Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral

dc.contributor.advisorRamirez Patiño, Juan Fernando
dc.contributor.authorAtehortua Carmona, Juan Fernando
dc.contributor.researchgroupGrupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (Gibir)spa
dc.date.accessioned2022-10-26T15:11:32Z
dc.date.available2022-10-26T15:11:32Z
dc.date.issued2022-09
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractSe desarrollaron 3 tipos de modelos numéricos de 15 personas con amputación transfemoral que permiten analizar el estado de esfuerzos en el miembro residual debido a la interacción con el socket durante la postura y el ciclo de marcha en una condición de máxima solicitación. Un primer modelo que sólo incluye el hueso del fémur y una porción del miembro residual que no incluye la zona glútea, un segundo que solo incluye el hueso del fémur y una porción del miembro residual que incluye la zona glútea y un tercer modelo que incluye le hueso del fémur, el hueso de la pelvis y una porción del miembro residual que incluye la zona glútea. También, se determinó la posibilidad de desarrollar un modelo numérico de personas con amputación transfemoral multicapa. Finalmente se encontró que el hueso de la pelvis no tiene incidencia en el estado de esfuerzos en la interacción del socket con el miembro residual, pero que incluir una porción del miembro residual en este tipo de modelos tiene incidencia en la distribución del estado de esfuerzos en la interacción del miembro residual con el socket, y se logró desarrollar un modelo numérico multicapa para personas con amputación transfemoral realista. (Texto tomado de la fuente)spa
dc.description.abstractThree types of numerical models of 15 transfemoral amputees were developed to analyze the stress state of the residual limb due to interaction with the socket during stance and gait cycle in a maximum stress condition. A first model that only includes the femur bone and a portion of the residual limb that does not include the gluteal region, a second one that only includes the femur bone and a portion of the residual limb that includes the gluteal region and a third model that includes the femur bone, the pelvis bone and a portion of the residual limb that includes the gluteal region. Also, the possibility of developing a numerical model of multilayer transfemoral amputees was determined. Finally, it was found that the pelvis bone has no incidence in the stress state in the interaction of the socket with the residual limb, but that including a portion of the residual limb in this type of models has incidence in the distribution of the stress state in the interaction of the residual limb with the socket, and it was possible to develop a multilayer numerical model for people with realistic transfemoral amputation.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Mecánicaspa
dc.description.researchareaBiomecánicaspa
dc.format.extentxxi, 128 páginas + 1 Anexo en PDFspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82496
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.references[1] J. F. Ramírez-Patiño, D. F. Gutiérrez-Rôa, and A. A. Correa-Espinal, “Valoración de la percepción de confort en personas con amputación transfemoral,” DYNA, vol. 82, no. 191, pp. 194–202, 2015, doi: 10.15446/dyna.v82n191.44700.spa
dc.relation.references[2] D. Lacroix and J. F. Ramírez Patiño, “Finite element analysis of donning procedure of a prosthetic transfemoral socket,” Ann. Biomed. Eng., vol. 39, no. 12, pp. 2972–2983, 2011, doi: 10.1007/s10439-011-0389-z.spa
dc.relation.references[3] A. van Heesewijk, A. Crocombe, S. Cirovic, M. Taylor, and W. Xu, “Evaluating the effect of changes in bone geometry on the trans-femoral socket-residual limb interface using finite element analysis,” IFMBE Proceedings, vol. 68, no. 2. pp. 587–591, 2018, doi: 10.1007/978-981-10-9038-7_109.spa
dc.relation.references[4] S. C. Henao, C. Orozco, and J. Ramírez, “Influence of Gait Cycle Loads on Stress Distribution at The Residual Limb/Socket Interface of Transfemoral Amputees: A Finite Element Analysis,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-61915-1.spa
dc.relation.references[5] X. Jia, M. Zhang, and W. C. C. Lee, “Load transfer mechanics between trans-tibial prosthetic socket and residual limb - Dynamic effects,” J. Biomech., vol. 37, no. 9, pp. 1371–1377, 2004, doi: 10.1016/j.jbiomech.2003.12.024.spa
dc.relation.references[6] L. Zhang, M. Zhu, L. Shen, and F. Zheng, “Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1270–1273, 2013, doi: 10.1109/EMBC.2013.6609739.spa
dc.relation.references[7] M. Zhang, A. F. T. Mak, V. C. Roberts, and V. . (1998). Zhang, M., Mak, A. F. ., & Roberts, “Finite element modelling of a residual lower-limb in a prosthetic socket: A survey of the development in the first decade,” Med. Eng. Phys., vol. 20, no. 5, pp. 360–373, 1998, doi: 10.1016/S1350-4533(98)00027-7.spa
dc.relation.references[8] J. F. Ramírez and J. A. Vélez, “Incidence of the boundary condition between bone and soft tissue in a finite element model of a transfemoral amputee,” Prosthet. Orthot. Int., vol. 36, no. 4, pp. 405–414, 2012, doi: 10.1177/0309364612436409.spa
dc.relation.references[9] A. S. Dickinson, J. W. Steer, and P. R. Worsley, “Finite element analysis of the amputated lower limb: A systematic review and recommendations,” Med. Eng. Phys., vol. 43, pp. 1–18, 2017, doi: 10.1016/j.medengphy.2017.02.008.spa
dc.relation.references[10] S. Portnoy, I. Siev-Ner, Z. Yizhar, A. Kristal, N. Shabshin, and A. Gefen, “Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum,” Ann. Biomed. Eng., vol. 37, no. 12, pp. 2583–2605, 2009, doi: 10.1007/s10439-009-9801-3.spa
dc.relation.references[11] V. Restrepo, J. Villarraga, and J. P. Palacio, “Stress reduction in the residual limb of a transfemoral amputee varying the coefficient of friction,” J. Prosthetics Orthot., vol. 26, no. 4, pp. 205–211, 2014, doi: 10.1097/JPO.0000000000000044.spa
dc.relation.references[12] J. Vélez, L. Bustamante, and J. Villarraga, “Relación Entre La Longitud Del Miembro Residual Y Amputados Transfemorales Relation Between Residual Limb Length and Stress Distribution Over Stump for Transfemoral Amputees,” Esc. Ing. Antioquia., vol. 12, no. 23, pp. 107–115, 2016.spa
dc.relation.references[13] M. Zhang and A. F. T. Mak, “A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket - Roles of interface friction and distal-end boundary conditions,” IEEE Trans. Rehabil. Eng., vol. 4, no. 4, pp. 337–346, 1996, doi: 10.1109/86.547935.spa
dc.relation.references[14] C. Mejía-Blandón, L. Bustamante-Goez, and J. Villarraga-Ossa, “Influencia de las condiciones de carga en la generación de úlceras por presión internas en amputados transfemorales,” Rev. UIS Ing., vol. 13, no. 1, pp. 223–232, 2018, doi: 10.18273/revuin.v17n1-2018022.spa
dc.relation.references[15] Schünke, Schulte, Schumacher, Voll, and Wesker, “Prometheus Tomo I Anat. General y Aparato Locomotor 1ED.pdf.” 2005.spa
dc.relation.references[16] Frank H. Netter, Atlas de Anatomía Humana, vol. 66. 2012.spa
dc.relation.references[17] Werner Ploatzer, Atlas de Anatomía para estudiantes y médicos. 1995.spa
dc.relation.references[18] A. W. M. Richard L Drake, A Wayne Vogl, Anatomíade Gray para estudiantes, 2nd ed. Elsevier, 2010.spa
dc.relation.references[19] D. M. C. U. de Navarra, “Definición, Amputación.” https://www.cun.es/diccionario-medico/terminos/amputacion (accessed Dec. 05, 2020).spa
dc.relation.references[20] R. A. N. de M. de España, “Definición Amputación,” 2020. http://dtme.ranm.es/buscador.aspx?NIVEL_BUS=3&LEMA_BUS=amputación (accessed Dec. 05, 2020).spa
dc.relation.references[21] James N Parker MD; Philip M Parker PhD, Amputation. 2003.spa
dc.relation.references[22] F. Salinas et al., Guía de práctica clínica para el diagnóstico y tratamiento preoperatorio, intraoperatorio y posoperatorio de la persona amputada, la prescripción de la prótesis y la rehabilitación integral, vol. 29, no. 4-S2. 2016.spa
dc.relation.references[23] V. María José Espinoza and S. Daniela García, “Niveles de amputación en extremidades inferiores: repercusión en el futuro del paciente,” Rev. Médica Clínica Las Condes, vol. 25, no. 2, pp. 276–280, 2014, doi: 10.1016/s0716-8640(14)70038-0.spa
dc.relation.references[24] S. H. Aguirre, “Design of a Transfemoral Socket for Colombian Amputees,” 2019.spa
dc.relation.references[25] A. C. MD, Lower Limb Amputation. 2006.spa
dc.relation.references[26] ángel G. Oscar Fernández, “Amputación, desarticulación: Definición, indicadores y niveles de amputaciíon de miembro superior e inferior,” vol. 0, 2016, doi: 10.1109/ICDSP.2016.7868541.spa
dc.relation.references[26] ángel G. Oscar Fernández, “Amputación, desarticulación: Definición, indicadores y niveles de amputaciíon de miembro superior e inferior,” vol. 0, 2016, doi: 10.1109/ICDSP.2016.7868541.spa
dc.relation.references[27] R. C. Hibbeller, Mecánica de Materiales, Octava. Mexico, 2011.spa
dc.relation.references[28] R. L. Norton, Diseño de máquinas. Un enfoque integrado, Cuarta. Mexico, 2011.spa
dc.relation.references[29] Raúl Goncalvez, Introducción al Análisis de Esfeurzos, Segunda Ed. Caracas Venezuela, 2002.spa
dc.relation.references[30] T A Stolarski, Tribology in Machine Design. Bston, 2000.spa
dc.relation.references[31] M. F. Ashby, “Materials Selection, Second Edititon,” 1999.spa
dc.relation.references[32] I. G. ErdoganMadenci, The Finite Element Method and Applications in Engineering using ANSYS, Second., vol. 53, no. 9. Arizona, 2015.spa
dc.relation.references[33] A. D. B. Tirupathi R Chandrupatla, Introduction to finite elements in engineering, Third., vol. 3. New Jersey, 2002.spa
dc.relation.references[34] R. Safari, “Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction,” Prosthet. Orthot. Int., vol. 44, no. 6, pp. 384–401, 2020, doi: 10.1177/0309364620969226.spa
dc.relation.references[35] E. Ramasamy et al., “An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models,” Front. Bioeng. Biotechnol., vol. 6, no. SEP, pp. 1–17, Sep. 2018, doi: 10.3389/fbioe.2018.00126.spa
dc.relation.references[36] W. C. Lee, M. Zhang, and A. F. Mak, “Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 641–649, 2005, doi: 10.1016/j.apmr.2004.08.005.spa
dc.relation.references[37] J. W. Steer, P. R. Worsley, M. Browne, and A. Dickinson, “Key considerations for finite element modelling of the residuum–prosthetic socket interface,” Prosthet. Orthot. Int., 2020, doi: 10.1177/0309364620967781.spa
dc.relation.references[38] R. Dumas, L. Cheze, and L. Frossard, “Loading applied on prosthetic knee of transfemoral amputee: Comparison of inverse dynamics and direct measurements,” Gait Posture, vol. 30, no. 4, pp. 560–562, Nov. 2009, doi: 10.1016/j.gaitpost.2009.07.126.spa
dc.relation.references[39] M. Schwarze, C. Hurschler, F. Seehaus, S. Oehler, and B. Welke, “Loads on the prosthesis-socket interface of above-knee amputees during normal gait: Validation of a multi-body simulation,” J. Biomech., vol. 46, no. 6, pp. 1201–1206, Apr. 2013, doi: 10.1016/j.jbiomech.2013.02.005.spa
dc.relation.references[40] P. O. Bolcos et al., “Comparison between kinetic and kinetic-kinematic driven knee joint finite element models,” Sci. Rep., vol. 8, no. 1, pp. 1–11, Dec. 2018, doi: 10.1038/s41598-018-35628-5.spa
dc.relation.references[41] A. L. Lenz and T. R. Bush, “Evaluating shear and normal force with the use of an instrumented transtibial socket: A case study,” Med. Eng. Phys., vol. 71, no. xxxx, pp. 102–107, 2019, doi: 10.1016/j.medengphy.2019.07.002.spa
dc.relation.references[42] A. H. A. Al-dabbagh and R. Ronsse, “A review of terrain detection systems for applications in locomotion assistance,” Rob. Auton. Syst., vol. 133, no. 731931, p. 103628, 2020, doi: 10.1016/j.robot.2020.103628.spa
dc.relation.references[43] M. Zhang, M. Lord, A. R. Turner-Smith, and V. C. Roberts, “Development of a non-linear finite element modelling of the below-knee prosthetic socket interface,” Med. Eng. Phys., vol. 17, no. 8, pp. 559–566, Dec. 1995, doi: 10.1016/1350-4533(95)00002-5.spa
dc.relation.references[44] S. G. Zachariah and J. E. Sanders, “Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact,” J. Biomech., vol. 33, no. 7, pp. 895–899, 2000, doi: 10.1016/S0021-9290(00)00022-1.spa
dc.relation.references[45] C. L. Wu, C. H. Chang, A. T. Hsu, C. C. Lin, S. I. Chen, and G. L. Chang, “A proposal for the pre-evaluation protocol of below-knee socket design - integration pain tolerance with finite element analysis,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A/Chung-kuo K. Ch’eng Hsuch K’an, vol. 26, no. 6, pp. 853–860, 2003, doi: 10.1080/02533839.2003.9670840.spa
dc.relation.references[46] C. C. Lin, C. H. Chang, C. L. Wu, K. C. Chung, and I. C. Liao, “Effects of liner stiffness for trans-tibial prosthesis: A finite element contact model,” Med. Eng. Phys., vol. 26, no. 1, pp. 1–9, Jan. 2004, doi: 10.1016/S1350-4533(03)00127-9.spa
dc.relation.references[47] W. C. C. Lee, M. Zhang, X. Jia, and J. T. M. Cheung, “Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket,” Med. Eng. Phys., vol. 26, no. 8, pp. 655–662, 2004, doi: 10.1016/j.medengphy.2004.04.010.spa
dc.relation.references[48] S. Portnoy et al., “Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee,” J. Biomech., vol. 41, no. 9, pp. 1897–1909, 2008, doi: 10.1016/j.jbiomech.2008.03.035.spa
dc.relation.references[49] I. Mariaka Florez and I. Mariaka Flórez, “Efecto del uso de exoprotesis sobre la distribucion de esfuerzos del cartilago articular de la cadera,” p. 83, 2015, [Online]. Available: http://www.bdigital.unal.edu.co/47990/.spa
dc.relation.references[50] F. Mo, H. Zhang, S. Zhao, Z. Xiao, and T. Liu, “Coupling Musculoskeletal Dynamics and Subject-Specific Finite Element Analysis of Femoral Cortical Bone Failure after Endoprosthetic Knee Replacement,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4650405.spa
dc.relation.references[51] Z. Meng, D. W. C. Wong, M. Zhang, and A. K. L. Leung, “Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modelling method,” Med. Eng. Phys., vol. 83, no. xxxx, pp. 123–129, 2020, doi: 10.1016/j.medengphy.2020.05.007.spa
dc.relation.references[52] J. A. Isaza López and J. F. Ramírez Patiño, “Comportamiento mecánico de tejidos blandos tipo multicapa,” p. 118, 2013.spa
dc.relation.references[53] W. C. C. Lee et al., “FE stress analysis of the interface between the bone and an osseointegrated implant for amputees - Implications to refine the rehabilitation program,” Clin. Biomech., vol. 23, no. 10, pp. 1243–1250, 2008, doi: 10.1016/j.clinbiomech.2008.06.012.spa
dc.relation.references[54] W. Xu and K. Robinson, “X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study,” Ann. Biomed. Eng., vol. 36, no. 3, pp. 435–443, 2008, doi: 10.1007/s10439-007-9430-7.spa
dc.relation.references[55] K. Ahmed et al., “Experimental Validation of an ITAP Numerical Model and the Effect of Implant Stem Stiffness on Bone Strain Energy,” Ann. Biomed. Eng., vol. 48, no. 4, pp. 1382–1395, 2020, doi: 10.1007/s10439-020-02456-6.spa
dc.relation.references[56] S. J. Abass, J. N. Jaffar, and M. M. Ghazi, “The Effects of Body Mass Index BMI on Human Gait Analysis,” Int. J. Eng. Sci., vol. 6, no. 10, pp. 46–54, 2017, doi: 10.9790/1813-0610034654.spa
dc.relation.references[57] W. Xu, D. H. Xu, and A. D. Crocombe, “Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 220, no. 6, pp. 661–670, 2006, doi: 10.1243/09544119JEIM84.spa
dc.relation.references[58] V. V. Xu, A. D. Crocombe, and S. C. Hughes, “Finite element analysis of bone stress and strain around a distal osseointegrated implant for prosthetic limb attachment,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 214, no. 6, pp. 595–602, 2000, doi: 10.1243/0954411001535624.spa
dc.relation.references[59] I. Mariaka and J. Ramírez, “Primer acercamiento a la mecánica de contacto en amputados transfemorales unilaterales,” DYNA, vol. 84, no. 202, pp. 207–214, 2017, doi: 10.15446/dyna.v84n202.58595.spa
dc.relation.references[60] AO Foundation, “Chapter 10, Amputations,” Manag. limb Inj. Dur. disasters conflicts, 2010.spa
dc.relation.references[61] World Health Organization, “Discapacidad y salud, Datos y cifras,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health (accessed Dec. 06, 2020).spa
dc.relation.references[62] World Health Organization, “Diabetes - Datos y Cifras,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed Dec. 06, 2020).spa
dc.relation.references[63] A. contra M.-O. del A. C. para la Paz, “Registro de información de afectación por MAP y MUSE e intervención,” 2020. http://www.accioncontraminas.gov.co/Estadisticas (accessed Dec. 06, 2020).spa
dc.relation.references[64] L. Paternò, M. Ibrahimi, E. Gruppioni, A. Menciassi, and L. Ricotti, “Sockets for limb prostheses: A review of existing technologies and open challenges,” IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 1996–2010, Sep. 2018, doi: 10.1109/TBME.2017.2775100.spa
dc.relation.references[65] R. Klotz, B. Colobert, M. Botino, and I. Permentiers, “Influence of different types of sockets on the range of motion of the hip joint by the transfemoral amputee,” Ann. Phys. Rehabil. Med., vol. 54, no. 7, pp. 399–410, 2011, doi: 10.1016/j.rehab.2011.08.001.spa
dc.relation.references[66] W. C. Lee, M. Zhang, and A. F. Mak, “Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 641–649, 2005, doi: 10.1016/j.apmr.2004.08.005.spa
dc.relation.references[67] I. Mariaka Flórez, “Efecto del uso de exoprótesis sobre la distribución de esfuerzos del cartílago articular de la cadera,” p. 83, 2015.spa
dc.relation.references[68] A. Ballit, I. Mougharbel, H. Ghaziri, and T. T. Dao, “Fast Soft Tissue Deformation and Stump-Socket Interaction Toward a Computer-Aided Design System for Lower Limb Prostheses,” Irbm, vol. 41, no. 5, pp. 276–285, 2020, doi: 10.1016/j.irbm.2020.02.003.spa
dc.relation.references[69] F. Mo, H. Zhang, S. Zhao, Z. Xiao, and T. Liu, “Coupling Musculoskeletal Dynamics and Subject-Specific Finite Element Analysis of Femoral Cortical Bone Failure after Endoprosthetic Knee Replacement,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4650405.spa
dc.relation.references[70] Linda Kautz Osterkamp, “Current perspective on assessment of human body proportions of relevance to amputees,” J. Am. Diet. Assoc., 1995.spa
dc.relation.references[71] A. Mozumdar and S. K. Roy, “Method for estimating body weight in persons with lower-limb amputation and its implication for their nutritional assessment,” Am. J. Clin. Nutr., vol. 80, no. 4, pp. 868–875, 2004, doi: 10.1093/ajcn/80.4.868.spa
dc.relation.references[72] B. J. Fregly et al., “Grand challenge competition to predict in vivo knee loads,” J. Orthop. Res., vol. 30, no. 4, pp. 503–513, 2012, doi: 10.1002/jor.22023.spa
dc.relation.references[73] A. D. Koelewijn and A. J. van den Bogert, “Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations,” Gait Posture, vol. 49, pp. 219–225, Sep. 2016, doi: 10.1016/j.gaitpost.2016.07.007.spa
dc.relation.references[74] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp, “Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait,” IEEE Trans. Biomed. Eng., vol. 63, no. 10, pp. 2068–2079, 2016, doi: 10.1109/TBME.2016.2586891.spa
dc.relation.references[75] M. T. Karimi et al., “Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot,” Gait Posture, vol. 58, no. October 2016, pp. 246–251, 2017, doi: 10.1016/j.gaitpost.2017.08.007.spa
dc.relation.references[76] J. F. García-Vázquez, A. Skiadopoulos, B. Caro-Puértolas, and K. Gianikellis, “Three-dimensional kinematic gait analysis in patients with spastic diplegia,” Rehabilitacion, vol. 52, no. 1, pp. 10–20, 2018, doi: 10.1016/j.rh.2017.09.004.spa
dc.relation.references[77] J. Ramírez, “Nivel de Confort y Distribución de Esfuerzos en la Interfaz Socket – Muñón en Amputados Transfemorales,” 2011.spa
dc.relation.references[78] J. Perry, GAIT Pathological Function. 1992.spa
dc.relation.references[79] E. J. Muñoz, “Modelo Cinemático Simplificado Para La Predicción De Las Fuerzas Y Los Momentos Reactivos En El Socket De Amputados Transfemorales,” p. 160, 2016.spa
dc.relation.references[80] J. L. Hicks, T. K. Uchida, A. Seth, A. Rajagopal, and S. L. Delp, “Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement,” J. Biomech. Eng., vol. 137, no. 2, 2015, doi: 10.1115/1.4029304.spa
dc.relation.references[81] Morgan Snageux, “Biomechanics of the Hip During Gait,” Pediatr. Adolesc. Hip, 2019, doi: 10.1007/978-3-030-12003-0.spa
dc.relation.references[82] L. Duchemin et al., “Prediction of mechanical properties of cortical bone by quantitative computed tomography,” Med. Eng. Phys., vol. 30, no. 3, pp. 321–328, 2008, doi: 10.1016/j.medengphy.2007.04.008.spa
dc.relation.references[83] S. C. Henao, S. Cuartas-Escobar, and J. Ramírez, “Redesign and validation of a handheld tribometer to determine the coefficient of friction between the prosthesis and the residual limb of people with a transfemoral amputation,” Biotribology, vol. 21, no. August 2019, p. 100118, 2020, doi: 10.1016/j.biotri.2020.100118.spa
dc.relation.references[84] S. C. Henao, S. Cuartas-Escobar, and J. Ramírez, “Coefficient of Friction Measurements on Transfemoral Amputees,” Biotribology, vol. 22, no. April, p. 100126, 2020, doi: 10.1016/j.biotri.2020.100126.spa
dc.relation.references[85] H. V. Tran, F. Charleux, M. Rachik, A. Ehrlacher, and M. C. Ho Ba Tho, “In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques,” Comput. Methods Biomech. Biomed. Engin., vol. 10, no. 6, pp. 401–407, 2007, doi: 10.1080/10255840701550287.spa
dc.relation.references[86] M. Geerligs, Skin layer mechanics, no. 2010. 2010.spa
dc.relation.references[87] S. Avril, L. Bouten, L. Dubuis, S. Drapier, and J. F. Pouget, “Mixed experimental and numerical approach for characterizing the biomechanical response of the human leg under elastic compression,” J. Biomech. Eng., vol. 132, no. 3, 2010, doi: 10.1115/1.4000967.spa
dc.relation.references[88] J. A. Isaza López and J. F. Ramírez Patiño, “Comportamiento mecánico de tejidos blandos tipo multicapa,” p. 118, 2013, [Online]. Available: http://www.bdigital.unal.edu.co/11637/%5Cnhttp://www.bdigital.unal.edu.co/11637/1/1017155483.2014.pdf%5Cnhttp://www.bdigital.unal.edu.co/11637/%5Cnhttp://www.bdigital.unal.edu.co/11637/1/1017155483.2014.pdf.spa
dc.relation.references[89] J. S. Affagard, P. Feissel, and S. F. Bensamoun, “Identification of hyperelastic properties of passive thigh muscle under compression with an inverse method from a displacement field measurement,” J. Biomech., vol. 48, no. 15, pp. 4081–4086, 2015, doi: 10.1016/j.jbiomech.2015.10.007.spa
dc.relation.references[90] Simulia, “Getting Started with Abaqus: Interactive Edition,” Get. Started with Abaqus Interact. Ed., pp. 4.50-4.54, 2012, [Online]. Available: http://www.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/pdf_books/GET_STARTED.pdf.spa
dc.relation.references[91] P. A. Fuentes, M. Toro, J. A. Isaza, and J. F. Ramirez, “Influencia de la rugosidad sobre el coeficiente de fricción entre el muñón y la superficie del socket,” Pan Am. Heal. Care Exch. PAHCE, vol. 25, no. 22, p. 6257, 2013, doi: 10.1109/PAHCE.2013.6568223.spa
dc.relation.references[92] Y. Benjamini and H. Braun, “John W. Tukey’s contributions to multiple comparisons,” Ann. Stat., vol. 30, no. 6, pp. 1576–1594, 2002, doi: 10.1214/aos/1043351247.spa
dc.relation.references[93] B. Kim et al., “A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber,” Int. J. Precis. Eng. Manuf., vol. 13, no. 5, pp. 759–764, 2012, doi: 10.1007/s12541-012-0099-y.spa
dc.relation.references[94] T. J. Pence and K. Gou, “On compressible versions of the incompressible neo-Hookean material,” Math. Mech. Solids, vol. 20, no. 2, pp. 157–182, 2015, doi: 10.1177/1081286514544258.spa
dc.relation.references[95] L. J. A. Isaza, D. Lacroix, and J. Ramírez, “Influence of indentation test factors on the mechanical response of the skin,” Univ. Sci., vol. 24, no. 1, pp. 49–72, 2019, doi: 10.11144/JAVERIANA.SC24-1.IOIT.spa
dc.relation.references[96] J. Isaza, I. Mariaka, and J. Ramírez, “Caracterización de propiedades mecánicas mediante análisis inverso del método de los elementos finitos combinado con ensayo de indentación,” DYNA, vol. 80, no. 179, pp. 126–133, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembMétodo de elementos finitos
dc.subject.lembBiomecánica
dc.subject.lembPersonas amputadas
dc.subject.proposalMétodo de los Elementos Finitosspa
dc.subject.proposalAmputación Transfemoralspa
dc.subject.proposalTejido Blando Multicapaspa
dc.subject.proposalFinite Element Methodeng
dc.subject.proposalTransfemoral Amputationeng
dc.subject.proposalMultilayer Soft Tissueeng
dc.titleEfecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoralspa
dc.title.translatedEffect of pelvic bone over the stress state at the residual limb – socket interface of transfemoral amputeeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1040046403.2022-1.pdf
Tamaño:
9.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica
Cargando...
Miniatura
Nombre:
1040046403.2022-2.pdf
Tamaño:
17.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica - Anexos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: