Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas
dc.contributor.advisor | Loaiza Úsuga, Juan Carlos | |
dc.contributor.advisor | Poveda Jaramillo, Germán | |
dc.contributor.author | Pérez Jiménez, María Marcela | |
dc.contributor.orcid | 0000-0002-3109-763X | spa |
dc.date.accessioned | 2024-01-26T13:57:40Z | |
dc.date.available | 2024-01-26T13:57:40Z | |
dc.date.issued | 2023 | |
dc.description | Ilustraciones, mapas | spa |
dc.description.abstract | Esta tesis ha investigado la respuesta de la escorrentía y la erosión del suelo en condiciones de lluvia natural y el comportamiento del suelo en relación a las condiciones de uso y manejo en la cuenca Las Palmas localizada en los Andes centrales de Colombia; mediante trabajo experimental en parcelas lluvia-escorrentía con la medición de precipitación, escorrentía, arrastre de sedimentos, infiltración y percolación, usando métodos de análisis de correlación estadística, con el propósito de evaluar la susceptibilidad a la erosión hídrica durante el periodo de 14/10/2018 – 12/12/2018, periodo catalogado como de transición entre la época de lluvia y época seca. Los resultados sugieren que cambios en la dinámica del uso del suelo en las parcelas de bosque (densidad vegetal 100%) a cultivo (densidad vegetal 5%) puede ocasionar aumentos en la escorrentía de hasta el 33% y erosión hasta un 87%. Los cambios de uso en las parcelas de bosque a pasturas (densidad vegetal 90%) dieron lugar a un aumento de la escorrentía y erosión del 32% y 78%, respectivamente. (texto tomado de la fuente) | spa |
dc.description.abstract | This thesis has investigated the response of runoff and soil erosion under natural rainfall conditions and soil behavior in relation to use and management conditions in the Las Palmas watershed located in the central Andes of Colombia; through experimental work in rainfall-runoff plots with the measurement of precipitation, runoff, sediment entrainment, infiltration and percolation, using statistical correlation analysis methods, with the purpose of evaluating the susceptibility to water erosion during the period spanning from 14/10/2018 to 12/12/2018 catalogued as transition between the rainy and dry seasons. The results suggest that changes in land use dynamics from forest plot (vegetation density 100%) to cropland plot (vegetation density 5%) were associated with an increase in runoff of up to 33% and erosion of up to 87%. Changes from plot forest to pasture plot (vegetation density 90%) were associated with an increase in runoff and erosion of 32% and 78%, respectively. | eng |
dc.description.curriculararea | Área Curricular de Medio Ambiente | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.format.extent | 80 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85449 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.references | Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., & Ruiz-Sánchez, M. C. (2007). Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agricultural Water Management, 93(1–2), 11–18. https://doi.org/10.1016/j.agwat.2007.06.002 | spa |
dc.relation.references | Alatorre, L. C., & Beguería, S. (2009). Los modelos de erosión: Una Revisión. C&G, May 2014, 29–48. | spa |
dc.relation.references | Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May). https://doi.org/10.3389/feart.2019.00092 | spa |
dc.relation.references | Ben-Hur, M., Yolcu, G., Uysal, H., Lado, M., & Paz, A. (2009). Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Australian Journal of Soil Research, 47(7), 688–696. https://doi.org/10.1071/SR09009 | spa |
dc.relation.references | Bond, W. (1998). Soil physical methods for estimating recharge - Part 3: Basic of Recharge and Discharge Series. CSIRO PUBLISHING. | spa |
dc.relation.references | Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7 | spa |
dc.relation.references | Bryan, R. B., & Poesen, J. (1989). Laboratory experiments on the influence of slope length on runoff, percolation and rill development. Earth Surface Processes and Landforms, 14(3), 211–231. https://doi.org/10.1002/esp.3290140304 | spa |
dc.relation.references | Buol, S. W., Hole, F. D., & McCracken, R. J. (1989). Soil Genesis and Classification. Iowa State University Press. https://www.cambridge.org/core/article/soil-genesis-and-classification-3rd-edn-by-s-w-buol-f-d-hole-r-j-mccracken-xiv-446-pp-ames-iowa-state-university-press-1989-4495-hard-covers-isbn-0-8138-1462-6/8F7EBC3902D83FDF628F69469DDB0B1A | spa |
dc.relation.references | Cantón, Y., Domingo, F., Solé-Benet, A., & Puigdefábregas, J. (2001). Hydrological and erosion response of a badlands system in semiarid SE Spain. Journal of Hydrology, 252(1–4), 65–84. https://doi.org/10.1016/S0022-1694(01)00450-4 | spa |
dc.relation.references | Casamitjana, M., & Loaiza-Usuga, J. C. (2019). Capitulo 4. Propiedades físicas e hidrología en suelos derivados de cenizas volcánicas. In Movimientos en Masa (pp. 109–131). | spa |
dc.relation.references | Cerdá, A. (1999). Simuladores de lluvia y su aplicación a la Geomorfología : Estado de la cuestión. In Cuadernos de Investigación Geográfica (Vol. 25, Issue 0, pp. 45–84). https://doi.org/10.18172/cig.1036 | spa |
dc.relation.references | Cerdà, A. (1995). Factores y variaciones espacio-temporales de la infiltracion en los ecosistemas mediterraneos (Geoforma E). | spa |
dc.relation.references | Chow, V. Te, Maidment, D. R., & Mays, L. W. (1994). Chow, Maidment, Mays - 1994 - Hidrologia Aplicada.pdf (McGraw Hill (Ed.)). | spa |
dc.relation.references | Climate Prediction Center - ONI. (n.d.). Retrieved April 21, 2021, from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php | spa |
dc.relation.references | Comino, J. R., Ruiz Sinoga, J. D., Senciales González, J. M., Guerra-Merchán, A., Seeger, M., & Ries, J. B. (2016). High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). https://doi.org/10.1016/j.catena.2016.06.012 | spa |
dc.relation.references | Cosentino, D., Chenu, C., & Le Bissonnais, Y. (2006). Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biology & Biochemistry, 38, 2053–2062. https://doi.org/10.1016/j.soilbio.2005.12.022 | spa |
dc.relation.references | de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., & Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. https://doi.org/https://doi.org/10.1016/j.earscirev.2013.08.014 | spa |
dc.relation.references | Defersha, M. B., & Melesse, A. M. (2011). Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. https://doi.org/10.1016/j.catena.2011.11.002 | spa |
dc.relation.references | Dingman, S. L. (2002). Physical hydrology (2nd ed). https://doi.org/10.1177/030913338701100407 | spa |
dc.relation.references | Donjadee, S., & Chinnarasri, C. (2012). Effects of rainfall intensity and slope gradient on the application of vetiver grass mulch in soil and water conservation. International Journal of Sediment Research, 27(2), 168–177. https://doi.org/10.1016/S1001-6279(12)60025-0 | spa |
dc.relation.references | Dörner, J., Huertas, J., Cuevas, J. G., Leiva, C., Paulino, L., & Arumí, J. L. (2015). Water content dynamics in a volcanic ash soil slope in southern Chile. Journal of Plant Nutrition and Soil Science, 178(4), 693–702. https://doi.org/10.1002/jpln.201500112 | spa |
dc.relation.references | Fang, N. F., Wang, L., & Shi, Z. H. (2017). Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552, 387–395. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.06.048 | spa |
dc.relation.references | Fu, Z., Li, Z., Cai, C., Shi, Z., Xu, Q., & Wang, X. (2011). Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma, 167–168, 41–53. https://doi.org/10.1016/j.geoderma.2011.08.013 | spa |
dc.relation.references | García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173. https://doi.org/10.1016/j.geomorph.2015.03.008 | spa |
dc.relation.references | Garcia, C., Batalla, R. J., Gallart, F., Caries Balasch, J., Regii6s, D., Soler, M., & Castelltort, X. (2005). Catchment Dynamics and River Processes: Mediterranean and Other Climate Regions Chapter 2 Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (southeastern Pyrenees) II: temporal and spatial dynamics of erosion and st. | spa |
dc.relation.references | Gargouri-Ellouze, E., Eslamian, S., Ostad-Ali-Askari, K., Chérif, R., Bouteffeha, M., & Slama, F. (2017). Infiltration BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_169-1 | spa |
dc.relation.references | Gerlach, T. (1967). Hillslope troughs for measuring sediment movement. Revue de Geomorphologie Dynamique, 17, 173. | spa |
dc.relation.references | Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., & Miyata, S. (2011). Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena, 85(1), 34–47. https://doi.org/10.1016/j.catena.2010.11.005 | spa |
dc.relation.references | Guerra, J., Rodríguez, A., Arbelo, C., & Mora, J. (2002). Erosión hídrica en andosoles de las Islas Canarias. Edafología, 9(1), 23–30. | spa |
dc.relation.references | Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water : a review. 2, 189–217. | spa |
dc.relation.references | Hermelin, M. (1992). Los suelos del oriente antioqueño un recurso no renovable. Bull. Inst. Fr. Études Andines, 21(1), 25–36. | spa |
dc.relation.references | Holz, D. J., Williard, K. W. J., Edwards, P. J., & Schoonover, J. E. (2015). Soil Erosion in Humid Regions: A Review. Journal of Contemporary Water Research & Education, 154(1), 48–59. https://doi.org/10.1111/j.1936-704x.2015.03187.x | spa |
dc.relation.references | Hu, B., Wang, Y., Wang, B., Wang, Y., Liu, C., & Wang, C. (2018). Impact of drying-wetting cycles on the soil aggregate stability of Alfisols in southwestern China. Journal of Soil and Water Conservation, 73(4), 469–478. https://doi.org/10.2489/jswc.73.4.469 | spa |
dc.relation.references | Hussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil and Tillage Research, 94(1), 220–228. https://doi.org/https://doi.org/10.1016/j.still.2006.07.012 | spa |
dc.relation.references | Jaramillo Jaramillo, D. (2002). Introducción a la ciencia del suelo. In Introduccion a La Ciencia Del Suelo. | spa |
dc.relation.references | Kinnell, P. I. A. (2005). Raindrop-impact-induced erosion processes and prediction: A review. Hydrological Processes, 19(14), 2815–2844. https://doi.org/10.1002/hyp.5788 | spa |
dc.relation.references | Knighton, D. (1998). Fluvial forms and processes : a new perspective. Arnold ; Oxford University Press. | spa |
dc.relation.references | Kogo, B. K., Kumar, L., & Koech, R. (2020). Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability, 12(22), 9740. https://doi.org/10.3390/su12229740 | spa |
dc.relation.references | Lal, R. (2000). Soil management in the developing countries. Soil Science, 165(1), 57–72. https://doi.org/10.1097/00010694-200001000-00008 | spa |
dc.relation.references | Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7 | spa |
dc.relation.references | Liu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope gradient effects on soil loss for steep slopes. Soil Science Society of America Journal, 37(6), 1759–1763. https://doi.org/10.13031/2013.28273 | spa |
dc.relation.references | Liu, J., Xu, C., Hu, F., Wang, Z., Ma, R., & Zhao, S. (2021). Effect of soil internal forces on fragment size distributions after aggregate breakdown and their relations to splash erosion. European Journal of Soil Science, ejss.13094. https://doi.org/10.1111/ejss.13094 | spa |
dc.relation.references | Loaiza-Usuga, J. C., León-Peláez, J. D., González-Hernández, M. I., Gallardo-Lancho, J. F., Osorio-Vega, W., & Correa-Londoño, G. (2013). Alterations in litter decomposition patterns in tropical montane forests of Colombia: A comparison of oak forests and coniferous plantations. Canadian Journal of Forest Research, 43(6), 528–533. https://doi.org/10.1139/cjfr-2012-0438 | spa |
dc.relation.references | Loaiza-Usuga, J. C., & Pauwels, V. R. N. (2008a). Calibration and multiple data set-based validation of a land surface model in a mountainous Mediterranean study area. Journal of Hydrology, 356(1–2), 223–233. https://doi.org/10.1016/j.jhydrol.2008.04.018 | spa |
dc.relation.references | Loaiza-Usuga, J. C., & Pauwels, V. R. N. (2008b). Utilización de sensores de humedad para la determinación del contenido de humedad del suelo: ecuaciones de calibración. Suelos Ecuatoriales, 38(1), 24–33. | spa |
dc.relation.references | Loaiza-Usuga, J. C., & Poch, R. (2009). Evaluation of soil water balance components under different land uses in a mediterranean mountain catchment (Catalan pre-pyrenees NE Spain). Zeitschrift Fur Geomorphologie, 53(4), 519–537. https://doi.org/10.1127/0372-8854/2009/0053-0519 | spa |
dc.relation.references | Loaiza-Usuga, J. C., Poch, R., & Pauwels, V. R. N. (2015). Environmental Sustainability through Soil Conservation (J. C. Loaiza Usuga, A. Quinchia Figueroa, L. Osorio Bedoya, & I. Pla (Eds.); Issue September). | spa |
dc.relation.references | Lozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951–961. https://doi.org/10.1016/j.jhydrol.2015.09.018 | spa |
dc.relation.references | Ma, R., Cai, C., Li, Z., Wang, J., Xiao, T., Peng, G., & Yang, W. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research, 149, 1–11. https://doi.org/https://doi.org/10.1016/j.still.2014.12.016 | spa |
dc.relation.references | Ma, R. M., Li, Z. X., Cai, C. F., & Wang, J. G. (2014). The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena, 121, 279–287. https://doi.org/10.1016/j.catena.2014.05.028 | spa |
dc.relation.references | Machado, J., Villegas-Palacio, C., Loaiza-Usuga, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96, 116–126. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.08.060 | spa |
dc.relation.references | Mcdaniel, P. A., Lowe, D. J., Arnalds, O., Ping, C.-L., Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences (Vol. 2). CRC Press. | spa |
dc.relation.references | Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., & Gash, J. H. C. (2009). A review of rainfall interception modelling. In Journal of Hydrology (Vol. 370, Issues 1–4, pp. 191–206). https://doi.org/10.1016/j.jhydrol.2009.02.058 | spa |
dc.relation.references | Nanzyo, M. (2005). Unique properties of volcanic ash soil and perspective on their applicatios. Journal of Integrated Field Science, 2, 1–4. | spa |
dc.relation.references | Neall, V. E. (2006). Volcanic soils. In Encyclopedia of Life Support Systems (EOLSS).: Vol. VII. | spa |
dc.relation.references | Neves dos Santos, J. C., de Andrade, E. M., Augusto Medeiros, P. H., Simas Guerreiro, M. J., & de Queiroz Palácio, H. A. (2017). Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region. Water Resources Management, 31(1), 173–185. https://doi.org/10.1007/s11269-016-1517-1 | spa |
dc.relation.references | NSW Department of Primary Industries. (2005). Maintaining groundcover to reduce erosion and sustain production. In Agfact P2.1.14. www.dpi.nsw.gov.au | spa |
dc.relation.references | Osman, K. T. (2014). Soil degradation, conservation and remediation. In Soil Degradation, Conservation and Remediation (Vol. 9789400775). https://doi.org/10.1007/978-94-007-7590-9 | spa |
dc.relation.references | Pan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1–2), 178–185. https://doi.org/10.1016/j.jhydrol.2006.05.011 | spa |
dc.relation.references | Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012 | spa |
dc.relation.references | Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/https://doi.org/10.1016/j.catena.2016.08.002 | spa |
dc.relation.references | Parvizi, S., Eslamian, S., Ostad-Ali-Askari, K., Yazdani, A., & Singh, V. P. (2018). Percolation BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_216-1 | spa |
dc.relation.references | Patin, J., Mouche, E., Ribolzi, O., Chaplot, V., Sengtahevanghoung, O., Latsachak, K. O., Soulileuth, B., & Valentin, C. (2012). Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. Journal of Hydrology, 426–427, 79–92. https://doi.org/10.1016/j.jhydrol.2012.01.015 | spa |
dc.relation.references | Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/science.267.5201.1117 | spa |
dc.relation.references | Pla. (1981). Simuladores De Lluvia Para El Estudio De Relaciones Suelo-Agua Bajo Agricultura De Secano En Los Tropicos. Rev.Fac.Agron.(Maracay), XII, 81–93. | spa |
dc.relation.references | Pla. (1992a). La erosividad de los andisoles en Latino América. Suelos Ecuatoriales, 22 (1), 33–43. | spa |
dc.relation.references | Pla. (2010). Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores mas frecuentes. II - Propiedades hidrológicas. Suelos Ecuatoriales, 40(2), 94–127. | spa |
dc.relation.references | Pla, I. (1992b). La erodabilidad de los Andisoles en Latinoamerica. Suelos Ecuatoriales, 22 (1), 33–43. | spa |
dc.relation.references | Posada Garcia, L. (1994). Hidraulica Fluvial. In Transporte de sedimentos. | spa |
dc.relation.references | Poveda, G. (2004). Hidroclimatologia de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Ciencias de La Tierra, XXVIII. | spa |
dc.relation.references | Poveda, G. (2006). El Clima de Antioquia. In Geografía De Antioquia - Geografía Histórica, Física, Humana Y Económica (pp. 117–128). | spa |
dc.relation.references | Poveda, G., Mesa, O. J., Agudelo, P. A., Álvarez, J. F., Arias, P. A., Moreno, H. A., Salazar, L. F., Toro, V. G., Vieira, S. C., Jaramillo, A., & Guzman, O. (2002). Diagnóstico del ciclo diurno de la precipitación en los Andes tropicales de Colombia. Meteorología Colombiana, 5, 23–30. | spa |
dc.relation.references | Prosser, I. P., Dietrich, W. E., & Stevenson, J. (1995). Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 13(1–4), 71–86. https://doi.org/10.1016/0169-555X(95)00020-6 | spa |
dc.relation.references | Ramos, M. C., Nacci, S., & Pla, I. (2003). Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces. Catena, 53(4), 365–376. https://doi.org/10.1016/S0341-8162(03)00086-9 | spa |
dc.relation.references | Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1), 1–31. https://doi.org/10.1017/S1464793105006846 | spa |
dc.relation.references | Schoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47. https://doi.org/10.1111/j.1936-704x.2015.03186.x | spa |
dc.relation.references | Shoji, S., Dahlgren, R., & Nanzyo, M. (1993a). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0 | spa |
dc.relation.references | Shoji, S., Dahlgren, R., & Nanzyo, M. (1993b). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0 | spa |
dc.relation.references | Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. | spa |
dc.relation.references | Suprayogo, D., van Noordwijk, M., Hairiah, K., Meilasari, N., Rabbani, A. L., Ishaq, R. M., & Widianto, W. (2020). Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land, 9(8), 240. https://doi.org/10.3390/land9080240 | spa |
dc.relation.references | Suryatmojo, H. (2014). Recovery of Forest Soil Disturbance in the Intensive Forest Management System. Procedia Environmental Sciences, 20, 832–840. https://doi.org/10.1016/j.proenv.2014.03.101 | spa |
dc.relation.references | Tuset, J., Vericat, D., & Batalla, R. J. (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Science of the Total Environment, 540, 114–132. https://doi.org/10.1016/j.scitotenv.2015.07.075 | spa |
dc.relation.references | Unidad Nacional para la Gestión del Riesgo de Desastres. (2016). Unidad Nacional para la Gestión del Riesgo de Desastres |Objetivos y funciones. http://portal.gestiondelriesgo.gov.co/Paginas/Objetivos.aspx | spa |
dc.relation.references | Vaezi, A. R., Ahmadi, M., & Cerdà, A. (2017). Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment, 583, 382–392. https://doi.org/10.1016/j.scitotenv.2017.01.078 | spa |
dc.relation.references | Verdú, J. M., Batalla, R. J., & Poch, R. (2000). Dinámica erosiva y aplicabilidad de modelos físicos de erosión en una cuenca de montaña mediterránea (Ribera Salada, Cuenca del Segre, Lleida, España). Pirineos, 155(0), 37–57. https://doi.org/10.3989/pirineos.2000.v155.87 | spa |
dc.relation.references | Warren, S. D., Thurow, T. L., Blackburn, W. H., & Garza, N. E. (1986). The Influence of Livestock Trampling under Intensive Rotation Grazing on Soil Hydrologic Characteristics. Journal of Range Management, 39(6), 491. https://doi.org/10.2307/3898755 | spa |
dc.relation.references | Wilks, D. S. (2005). Statistical Methods in the Atmospheric Sciences. In Encyclopedia of Ecology, Five-Volume Set (2nd ed.). | spa |
dc.relation.references | Wu, L., Zeng, C., Li, Y., Tian, Y., Wang, S., Luo, G., Bai, X., & Li, Y. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8(4), 721–736. https://doi.org/10.5194/se-8-721-2017 | spa |
dc.relation.references | Zapata, R. ., & Loaiza-Usuga, J. C. (2014). Estudio semi detallado de suelos de la zona 13 del municipio de Envigado con fines de uso potencial (Instituto de Estudios Ambientales, Universidad Nacional de Colombia – Sede Medellin, & Municipio de Envigado (Eds.)). | spa |
dc.relation.references | Zhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y., & Xia, D. (2019). Effects of Rainfall Intensity and Vegetation Cover on Erosion Characteristics of a Soil Containing Rock Fragments Slope. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/7043428 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica | spa |
dc.subject.lemb | Escorrentía | |
dc.subject.proposal | Andisoles | spa |
dc.subject.proposal | Erosión hídrica | spa |
dc.subject.proposal | Uso del suelo | spa |
dc.subject.proposal | Escorrentía | spa |
dc.subject.proposal | Erosión | spa |
dc.subject.proposal | Andisols | eng |
dc.subject.proposal | Erosion | eng |
dc.subject.proposal | Runoff | eng |
dc.subject.proposal | land use | eng |
dc.subject.proposal | Andean mountain | eng |
dc.subject.wikidata | Andisol | |
dc.subject.wikidata | Erosión hídrica | |
dc.subject.wikidata | Uso del suelo | |
dc.title | Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas | spa |
dc.title.translated | Evaluation of susceptibility to water erosion in Andisols. Case study: Las Palmas watershed | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 11028424402023.pdf
- Tamaño:
- 4.03 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Recursos Hidráulicos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: