Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica

dc.contributor.advisorHoyos-Ortiz, Carlos David
dc.contributor.authorEcheverri Puerta, Jorge Alberto
dc.date.accessioned2021-05-03T21:43:34Z
dc.date.available2021-05-03T21:43:34Z
dc.date.issued2021-05-02
dc.description.abstractColombia has a renewable installed capacity of close to 70% in hydroelectric generation. However, especially in dry periods, thermal generation (mostly based on natural gas) has played a dominant role in the country's generation. In this sense, thermal generation has considerably increased greenhouse gas (GHG) emissions, added to the fact that the proven reserves of natural gas are projected to a few years of supply, which makes its use unfeasible in the long term. Under this context, this work proposes to analyze the wind potential and complementarity with hydraulic generation in Colombia, from a climatological approach. The above, with the objective of determining if wind can be a viable alternative to guarantee the firmness of energy generation, reducing the dependence on non-renewable energies. For this purpose, wind atlases, data from hydrometeorological stations, reanalysis, satellite data, and climate change models are used. Based on this, the wind complementarity with basins for energy generation of the Sistema Interconectado Nacional (SIN) is established in regional terms and the places with the greatest wind potential in the country are determined. Subsequently, the offshore wind potential is studied in scenarios of climate variability and climate change. The results of this research indicate that there is a wide hydro-wind complementarity between different regions. It is worth highlighting the seasonal and interannual complementarity associated with ENSO of the most important hydroelectric region, with multiple regions of high wind potential such as the Caribbean Sea, among others. It was also determined, a higher net generation of wind farms in a location in the sea of La Alta Guajira in relation to equal installed capacities of important hydroelectric plants. This location also had a higher generation relative to the offshore potential of Buchan Deep in the North Sea. It was found that the migration phenology of migratory birds in the Caribbean coincides with the minimum offshore wind generation within the seasonal scale. Finally, multi-annual climate change projections predict that the offshore wind resource in the highest potential locations will remain stable or increase slightly. They also show for this century a likely seasonal compensation between reductions in precipitation in the Andes with increases in offshore wind potential in the Colombian Caribbean Sea and vice versa.eng
dc.description.abstractColombia posee una capacidad instalada renovable cercana al 70% en generación hidroeléctrica. Sin embargo, especialmente en periodos secos, la generación térmica (mayoritariamente basada en gas natural) ha tenido un papel dominante en la generación del país. En este sentido, la generación térmica ha incrementado considerablemente las emisiones de gases de efecto invernadero (GEI), sumado a que las reservas probadas de gas natural se proyectan a unos pocos años de suministro, lo que hace inviable su uso a largo plazo. Bajo este contexto se propone realizar en este trabajo un análisis del potencial eólico y complementariedad con la generación hidráulica en Colombia, desde un enfoque climatológico. Lo anterior, con el objetivo de determinar si los vientos pueden ser una alternativa viable para garantizar la firmeza de la generación de energía reduciendo la dependencia de energías no renovables. Para esto se hace uso de atlas de vientos, datos de estaciones hidrometeorológicas, reanálisis, datos satelitales y modelos de cambio climático. Con base en esto se establece en términos regionales la complementariedad eólica con cuencas para generación de energía del Sistema Interconectado Nacional (SIN) y se determinan los lugares de mayor potencial eólico en el país. Posteriormente se estudia en escenarios de variabilidad climática y cambio climático el potencial eólico offshore. Los resultados de esta investigación indican que existe una amplia complementariedad hidro - eólica entre diversas regiones. Cabe resaltar la complementariedad estacional e interanual asociada a ENSO de la región hidroeléctrica más importante, con múltiples regiones de alto potencial eólico como el Mar Caribe entre otras. Se determinó también, una mayor generación neta de parques eólicos en una ubicación en el mar de La Alta Guajira en relación a iguales capacidades instaladas de importantes hidroeléctricas. Esta ubicación también presentó una mayor generación en relación al potencial offshore de Buchan Deep en el Mar del Norte. Se encontró que la fenología de migración de aves migratorias en El Caribe coincide con los mínimos de generación eólica offshore dentro de la escala estacional. Finalmente, las proyecciones multianuales de cambio climático prevén que el recurso eólico offshore de las ubicaciones de mayor potencial permanecerá estable o se incrementará ligeramente. También evidencian para este siglo una posible compensación estacional entre reducciones de precipitación en los Andes con incrementos en el potencial eólico offshore en el Mar Caribe colombiano y viceversa.spa
dc.description.degreelevelMaestríaspa
dc.format.extent141 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Universidad Nacionalspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79470
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesK. F. Ahmed, G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton, and R. Anyah. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Global and Planetary Change, 100:320–332, 2013.spa
dc.relation.referencesJ. A. Amador. A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr, 5(2):1–13, 1998.spa
dc.relation.referencesJ. A. Amador. The intra-Americas sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146(1):153–188, 2008.spa
dc.relation.referencesA. Amiri, R. Panahi, and S. Radfar. Parametric study of two-body floating-point wave absorber. Journal of marine science and application, 15(1):41–49, 2016.spa
dc.relation.referencesS. G. Arias and L. F. C. Serna. Regionalización de curvas de duración de caudales en el Departamento de Antioquia-Colombia. Revista EIA, 14(27):21–30, 2017.spa
dc.relation.referencesM. Bagatini, M. G. Benevit, A. Beluco, A. Risso, et al. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.spa
dc.relation.referencesM. Belmonte Rivas and A. Stoffelen. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 2019.spa
dc.relation.referencesA. Beluco, P. K. de Souza, and A. Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157– 2165, 2008.spa
dc.relation.referencesE. L. Birch. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change” Intergovernmental Panel on Climate Change.(2014).(Contribution ofWorking Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). New York, NY: Cambridge Universityspa
dc.relation.referencesP. J. Block, F. A. Souza Filho, L. Sun, and H.-H. Kwon. A streamflow forecasting framework using multiple climate and hydrological models 1. JAWRA Journal of the American Water Resources Association, 45(4):828–843, 2009.spa
dc.relation.referencesJ.-P. Boulanger, F. Martinez, and E. C. Segura. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Climate Dynamics, 28(2-3):255–271, 2007.spa
dc.relation.referencesM. P. Cantão, M. R. Bessa, R. Bettega, D. H. Detzel, and J. M. Lima. Evaluation of hydrowind complementarity in the Brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.spa
dc.relation.referencesL. Castro-Santos, M. I. Lamas-Galdo, and A. Filgueira-Vizoso. Managing the oceans: Site selection of a floating offshore wind farm based on GIS spatial analysis. Marine Policy, 113:103803, 2020a.spa
dc.relation.referencesX. Costoya, M. deCastro, F. Santos, M. Sousa, and M. Gómez-Gesteira. Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178:356–367, 2019.spa
dc.relation.referencesR. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. Schepers, K. Rados, W. Schlez, A. Neubert, L. Jensen, and S. Neckelmann. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology, 27(8):1302–1317, 2010.spa
dc.relation.referencesE. P. Bedoya and J. A. O. Osorio. Energía, pobreza y deterioro ecológico en Colombia: introducción a las energías alternativas. Todográficas, 2002.spa
dc.relation.referencesF. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.spa
dc.relation.referencesF. A. Canales, J. Jurasz, A. Beluco, and A. Kies. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy, 192:116637, 2020a.spa
dc.relation.referencesA. N. Celik. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable energy, 29(4):593–604, 2004.spa
dc.relation.referencesM. Denault, D. Dupuis, and S. Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.spa
dc.relation.referencesECMWF. Copernicus Climate Change Service (C3S), “ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS).spa
dc.relation.referencesJ. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall. International energy outlook 2016 with projections to 2040. Technical report, USDOE Energy Information Administration (EIA), Washington, DC (United States . . . , 2016.spa
dc.relation.referencesENES. European Network for Earth System Modelling - Multimodel comparison of CMIP6 SSP2-4.5 scenario. https:// portal.enes.org/data/data-metadata-service/analysis-platforms/ example-of-how-to-run-server-side-data-near-multimodel-comparisons, 2020. Accessed: 2020-11-20.spa
dc.relation.referencesC.-w. Zheng, X.-y. Li, X. Luo, X. Chen, Y.-h. Qian, Z.-h. Zhang, Z.-s. Gao, Z.-b. Du, Y.-b. Gao, and Y.-g. Chen. Projection of Future Global Offshore Wind Energy Resources using CMIP Data. Atmosphere-Ocean, 57(2):134–148, 2019.spa
dc.relation.referencesL. Castro-Santos, D. Silva, A. R. Bento, N. Salvação, and C. G. Soares. Economic feasibility of floating offshore wind farms in Portugal. Ocean Engineering, 207:107393, 2020b.spa
dc.relation.referencesM. Esteban and D. Leary. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1):128–136, 2012.spa
dc.relation.referencesD. Elliott, C. Holladay, W. Barchet, H. Foote, and W. Sandusky. Wind energy resource atlas of the United States. Technical report, Pacific Northwest Lab., Richland,WA (USA), 1987.spa
dc.relation.referencesS. Gadad and P. C. Deka. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Applied Energy, 176:157–170, 2016.spa
dc.relation.referencesC. Gómez and N. Bayly. Cruzando el Caribe: Identificación de sitios de parada críticos para aves migratorias Neotropicales en el norte de Colombia. SELVA: Investigación para la conservación en el Neotrópico, Bogotá. Informe técnico del primer año No. CEC03, 2010.spa
dc.relation.referencesT. I. Hennemuth, D. Jacob, E. Keup-Thiel, S. Kotlarski, G. Nikulin, J. Otto, D. Rechid, K. Sieck, S. Sobolowski, P. Szabó, et al. Guidance for EURO-CORDEX climate projections data use. Version1. 0-2017.08. Retrieved on, 6:2019, 2017.spa
dc.relation.referencesF. Johnson and A. Sharma. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments. Water Resources Research, 47(4), 2011.spa
dc.relation.referencesI. Koletsis, V. Kotroni, K. Lagouvardos, and T. Soukissian. Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Renewable and Sustainable Energy Reviews, 60:234–245, 2016.spa
dc.relation.referencesM. Meinshausen, Z. Nicholls, J. Lewis, M. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, et al. The SSP greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. Discuss, 2019:1–77, 2019.spa
dc.relation.referencesS. Keevallik and T. Soomere. Regime shifts in the surface-level average air flow over the Gulf of Finland during 1981-2010. Proceedings of the Estonian Academy of Sciences, 63 (4):428, 2014.spa
dc.relation.referencesG. Lenderink, A. Buishand, and W. Van Deursen. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. 2007.spa
dc.relation.referencesR. Moss, W. Babiker, S. Brinkman, E. Calvo, T. Carter, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), 2008.spa
dc.relation.referencesJ. A. Marengo, S. C. Chou, G. Kay, L. M. Alves, J. F. Pesquero, W. R. Soares, D. C. Santos, A. A. Lyra, G. Sueiro, R. Betts, et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate dynamics, 38(9-10):1829–1848, 2012.spa
dc.relation.referencesP. Ramírez and J. A. Carta. Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Conversion and Management, 46(15-16):2419–2438, 2005.spa
dc.relation.references. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.spa
dc.relation.referencesN. Salvação and C. G. Soares. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy, 145:276–287, 2018.spa
dc.relation.referencesJ. Schmidt, R. Cancella, A. O. P. Junior, et al. Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil. Universität für Bodenkultur Wien: Wien, Austria, 2014.spa
dc.relation.referencesM. R. Shaner, S. J. Davis, N. S. Lewis, and K. Caldeira. Geophysical constraints on the reliability of solar and wind power in the United States. Energy & Environmental Science, 11(4):914–925, 2018.spa
dc.relation.referencesA. Rott, B. Doekemeijer, J. K. Seifert, J.-W. v. Wingerden, and M. Kühn. Robust active wake control in consideration of wind direction variability and uncertainty. Wind energy science, 3(2):869–882, 2018.spa
dc.relation.referencesStatoil. Technical report; Hywind, Statoil: Grampian,UK - Hywind. Building the World’s First Floating Offshore Wind Farm. http://www.statoil.com, 2015. Accessed: 2019-05- 28.spa
dc.relation.referencesW. Yang, W. Tian, O. Hvalbye, Z. Peng, K. Wei, and X. Tian. Experimental research for stabilizing offshore floating wind turbines. Energies, 12(10):1947, 2019.spa
dc.relation.referencesJ. Widén. Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE transactions on sustainable energy, 2(2):177–184, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembEnergía eólica
dc.subject.lembCambios climáticos
dc.subject.proposalEnergy complementarityeng
dc.subject.proposalOffshore wind potentialeng
dc.subject.proposalWind potential in ENSOeng
dc.subject.proposalWind potential in climate changeeng
dc.subject.proposalWind potential in the caribbean seaeng
dc.subject.proposalSeasonal projectionseng
dc.subject.proposalComplementariedad energéticaspa
dc.subject.proposalPotencial eólico offshorespa
dc.subject.proposalPotencial eólico en ENSOspa
dc.subject.proposalPotencial eólico en cambio climáticospa
dc.subject.proposalPotencial eólico en el mar Caribespa
dc.subject.proposalProyecciones estacionalesspa
dc.titleEstudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulicaspa
dc.title.translatedStudy of wind potential in Colombia and its complementarity with hydraulic generation sourceseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_dc82b40f9837b551spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameSIATA - Sistema de Alerta Temprana del Valle de Aburráspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036930864.2021.pdf
Tamaño:
379.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: