induced flow over M . The alpha limit set of a point p in M , is the set formed by those points where the orbit born and its omega limit set is formed by those points where the orbit dies. In any case, we say that these, are limit sets. A subset Λ of M is invariant if X t (x)(Λ) = Λ for all t ∈ R. We say that a subset compact invariant Λ of M , is transitive if is the omega limit set of a point in it; is attracting if there is a neighborhood U of Λ such that X t (U ) ⊆ U for all t ≥ 0 and Λ is the intersection of the future orbits of U; it is an attractor if Λ is a transitive and attracting; and it is Lyapunov stable if for all neighborhood U ofΛ there is other neighborhood V of Λ such that the future orbit of any point of V remain in U . An invariant compact set, is sectional-hyperbolic if it exhibits on its tangent bundle, a continuous and dominated splitting consisting of two subbundles, one of which is a contractor (that we call stable), and the other in which the area of parallelograms grows exponentially (that we call central). When, the dimension of the central subbundle is two, we say that the sectional-hyperbolic set is codimension one. A singularity in a sectional-hyperbolic set is Lorenz-like if this, is accumulated by the future orbits the points of the set, and it is of boundary type, if these orbits accumulated the singularity only by one the connected components generated by its stable manifold. The main results of this work are: Every codimension one Lypunov stable sectional-hyperbolic set satisfies the connection property. Every codimension one Lyapunov stable sectional-hyperbolic limit set with a unique Lorenz-like singularity which is of boundary type, is an attracting set. Every point of a codimension one sectional-hyperbolic attractor set with singularities can be approximated by points for which the omega-limit set is a singularity. Every point of a codimension one sectional-hyperbolic attractor set with a unique singularity Lorenz-like which is of boundary type, can be approximated by points of the set, for which the omega-limit set is a singularity. Every codimension one sectional-hyperbolic attractor set, with a unique Lorenz-like singularity which is of boundary type, does not satisfy the shadowing property. | spa |
| dc.description.additional | Línea de Investigación: Sistemas Dinámicos | spa |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.sponsorship | COLCIENCIAS | spa |
| dc.format.extent | 265 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Sanchez, Y. A, On Sectional-hyperbolic sets, Universidad Nacional de Colombia Bogotá, Colombia, 2020. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77801 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Matemáticas | spa |
| dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas | spa |
| dc.relation.references | Afraimovic V., Bykov V., Shilnikov L., The origin and structure of the Lorenz attractor, Okl. Akad. Nauk SSSR. 234(2). 1977 336-339 | spa |
| dc.relation.references | Aponte, J., Shadowable, topologically stable and distalpoints for flows, Thesis requirement for the degree of Doctor in Philosophy in Mathematics, Federal University of Rio de Janeiro. Brazil. (2017). | spa |
| dc.relation.references | Arbieto A., Morales C., A dichotomy for higher-dimensional flows, Proc. Amer. Math. Soc. 141(8). 2013 2817-2827. | spa |
| dc.relation.references | Arbieto A., Morales C., Lopez A., Homoclinic classes for sectional-hyperbolic sets, Kyoto Journal of Mathematics Vol. 56, no. 3 (2016), 531–538. | spa |
| dc.relation.references | Arbieto A., Morales C., Santiago B., Lyapunov stability and sectional-hyperbolicity for higher-dimensional flows, Math Ann. 361(1-2). 2015 67-75. | spa |
| dc.relation.references | Araujo V., Pacifico M., Three-dimensional flows, Springer-Verlag, Berlin, 2010. | spa |
| dc.relation.references | Bautista S., The geometric Lorenz attractor is a homoclinic class, Bol. Mat. (N.S.) 11(1). 2004 69-78. | spa |
| dc.relation.references | Bautista S., Sobre Conjuntos Singulares-Hiperbólicos, Thesis universidade Federal do Rios de Janeiro. 2005. | spa |
| dc.relation.references | Bautista S., Morales C., On the essential hyperbolicity of secctional-Anosov flow, Proc. Amer. Math. Soc. 144 (2016), 205-215 | spa |
| dc.relation.references | Bautista S., Morales, C., Characterizing omega-limit sets which are closed orbits, J. Differential Equations 245 (2008), no. 3, 637–652. | spa |
| dc.relation.references | Bautista S., Morales C., Existence of periodic orbits for singular-hyperbolic sets, Mosc. Math. J. 6(2). 2006 265-297. | spa |
| dc.relation.references | Bautista S., Morales C., A sectional-Anosov connecting lemma, Ergodic Theory Dynam. Systems. 30 (2). 2010 339-359. | spa |
| dc.relation.references | Bautista S., Morales C., Lectures on Sectional-Anosov flows, Preprint, IMPA Serie D 84. 2011. | spa |
| dc.relation.references | Bautista S., Morales C., Recent progress on sectional-hyperbolic system, Dynamical Systems: An international Journal. DOI:10.1080/14689367.2015.105.1056093. (2015). | spa |
| dc.relation.references | Bautista S., Morales C., On the intersection of sectional-hyperbolic set, Journal of Modern Dynamics. Vol 9. (2015), 203-218. | spa |
| dc.relation.references | Bautista S., Morales C., Pacifico M., On the intersection of homoclinic classes on singular-hyperbolic sets, Discrete Contin. Dyn. Syst. 19(4). 2007 761-775. | spa |
| dc.relation.references | Bautista, S., Sanchez, Y., Sectional-hyperbolic Lyapunov stable sets, In procces of publication. Discrete and Continuous Dynamical System, 2020, 40(4), 2011-2016. | spa |
| dc.relation.references | Bautista, S., Sanchez, Y. A, Sales, V., Sectional Connecting Lema, Pre-print Arxiv. https://arxiv.org/pdf/1804.00646.pdf | spa |
| dc.relation.references | Bonatti C., Pumariño A., Viana M., Lorenz attractors with arbitrary expandig dimension, C R Acad Sci Paris Sér I math. 325(8), 1997 883-888. | spa |
| dc.relation.references | Hasselblatt, B., Katok, A., Introduction to the modern theory of dynamical systems, (English summary) with a supplementary chapter by Katok and Leonardo Mendoza, Encyclo- pedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995. | spa |
| dc.relation.references | Hirsch, M., Palis, J., Pugh C. and Shub. M., Neighborhoods of hyperbolic sets, Invent. Math. 9 (1969/1970), 121-134. | spa |
| dc.relation.references | Hirsch, M., Pugh C., Shub M., Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977. | spa |
| dc.relation.references | Komuro, M., One-parameter flows with the pseudo orbit tracing property, Kurenai 506. (1983), 1-24. | spa |
| dc.relation.references | Komuro, M.; One-parameter flows with the pseudo orbit tracing property, Mh. Math. 98, (1984), 219-253. | spa |
| dc.relation.references | Li, M., Gan, S., Wen, L., Robustly transitive singular sets via aprproach of an extended linear Poincaré flow, Discrete Contin. Dyn Syst. 13(2). 2005 239-269. | spa |
| dc.relation.references | Lopez, A., Sectional hyperbolic sets in higher dimensions, Tese de Doutorado, Universidade Federal do Rio de Janeiro. Brasil. (2015). | spa |
| dc.relation.references | Metzger, R., Morales, C., Sectional-hyerbolic systems, Ergodic Theory. Dyn Syst. 28 (5). 2008 1587-1597. | spa |
| dc.relation.references | Morales, C. A., Singular-hyperbolic sets and topological dimension, Discrete Contin. Dyn. Syst. 11(2-3). 2004 615-619. | spa |
| dc.relation.references | Morales C. A, A singular-hiperbolic closing lemma, Michigan Mathematical Journal, 1. 2008 29-53. | spa |
| dc.relation.references | Morales C. A, Seccional-Anosov flow, Monatsh Math. 159 (3). 2010 153-260. | spa |
| dc.relation.references | Morales, C., Pacifico, M., A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, 23 (2003), no. 5, 1575–1600. | spa |
| dc.relation.references | Morales C., Pacifico M., Pujals E., Global attractors from the explosion of singular cycles, C R Acad Sci Paris Sér I math. 325(12), 1997 1317-1322. | spa |
| dc.relation.references | Morales C., Pacifico M., Pujals E., On C 1 robust singular transitive sets for three dimensional flows, C R Acad Sci Paris Sér I math. 326(1), 1998 81-86. | spa |
| dc.relation.references | Robinson C., Dynamical Systems: Stability, Symbolic Dynamics and Chaos. Second edition. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1999. | spa |
| dc.relation.references | Sanchez, Y., Caracterización de conjuntos omega-lı́mites singulares hiperbólicos que son órbitas cerradas. Master’s degree work. Universidad Nacional de Colombia. Bogotá (2012). http://www.bdigital.unal.edu.co/6951/1/830370.2012.pdf | spa |
| dc.relation.references | Shil’nikov L., Turaev D., An example of a wild strnge attractor, Math Sb. 189(2). 1998. 137-160; Traducción en Math Sb. 189(1-2), 1998 291-314. | spa |
| dc.relation.references | Sotomayor, J., Licões de equaciõnes diferenciais ordinárias. Projeto Euclides-IMPA. Brasil 1979. | spa |
| dc.relation.references | Villavicencio, H., Un indicador de complejidad en sistemas dinámicos, Tesis de doctorado Universidad Nacional de Ingenieria. Perú. (2017). | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
| dc.subject.proposal | Conjunto seccional-hiperbólico. | spa |
| dc.subject.proposal | Sectional-Anosov flows. | eng |
| dc.subject.proposal | Sectional-Anosov set. | eng |
| dc.subject.proposal | Conjuntos parcialmente hiperbólicos. | spa |
| dc.subject.proposal | Partially hyperbolic sets. | eng |
| dc.subject.proposal | Flujos seccional-Anosov. | spa |
| dc.title | On Sectional-Hyperbolic Sets | spa |
| dc.title.alternative | Sobre Conjuntos Seccionales-Hiperbólicos | spa |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

