Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas

dc.contributor.advisorLoaiza Úsuga, Juan Carlos
dc.contributor.advisorPoveda Jaramillo, Germán
dc.contributor.authorPérez Jiménez, María Marcela
dc.contributor.orcid0000-0002-3109-763Xspa
dc.date.accessioned2024-01-26T13:57:40Z
dc.date.available2024-01-26T13:57:40Z
dc.date.issued2023
dc.descriptionIlustraciones, mapasspa
dc.description.abstractEsta tesis ha investigado la respuesta de la escorrentía y la erosión del suelo en condiciones de lluvia natural y el comportamiento del suelo en relación a las condiciones de uso y manejo en la cuenca Las Palmas localizada en los Andes centrales de Colombia; mediante trabajo experimental en parcelas lluvia-escorrentía con la medición de precipitación, escorrentía, arrastre de sedimentos, infiltración y percolación, usando métodos de análisis de correlación estadística, con el propósito de evaluar la susceptibilidad a la erosión hídrica durante el periodo de 14/10/2018 – 12/12/2018, periodo catalogado como de transición entre la época de lluvia y época seca. Los resultados sugieren que cambios en la dinámica del uso del suelo en las parcelas de bosque (densidad vegetal 100%) a cultivo (densidad vegetal 5%) puede ocasionar aumentos en la escorrentía de hasta el 33% y erosión hasta un 87%. Los cambios de uso en las parcelas de bosque a pasturas (densidad vegetal 90%) dieron lugar a un aumento de la escorrentía y erosión del 32% y 78%, respectivamente. (texto tomado de la fuente)spa
dc.description.abstractThis thesis has investigated the response of runoff and soil erosion under natural rainfall conditions and soil behavior in relation to use and management conditions in the Las Palmas watershed located in the central Andes of Colombia; through experimental work in rainfall-runoff plots with the measurement of precipitation, runoff, sediment entrainment, infiltration and percolation, using statistical correlation analysis methods, with the purpose of evaluating the susceptibility to water erosion during the period spanning from 14/10/2018 to 12/12/2018 catalogued as transition between the rainy and dry seasons. The results suggest that changes in land use dynamics from forest plot (vegetation density 100%) to cropland plot (vegetation density 5%) were associated with an increase in runoff of up to 33% and erosion of up to 87%. Changes from plot forest to pasture plot (vegetation density 90%) were associated with an increase in runoff and erosion of 32% and 78%, respectively.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Recursos Hidráulicosspa
dc.format.extent80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85449
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAbrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., & Ruiz-Sánchez, M. C. (2007). Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agricultural Water Management, 93(1–2), 11–18. https://doi.org/10.1016/j.agwat.2007.06.002spa
dc.relation.referencesAlatorre, L. C., & Beguería, S. (2009). Los modelos de erosión: Una Revisión. C&G, May 2014, 29–48.spa
dc.relation.referencesBedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May). https://doi.org/10.3389/feart.2019.00092spa
dc.relation.referencesBen-Hur, M., Yolcu, G., Uysal, H., Lado, M., & Paz, A. (2009). Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Australian Journal of Soil Research, 47(7), 688–696. https://doi.org/10.1071/SR09009spa
dc.relation.referencesBond, W. (1998). Soil physical methods for estimating recharge - Part 3: Basic of Recharge and Discharge Series. CSIRO PUBLISHING.spa
dc.relation.referencesBorrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7spa
dc.relation.referencesBryan, R. B., & Poesen, J. (1989). Laboratory experiments on the influence of slope length on runoff, percolation and rill development. Earth Surface Processes and Landforms, 14(3), 211–231. https://doi.org/10.1002/esp.3290140304spa
dc.relation.referencesBuol, S. W., Hole, F. D., & McCracken, R. J. (1989). Soil Genesis and Classification. Iowa State University Press. https://www.cambridge.org/core/article/soil-genesis-and-classification-3rd-edn-by-s-w-buol-f-d-hole-r-j-mccracken-xiv-446-pp-ames-iowa-state-university-press-1989-4495-hard-covers-isbn-0-8138-1462-6/8F7EBC3902D83FDF628F69469DDB0B1Aspa
dc.relation.referencesCantón, Y., Domingo, F., Solé-Benet, A., & Puigdefábregas, J. (2001). Hydrological and erosion response of a badlands system in semiarid SE Spain. Journal of Hydrology, 252(1–4), 65–84. https://doi.org/10.1016/S0022-1694(01)00450-4spa
dc.relation.referencesCasamitjana, M., & Loaiza-Usuga, J. C. (2019). Capitulo 4. Propiedades físicas e hidrología en suelos derivados de cenizas volcánicas. In Movimientos en Masa (pp. 109–131).spa
dc.relation.referencesCerdá, A. (1999). Simuladores de lluvia y su aplicación a la Geomorfología : Estado de la cuestión. In Cuadernos de Investigación Geográfica (Vol. 25, Issue 0, pp. 45–84). https://doi.org/10.18172/cig.1036spa
dc.relation.referencesCerdà, A. (1995). Factores y variaciones espacio-temporales de la infiltracion en los ecosistemas mediterraneos (Geoforma E).spa
dc.relation.referencesChow, V. Te, Maidment, D. R., & Mays, L. W. (1994). Chow, Maidment, Mays - 1994 - Hidrologia Aplicada.pdf (McGraw Hill (Ed.)).spa
dc.relation.referencesClimate Prediction Center - ONI. (n.d.). Retrieved April 21, 2021, from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpspa
dc.relation.referencesComino, J. R., Ruiz Sinoga, J. D., Senciales González, J. M., Guerra-Merchán, A., Seeger, M., & Ries, J. B. (2016). High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). https://doi.org/10.1016/j.catena.2016.06.012spa
dc.relation.referencesCosentino, D., Chenu, C., & Le Bissonnais, Y. (2006). Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biology & Biochemistry, 38, 2053–2062. https://doi.org/10.1016/j.soilbio.2005.12.022spa
dc.relation.referencesde Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., & Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. https://doi.org/https://doi.org/10.1016/j.earscirev.2013.08.014spa
dc.relation.referencesDefersha, M. B., & Melesse, A. M. (2011). Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. https://doi.org/10.1016/j.catena.2011.11.002spa
dc.relation.referencesDingman, S. L. (2002). Physical hydrology (2nd ed). https://doi.org/10.1177/030913338701100407spa
dc.relation.referencesDonjadee, S., & Chinnarasri, C. (2012). Effects of rainfall intensity and slope gradient on the application of vetiver grass mulch in soil and water conservation. International Journal of Sediment Research, 27(2), 168–177. https://doi.org/10.1016/S1001-6279(12)60025-0spa
dc.relation.referencesDörner, J., Huertas, J., Cuevas, J. G., Leiva, C., Paulino, L., & Arumí, J. L. (2015). Water content dynamics in a volcanic ash soil slope in southern Chile. Journal of Plant Nutrition and Soil Science, 178(4), 693–702. https://doi.org/10.1002/jpln.201500112spa
dc.relation.referencesFang, N. F., Wang, L., & Shi, Z. H. (2017). Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552, 387–395. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.06.048spa
dc.relation.referencesFu, Z., Li, Z., Cai, C., Shi, Z., Xu, Q., & Wang, X. (2011). Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma, 167–168, 41–53. https://doi.org/10.1016/j.geoderma.2011.08.013spa
dc.relation.referencesGarcía-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173. https://doi.org/10.1016/j.geomorph.2015.03.008spa
dc.relation.referencesGarcia, C., Batalla, R. J., Gallart, F., Caries Balasch, J., Regii6s, D., Soler, M., & Castelltort, X. (2005). Catchment Dynamics and River Processes: Mediterranean and Other Climate Regions Chapter 2 Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (southeastern Pyrenees) II: temporal and spatial dynamics of erosion and st.spa
dc.relation.referencesGargouri-Ellouze, E., Eslamian, S., Ostad-Ali-Askari, K., Chérif, R., Bouteffeha, M., & Slama, F. (2017). Infiltration BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_169-1spa
dc.relation.referencesGerlach, T. (1967). Hillslope troughs for measuring sediment movement. Revue de Geomorphologie Dynamique, 17, 173.spa
dc.relation.referencesGhahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., & Miyata, S. (2011). Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena, 85(1), 34–47. https://doi.org/10.1016/j.catena.2010.11.005spa
dc.relation.referencesGuerra, J., Rodríguez, A., Arbelo, C., & Mora, J. (2002). Erosión hídrica en andosoles de las Islas Canarias. Edafología, 9(1), 23–30.spa
dc.relation.referencesGyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water : a review. 2, 189–217.spa
dc.relation.referencesHermelin, M. (1992). Los suelos del oriente antioqueño un recurso no renovable. Bull. Inst. Fr. Études Andines, 21(1), 25–36.spa
dc.relation.referencesHolz, D. J., Williard, K. W. J., Edwards, P. J., & Schoonover, J. E. (2015). Soil Erosion in Humid Regions: A Review. Journal of Contemporary Water Research & Education, 154(1), 48–59. https://doi.org/10.1111/j.1936-704x.2015.03187.xspa
dc.relation.referencesHu, B., Wang, Y., Wang, B., Wang, Y., Liu, C., & Wang, C. (2018). Impact of drying-wetting cycles on the soil aggregate stability of Alfisols in southwestern China. Journal of Soil and Water Conservation, 73(4), 469–478. https://doi.org/10.2489/jswc.73.4.469spa
dc.relation.referencesHussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil and Tillage Research, 94(1), 220–228. https://doi.org/https://doi.org/10.1016/j.still.2006.07.012spa
dc.relation.referencesJaramillo Jaramillo, D. (2002). Introducción a la ciencia del suelo. In Introduccion a La Ciencia Del Suelo.spa
dc.relation.referencesKinnell, P. I. A. (2005). Raindrop-impact-induced erosion processes and prediction: A review. Hydrological Processes, 19(14), 2815–2844. https://doi.org/10.1002/hyp.5788spa
dc.relation.referencesKnighton, D. (1998). Fluvial forms and processes : a new perspective. Arnold ; Oxford University Press.spa
dc.relation.referencesKogo, B. K., Kumar, L., & Koech, R. (2020). Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability, 12(22), 9740. https://doi.org/10.3390/su12229740spa
dc.relation.referencesLal, R. (2000). Soil management in the developing countries. Soil Science, 165(1), 57–72. https://doi.org/10.1097/00010694-200001000-00008spa
dc.relation.referencesLal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7spa
dc.relation.referencesLiu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope gradient effects on soil loss for steep slopes. Soil Science Society of America Journal, 37(6), 1759–1763. https://doi.org/10.13031/2013.28273spa
dc.relation.referencesLiu, J., Xu, C., Hu, F., Wang, Z., Ma, R., & Zhao, S. (2021). Effect of soil internal forces on fragment size distributions after aggregate breakdown and their relations to splash erosion. European Journal of Soil Science, ejss.13094. https://doi.org/10.1111/ejss.13094spa
dc.relation.referencesLoaiza-Usuga, J. C., León-Peláez, J. D., González-Hernández, M. I., Gallardo-Lancho, J. F., Osorio-Vega, W., & Correa-Londoño, G. (2013). Alterations in litter decomposition patterns in tropical montane forests of Colombia: A comparison of oak forests and coniferous plantations. Canadian Journal of Forest Research, 43(6), 528–533. https://doi.org/10.1139/cjfr-2012-0438spa
dc.relation.referencesLoaiza-Usuga, J. C., & Pauwels, V. R. N. (2008a). Calibration and multiple data set-based validation of a land surface model in a mountainous Mediterranean study area. Journal of Hydrology, 356(1–2), 223–233. https://doi.org/10.1016/j.jhydrol.2008.04.018spa
dc.relation.referencesLoaiza-Usuga, J. C., & Pauwels, V. R. N. (2008b). Utilización de sensores de humedad para la determinación del contenido de humedad del suelo: ecuaciones de calibración. Suelos Ecuatoriales, 38(1), 24–33.spa
dc.relation.referencesLoaiza-Usuga, J. C., & Poch, R. (2009). Evaluation of soil water balance components under different land uses in a mediterranean mountain catchment (Catalan pre-pyrenees NE Spain). Zeitschrift Fur Geomorphologie, 53(4), 519–537. https://doi.org/10.1127/0372-8854/2009/0053-0519spa
dc.relation.referencesLoaiza-Usuga, J. C., Poch, R., & Pauwels, V. R. N. (2015). Environmental Sustainability through Soil Conservation (J. C. Loaiza Usuga, A. Quinchia Figueroa, L. Osorio Bedoya, & I. Pla (Eds.); Issue September).spa
dc.relation.referencesLozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951–961. https://doi.org/10.1016/j.jhydrol.2015.09.018spa
dc.relation.referencesMa, R., Cai, C., Li, Z., Wang, J., Xiao, T., Peng, G., & Yang, W. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research, 149, 1–11. https://doi.org/https://doi.org/10.1016/j.still.2014.12.016spa
dc.relation.referencesMa, R. M., Li, Z. X., Cai, C. F., & Wang, J. G. (2014). The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena, 121, 279–287. https://doi.org/10.1016/j.catena.2014.05.028spa
dc.relation.referencesMachado, J., Villegas-Palacio, C., Loaiza-Usuga, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96, 116–126. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.08.060spa
dc.relation.referencesMcdaniel, P. A., Lowe, D. J., Arnalds, O., Ping, C.-L., Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences (Vol. 2). CRC Press.spa
dc.relation.referencesMuzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., & Gash, J. H. C. (2009). A review of rainfall interception modelling. In Journal of Hydrology (Vol. 370, Issues 1–4, pp. 191–206). https://doi.org/10.1016/j.jhydrol.2009.02.058spa
dc.relation.referencesNanzyo, M. (2005). Unique properties of volcanic ash soil and perspective on their applicatios. Journal of Integrated Field Science, 2, 1–4.spa
dc.relation.referencesNeall, V. E. (2006). Volcanic soils. In Encyclopedia of Life Support Systems (EOLSS).: Vol. VII.spa
dc.relation.referencesNeves dos Santos, J. C., de Andrade, E. M., Augusto Medeiros, P. H., Simas Guerreiro, M. J., & de Queiroz Palácio, H. A. (2017). Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region. Water Resources Management, 31(1), 173–185. https://doi.org/10.1007/s11269-016-1517-1spa
dc.relation.referencesNSW Department of Primary Industries. (2005). Maintaining groundcover to reduce erosion and sustain production. In Agfact P2.1.14. www.dpi.nsw.gov.auspa
dc.relation.referencesOsman, K. T. (2014). Soil degradation, conservation and remediation. In Soil Degradation, Conservation and Remediation (Vol. 9789400775). https://doi.org/10.1007/978-94-007-7590-9spa
dc.relation.referencesPan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1–2), 178–185. https://doi.org/10.1016/j.jhydrol.2006.05.011spa
dc.relation.referencesPanagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012spa
dc.relation.referencesPandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/https://doi.org/10.1016/j.catena.2016.08.002spa
dc.relation.referencesParvizi, S., Eslamian, S., Ostad-Ali-Askari, K., Yazdani, A., & Singh, V. P. (2018). Percolation BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_216-1spa
dc.relation.referencesPatin, J., Mouche, E., Ribolzi, O., Chaplot, V., Sengtahevanghoung, O., Latsachak, K. O., Soulileuth, B., & Valentin, C. (2012). Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. Journal of Hydrology, 426–427, 79–92. https://doi.org/10.1016/j.jhydrol.2012.01.015spa
dc.relation.referencesPimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/science.267.5201.1117spa
dc.relation.referencesPla. (1981). Simuladores De Lluvia Para El Estudio De Relaciones Suelo-Agua Bajo Agricultura De Secano En Los Tropicos. Rev.Fac.Agron.(Maracay), XII, 81–93.spa
dc.relation.referencesPla. (1992a). La erosividad de los andisoles en Latino América. Suelos Ecuatoriales, 22 (1), 33–43.spa
dc.relation.referencesPla. (2010). Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores mas frecuentes. II - Propiedades hidrológicas. Suelos Ecuatoriales, 40(2), 94–127.spa
dc.relation.referencesPla, I. (1992b). La erodabilidad de los Andisoles en Latinoamerica. Suelos Ecuatoriales, 22 (1), 33–43.spa
dc.relation.referencesPosada Garcia, L. (1994). Hidraulica Fluvial. In Transporte de sedimentos.spa
dc.relation.referencesPoveda, G. (2004). Hidroclimatologia de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Ciencias de La Tierra, XXVIII.spa
dc.relation.referencesPoveda, G. (2006). El Clima de Antioquia. In Geografía De Antioquia - Geografía Histórica, Física, Humana Y Económica (pp. 117–128).spa
dc.relation.referencesPoveda, G., Mesa, O. J., Agudelo, P. A., Álvarez, J. F., Arias, P. A., Moreno, H. A., Salazar, L. F., Toro, V. G., Vieira, S. C., Jaramillo, A., & Guzman, O. (2002). Diagnóstico del ciclo diurno de la precipitación en los Andes tropicales de Colombia. Meteorología Colombiana, 5, 23–30.spa
dc.relation.referencesProsser, I. P., Dietrich, W. E., & Stevenson, J. (1995). Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 13(1–4), 71–86. https://doi.org/10.1016/0169-555X(95)00020-6spa
dc.relation.referencesRamos, M. C., Nacci, S., & Pla, I. (2003). Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces. Catena, 53(4), 365–376. https://doi.org/10.1016/S0341-8162(03)00086-9spa
dc.relation.referencesSayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1), 1–31. https://doi.org/10.1017/S1464793105006846spa
dc.relation.referencesSchoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47. https://doi.org/10.1111/j.1936-704x.2015.03186.xspa
dc.relation.referencesShoji, S., Dahlgren, R., & Nanzyo, M. (1993a). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0spa
dc.relation.referencesShoji, S., Dahlgren, R., & Nanzyo, M. (1993b). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0spa
dc.relation.referencesSidle, R. C., & Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use.spa
dc.relation.referencesSuprayogo, D., van Noordwijk, M., Hairiah, K., Meilasari, N., Rabbani, A. L., Ishaq, R. M., & Widianto, W. (2020). Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land, 9(8), 240. https://doi.org/10.3390/land9080240spa
dc.relation.referencesSuryatmojo, H. (2014). Recovery of Forest Soil Disturbance in the Intensive Forest Management System. Procedia Environmental Sciences, 20, 832–840. https://doi.org/10.1016/j.proenv.2014.03.101spa
dc.relation.referencesTuset, J., Vericat, D., & Batalla, R. J. (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Science of the Total Environment, 540, 114–132. https://doi.org/10.1016/j.scitotenv.2015.07.075spa
dc.relation.referencesUnidad Nacional para la Gestión del Riesgo de Desastres. (2016). Unidad Nacional para la Gestión del Riesgo de Desastres |Objetivos y funciones. http://portal.gestiondelriesgo.gov.co/Paginas/Objetivos.aspxspa
dc.relation.referencesVaezi, A. R., Ahmadi, M., & Cerdà, A. (2017). Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment, 583, 382–392. https://doi.org/10.1016/j.scitotenv.2017.01.078spa
dc.relation.referencesVerdú, J. M., Batalla, R. J., & Poch, R. (2000). Dinámica erosiva y aplicabilidad de modelos físicos de erosión en una cuenca de montaña mediterránea (Ribera Salada, Cuenca del Segre, Lleida, España). Pirineos, 155(0), 37–57. https://doi.org/10.3989/pirineos.2000.v155.87spa
dc.relation.referencesWarren, S. D., Thurow, T. L., Blackburn, W. H., & Garza, N. E. (1986). The Influence of Livestock Trampling under Intensive Rotation Grazing on Soil Hydrologic Characteristics. Journal of Range Management, 39(6), 491. https://doi.org/10.2307/3898755spa
dc.relation.referencesWilks, D. S. (2005). Statistical Methods in the Atmospheric Sciences. In Encyclopedia of Ecology, Five-Volume Set (2nd ed.).spa
dc.relation.referencesWu, L., Zeng, C., Li, Y., Tian, Y., Wang, S., Luo, G., Bai, X., & Li, Y. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8(4), 721–736. https://doi.org/10.5194/se-8-721-2017spa
dc.relation.referencesZapata, R. ., & Loaiza-Usuga, J. C. (2014). Estudio semi detallado de suelos de la zona 13 del municipio de Envigado con fines de uso potencial (Instituto de Estudios Ambientales, Universidad Nacional de Colombia – Sede Medellin, & Municipio de Envigado (Eds.)).spa
dc.relation.referencesZhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y., & Xia, D. (2019). Effects of Rainfall Intensity and Vegetation Cover on Erosion Characteristics of a Soil Containing Rock Fragments Slope. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/7043428spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembEscorrentía
dc.subject.proposalAndisolesspa
dc.subject.proposalErosión hídricaspa
dc.subject.proposalUso del suelospa
dc.subject.proposalEscorrentíaspa
dc.subject.proposalErosiónspa
dc.subject.proposalAndisolseng
dc.subject.proposalErosioneng
dc.subject.proposalRunoffeng
dc.subject.proposalland useeng
dc.subject.proposalAndean mountaineng
dc.subject.wikidataAndisol
dc.subject.wikidataErosión hídrica
dc.subject.wikidataUso del suelo
dc.titleEvaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmasspa
dc.title.translatedEvaluation of susceptibility to water erosion in Andisols. Case study: Las Palmas watershedeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
11028424402023.pdf
Tamaño:
4.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: