Short distance constraints from HLbL contribution to the muon anomalous magnetic moment

dc.contributor.advisorFazio, Angelo Raffaele
dc.contributor.advisorReyes Rojas, Edilson Alfonso
dc.contributor.authorMelo Porras, Daniel Gerardo
dc.contributor.researchgroupGrupo de Campos y Particulasspa
dc.date.accessioned2023-04-19T21:23:05Z
dc.date.available2023-04-19T21:23:05Z
dc.date.issued2023
dc.description.abstractHadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions to that observable. With the tension between the Standard Model value prediction and the measurement at 4.2 σ, theoretical physicists have set their sights on reducing the HLbL contribution’s uncertainty to reduce the tension or push it beyond the discovery threshold. In such scenario, the high energy contribution of HLbL scattering to anomalous magnetic moment of the muon plays an important role. The aim of the research developed in this thesis is to study the HLbL leading order contribution in the maximally symmetric high energy region well above the hadronic threshold limit. This is achieved by performing an operator product expansion of the HLbL tensor, which we do systematically in the background field method. We consider our approach very efficient, also because it allows a straightforward renormalization of the field theoretical results. Our approach is also original and at the best of our knowledge not available in literature. The massless quark loop is the leading term and we compute it without neglecting its tensor structure. To this end, we use a tensor–loop–integral decomposition that does not in- troduce kinematic singularities. The resulting scalar loop integrals with shifted dimensions are computed with their full mass dependence using a Mellin–Barnes representation. Our original method of computation for the quark loop provides an independent check of recent literature results. Furthermore, by conserving the full tensor structure of the amplitude, we are able to perform an explicit check of a proposed kinematic–singularity–free tensor decomposition for the HLbL scattering amplitude that plays a central role in the dispersive computation in the low–energy regime. (Texto tomado de la fuente)eng
dc.description.abstractLa dispersión HLbL no es la contribución hadrónica más grande para el momento magnético anómalo del muon, pero esta tiene la incertidumbre relativa más grande de todas las contribuciones a ese observable. Con la tensión entre la valor predicho por el Modelo Estándar y las mediciones actualmente en 4.2 σ, los físico teóricos se han centrado en reducir la incertidumbre de la contribución HLbL para reducir la tensión o llevarla más allá del umbral de descubrimiento. En tal escenario, la contribución de alta energía de la dispersión HLbL al momento magnético anómalo del muon juega un papel importante. El objetivo de la investigación desarrollada en esta tesis es estudiar la contribución HLbL de primer orden en la región de alta energía máximamente simétrica muy por encima del límite del umbral hadrónico. Esto se logra al realizar una expansión de productos de operadores del tensor HLbL, la cual realizamos sistemáticamente con el método de campos de fondo. Consideramos nuestra aproximación al problema muy eficiente, entre otras razones, porque esta permite la renormalización directa de los resultados de teoría de campos. Nuestro método es también original y, hasta nuestro mejor conocimiento, no se encuentra en la literatura. El quark loop sin masa es el primer término de la expansión y lo calculamos sin dejar de lado su estructura tensorial. Para lograrlo, usamos un método de descomposición tensorial de integrales de loop que no introduce singularidades cinemáticas. Las integrales escalares de loop resultantes con dimensiones modificadas son calculadas considerando toda su dependencia de la masa y utilizando la representación de Mellin-Barnes. Nuestro método original de cálculo para el quark loop proporciona una verificación independiente de los resultados publicados recientemente en la literatura. Más aún, al conservar la estructura tensorial completa de la amplitud, podemos llevar a cabo una verificación explícita de una descomposición libre de singularidades cinemáticas para la dispersión HLbL que juega un papel central en los cálculos dispersivos del régimen de baja energía.spa
dc.description.degreelevelMaestríaspa
dc.format.extentix, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83744
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesD. Hanneke, S. Hoogerheide, and G. Gabrielse. In: Physical Review A 83.052122 (2011)spa
dc.relation.referencesD. Hanneke, S. Fogwell, and G. Gabrielse. In: Physical Review A 100.120801 (2008)spa
dc.relation.referencesT. Aoyama, T. Kinoshita, and M.Nio. In: Physical Review D 97.036001 (2018)spa
dc.relation.referencesG. W. Bennet et al. In: Physical Review D 73.072003 (2006)spa
dc.relation.referencesB.Abi et al. In: Physical Review Letters 126.141801 (2021)spa
dc.relation.referencesT. Aoyama et al. In: Physics Reports 887 (2020), pp. 1–166spa
dc.relation.referencesG. Colangelo et al. In: (2022). arXiv:2203.15810 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2203.15810spa
dc.relation.referencesJ. Grange et al. In: (2015). arXiv:1501.06858 [physics.ins-det]. URL: https://doi.org/10.48550/arXiv.1501.06858spa
dc.relation.referencesS. J. Brodsky and E. de Rafael. In: Physical Review 168.1620 (1968)spa
dc.relation.referencesB. E. Lautrup and E. de Rafael. In: Physical Review 174.1835 (1968)spa
dc.relation.referencesV.L. Ivanov et al. In: ArXiv 2008.05548 (2020)spa
dc.relation.referencesE. V. Abakumovaa, M. N. Achasova, and V. E. Blinova. In: Nuclear Instruments and Methods 651 (2011), pp. 21–29spa
dc.relation.referencesF. Ambrosino et al. In: Physical Letters B 670.285 (2009)spa
dc.relation.referencesB. Aubert et al. In: Physical Review Letters 103.231801 (2009)spa
dc.relation.referencesR. Alemany, M. Davier, and A. Hoecker. In: European Physical Journal C2.123 (1998)spa
dc.relation.referencesG. Abbiendi et al. In: European Physical Journal C 139 (2017), p. 77spa
dc.relation.referencesP. Banerjee et al. In: European Physical Journal C 80.591 (2020)spa
dc.relation.referencesSz. Borsanyi et al. In: Nature 593 (2021), pp. 51–55spa
dc.relation.referencesAlexei Bazavov et al. In: (2023). arXiv:2301.08274 [hep-lat]. URL: https://doi.org/10.48550/arXiv.2301.08274spa
dc.relation.referencesE. De Rafael. In: Inference Review 6.3 (2021). URL: https://inference-review.com/article/muons-and-new-physicsspa
dc.relation.referencesG. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 74 (2015)spa
dc.relation.referencesG. Colangelo, M. Hoferichter, M. Procura, et al. In: JHEP 161 (2017)spa
dc.relation.referencesM. Hoferichter et al. In: Physical Review Letters 121.112002 (2018)spa
dc.relation.referencesG. Colangelo et al. In: Physical Review Letters 118.232001 (2017)spa
dc.relation.referencesM. Hayakawa, T. Kinoshita, and A. I. Sanda. In: Physical Review Letters 75.790 (1995)spa
dc.relation.referencesJ. Bijnens, E. de Rafael, and H. Zheng. “Low-Energy Behaviour of Two-Point Functions of Quark Currents”. In: Zeitschrift für Physik C Particles and Fields 62 (1994), pp. 437–454spa
dc.relation.referencesG. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 91 (2014)spa
dc.relation.referencesJohan Bijnens et al. In: JHEP 2003.0304 (2003). arXiv:hep-ph/0304222. URL: https://doi.org/10.1088/1126-6708/2003/04/055spa
dc.relation.referencesM. Knecht and A. Nyffeler. In: The European Physical Journal C 21 (2001). arXiv:hep-ph/0106034, 659––678. URL: https://doi.org/10.1007/s100520100755spa
dc.relation.referencesG. Colangelo et al. In: Physical Review D 101.051501 (2020). arXiv:1910.11881 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.051501spa
dc.relation.referencesGilberto Colangelo et al. In: JHEP 2020.101 (2020). arXiv:1910.13432 [hep-ph]. URL: https://doi.org/10.1007/JHEP03%282020%29101spa
dc.relation.referencesGilberto Colangelo et al. In: The European Physical Journal C 81.702 (2021). arXiv:2106.13222 [hep-ph]. URL: https://doi.org/10.1140/epjc/s10052-021-09513-xspa
dc.relation.referencesJ. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-Sanchez. In: Physical Letters B 798.134994 (2019). arXiv:1908.03331 [hep-ph]spa
dc.relation.referencesJ. Bijnens et al. In: Nuclear and Particle Physics Proceedings 312-317 (2020), pp. 180–184spa
dc.relation.referencesJ. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez. In: Journal of High Energy Physics 04.240 (2021). arXiv:2101.09169v2 [hep-ph]. URL: https://doi.org/10.1007/JHEP04%282021%29240spa
dc.relation.referencesV. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 256.107478 (2020). arXiv:2001.04407spa
dc.relation.referencesV. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 207 (2016). arXiv:1601.01167, pp. 432–444spa
dc.relation.referencesR. Mertig, M. Böhm, and A. Denner. In: Computer Physics Communications 64.3 (1991), pp. 345–359. URL: https://doi.org/10.1016/0010-4655(91)90130-Dspa
dc.relation.referencesB. Ananthanarayan et al. In: Physical Review Letters 127.151601 (2021). arXiv:2012.15108 [hep-th]. URL: https://doi.org/10.1103/PhysRevLett.127.151601spa
dc.relation.referencesA. I. Davydychev. In: Physics Letters B 263.1 (1991), pp. 107–111. URL: https://doi.org/10.1016/0370-2693(91)91715-8spa
dc.relation.referencesA. I. Davydychev. In: Journal of Mathematical Physics 32.1052 (1991). URL: doi:10.1063/1.529383spa
dc.relation.referencesStanley J. Brodsky and J. D. Sullivan. In: Physical Review 156.5 (1967), pp. 1644–1647spa
dc.relation.referencesJanis Aldins, Stanley J. Brodsky, and Toichiro Kinoshita. In: Physical Review D 1.8 (1970)spa
dc.relation.referencesMarc Knecht and Nyffeler Andreas. In: Physical Review D 65.073034 (2002)spa
dc.relation.referencesFred Jegerlehner. STMP – The Anomalous Magnetic Moment of the Muon. Vol. 274. Springer, 2017spa
dc.relation.referencesF. E. Low. In: Physical Review 110.4 (1958), pp. 974–977spa
dc.relation.referencesT. Blum et al. In: Physical Review Letters 124.132002 (2020). arXiv:1911.08123 [hep-lat]spa
dc.relation.referencesE.-H. Chao et al. In: European Physical Journal C 81.651 (2021). arXiv:2104.02632 [hep-lat]spa
dc.relation.referencesV. Pascalutsa, V. Pauk, and M. Vanderhaeghen. In: Physical Review D 85.116001 (2012). 1204.0740spa
dc.relation.referencesV. Pauk and M. Vanderhaeghen. In: Physical Review D 90.11 (2014)spa
dc.relation.referencesJ. Green et al. In: Physical Review Letters 115.222003 (2015). 1507.01577spa
dc.relation.referencesI. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). 1611.04646spa
dc.relation.referencesF. Hagelstein and V. Pascalutsa. In: Physical Review Letters 120.072002 (2018). 1710.04571spa
dc.relation.references. Peskin and D. Schroeder. An introduction to quantum field theory. Addison–Wesley Publishing Company, 1995spa
dc.relation.referencesM. Sugawara and A. Kanazawa. In: Physical Review 123.1895 (1961). URL: https://doi.org/10.1103/PhysRev.123.1895spa
dc.relation.referencesS. Mandelstam. In: Physical Review 112.4 (1958)spa
dc.relation.referencesRobert Karplus and Maurice Neuman. In: Physical Review 80.3 (1950), pp. 380–385spa
dc.relation.referencesW. Bardeen and W. Tung. In: Physical Review 173.5 (1968), pp. 1423–1433spa
dc.relation.referencesR. Tarrach. In: Nuov. Cim. A 28 (1975), 409––422. URL: https://doi.org/10.1007/BF02894857spa
dc.relation.referencesHarry Bateman et al. Higher Trascendental Functions – Volume 1. McGraw–Hill, 1953spa
dc.relation.referencesJames D. Bjorken. In: Journal of Mathematical Physics 5.2 (1964), pp. 192–198spa
dc.relation.references(Particle Data Group) R. L. Workman et al. In: Progress of Theoretical and Experimental Physics 2022.083C01 (2022)spa
dc.relation.referencesP. Masjuan and P. Sanchez-Puertas. In: Physical Review Letters D95.054026 (2017). arXiv:1701.05829 [hep-ph]spa
dc.relation.referencesM. Hoferichter et al. In: European Physical Journal C74.3180 (2014)spa
dc.relation.referencesM. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]spa
dc.relation.referencesG. A. Baker. Essentials of Padé Approximants. First. New York: Academic Press, 1975spa
dc.relation.referencesP. Masjuan and S. Peris. In: Physical Review Letters B686.307 (2010). arXiv:0903.0294 [hep-ph]spa
dc.relation.referencesC. Hanhart et al. In: European Physical Journal C73.2668 (2013). arXiv:1307.5654 [hep-ph], Erratum: Eur. Phys. J. C75, 242 (2015)spa
dc.relation.referencesC.-W. Xiao et al. In: European Physical Journal C81.1002 (2021). arXiv:1509.02194 [hep-ph]spa
dc.relation.referencesSimon Holz et al. In: European Physical Journal C82.434 (2022). arXiv:2202.05846 [hep-ph]spa
dc.relation.referencesA. D. Martin and T. D. Spearman. Elementary Particle Theory. North Holland Publishing Company, 1970spa
dc.relation.referencesI. Danilkin, O. Deineka, and M. Vanderhaeghen. In: Physical Review Letters D96.114018 (2017). arXiv:1709.08595 [hep-ph]spa
dc.relation.referencesO. Deineka, I. Danilkin, and M. Vanderhaeghen. In: European Physical Journal Web Conference 199.02005 (2019). arXiv:1808.04117 [hep-ph]spa
dc.relation.referencesV. Pauk and M. Vanderhaeghen. In: European Physical Journal C74.3008 (2014). arXiv:1401.0832 [hep-ph]spa
dc.relation.referencesI. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). arXiv:1611.04646 [hep-ph]spa
dc.relation.referencesM. Knecht et al. In: Physical Review Letters B787.111 (2018). arXiv:1808.03848 [hep-ph].spa
dc.relation.referencesR. N. Cahn. In: Physical Review Letters D35.3342 (1987)spa
dc.relation.referencesR. N. Cahn. In: Physical Review Letters D37.833 (1988)spa
dc.relation.references[L3 Collaboration] P. Achard et al. In: Physical Review Letters B526.269 (2002)spa
dc.relation.references[L3 Collaboration] P. Achard et al. In: JHEP 0703.018 (2007)spa
dc.relation.referencesP. Roig and P. Sanchez-Puertas. In: Physical Review D 101.074019 (2020). arXiv:1910.02881 [hep-ph]spa
dc.relation.referencesGernot Eichmann et al. In: (2014). arXiv:1411.7876v2 [hep-ph]spa
dc.relation.referencesG. P. Lepage and S. J. Brodsky. In: Physics Letters B 87.359 (1979)spa
dc.relation.referencesG. P. Lepage and S. J. Brodsky. In: Physical Review D 22.2157 (1980)spa
dc.relation.referencesV. A. Nesterenko and A. V. Radyushkin. In: Soviet Journal of Nuclear Physics 38.284 (1983)spa
dc.relation.referencesV. A. Novikov et al. In: Nuclear Physics B 237.3 (1984), pp. 525–550spa
dc.relation.referencesA. S. Gorsky. In: Soviet Journal of Nuclear Physics 46.537 (1987)spa
dc.relation.referencesA. V. Manohar. In: Physics Letters B 244.101 (1990)spa
dc.relation.referencesM. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]spa
dc.relation.referencesM. Hoferichter et al. In: Physical Review Letters 121.112002 (2018). arXiv:1805.01471 [hep-ph]spa
dc.relation.referencesKenneth Wilson. In: Physical Review 179.1499 (1969)spa
dc.relation.referencesSteven Weinberg. The Quantum Theory of Fields. Cambridge University Press, 1996spa
dc.relation.referencesB. L. Ioffe and A. V. Smilga. In: Nuclear Physics B 232 (1984), pp. 109–142. URL: doi:10.1016/0550-3213(84)90364-Xspa
dc.relation.referencesA. Czarnecki, W. J. Marciano, and A. Vainshtein. In: Physical Review D 67.073006 (2003). arXiv:hep-ph/0212229spa
dc.relation.referencesV. A. Novikov et al. In: Fortschritte der Physik 32.11 (1984), pp. 585–622spa
dc.relation.referencesM. A. Shifman, A. I Vainshtein, and V. I. Zakharov. In: Nuclear Physics B 147 (1979), pp. 385–518spa
dc.relation.referencesM. A. Shifman et al. In: Physics Letters B 77.1 (1978), pp. 80–83. URL: https://doi.org/10.1016/0370-2693(78)90206-Xspa
dc.relation.referencesV. Fock. In: Physikalische Zeitschrift der Sowjetunion 12 (1937), pp. 404–425spa
dc.relation.referencesM. A. Shifman. In: Nuclear Physics B173.1 (1980), pp. 13–31spa
dc.relation.referencesR. Strichartz. A guide to distribution theory and Fourier transform. World Scientific Publishing Company, 2003spa
dc.relation.referencesL. F. Abbott. In: Acta Physica Polonica B13.1–2 (1981). https://www.actaphys.uj.edu.pl/R/13/1/33/pdf, pp. 33–50spa
dc.relation.referencesY. Aoki et al. In: The European Physical Journal C 82.869 (2022). arXiv:2111.09849v2 [hep-lat]spa
dc.relation.referencesH. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 467–481. URL: https://doi.org/10.1103/PhysRevD.12.467spa
dc.relation.referencesH. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 482–488. URL: https://doi.org/10.1103/PhysRevD.12.482spa
dc.relation.referencesH. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.10 (1975), pp. 3159–3180. URL: https://doi.org/10.1103/PhysRevD.12.3159spa
dc.relation.referencesGiampiero Passarino and Martinus Veltman. In: Nuclear Physics B 160.1 (1979), pp. 151–207. URL: https://doi.org/10.1016/0550-3213(79)90234-7spa
dc.relation.referencesR. Keith Ellis et al. In: Physics Reports 518.4–5 (2012), pp. 141–250. URL: https://doi.org/10.1016/j.physrep.2012.01.008spa
dc.relation.referencesDima Bardin and Giampiero Passarino. The Standard Model in the Making: Precision Study of the Elecroweak Interactions. Clarendon Press, Oxford, 1999spa
dc.relation.referencesÉ. É. Boos and A. I. Davydychev. In: Theoretical and Mathematical Physics 89 (1991), 1052––1064. URL: https://doi.org/10.1007/BF01016805spa
dc.relation.referencesSumit Banik and Samuel Friot. In: (2022). arXiv:2212.11839 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2212.11839spa
dc.relation.referencesO. N. Zhdanov and A. K. Tsikh. In: Siberian Mathematical Journal 39.2 (1998), pp. 245–260. URL: https://doi.org/10.1007/BF02677509spa
dc.relation.referencesOleg Igorevich Marichev. Methods for Computing Integrals of Special Functions. Minsk, 1978spa
dc.relation.referencesHenri Skoda and Jean-Marie Trepreau, eds. Aspects of Mathematics: Contributions to Complex Analysis and Analytic Geometry. Vol. E26. Springer, 1994, pp. 233–241spa
dc.relation.referencesKasper J. Larsen and Robbert Rietkerk. In: Computer Physics Communications 222 (2018). arXiv:1701.01040 [hep-th], pp. 250–262. URL: https://doi.org/10.1016/j.cpc.2017.08.025spa
dc.relation.referencesP. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley and Sons, 1978spa
dc.relation.referencesM. Passare, A .K. Tsikh, and A. A. Cheshel. In: Theoretical and Mathematical Physics 109 (1996), 1544––1555. URL: https://doi.org/10.1007/BF02073871spa
dc.relation.referencesE. W. Barnes. In: Proceedings of the London Mathematical Society s2-5 (1907), pp. 59–116spa
dc.relation.referencesH. M. Srivastava and Per W. Karlsson. Multiple Gaussian Hypergeometric Series. John Wiley and Sons, 1985spa
dc.relation.referencesJ. Horn. In: Mathematische Annalen 34 (1889), 544––600. URL: https://doi.org/10.1007/BF01443681spa
dc.relation.referencesSamuel Friot and David Greynat. In: Journal of Mathematical Physics 53.023508 (2012). arXiv:1107.0328 [math-ph]. URL: https://doi.org/10.1063/1.3679686spa
dc.relation.referencesA. K. Tsikh. Translations of Mathematical Monographs: Multidimensional Residues and Their Applications. Vol. 103. American Mathematical Society, 1992spa
dc.relation.referencesKhiem Hong Phan and Dzung Tri Tran. In: Progress of Theoretical and Experimental Physics 2019.6 (2019). arXiv:1904.07430 [hep-ph]. URL: https://doi.org/10.1093/ptep/ptz050spa
dc.relation.referencesLucy Joan Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966spa
dc.relation.referencesK. Melnikov and A. Vainshtein. In: Physical Review D 70.113006 (2004). arXiv:hep-ph/0312226. URL: https://doi.org/10.1103/PhysRevD.70.113006spa
dc.relation.referencesLuigi Cappiello et al. In: Physical Review D 102.016009 (2020). arXiv:1912.02779 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.102.016009spa
dc.relation.referencesJosef Leutgeb and Anton Rebhan. In: Physical Review D 101.114015 (2020). arXiv:1912.01596 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.114015spa
dc.relation.referencesJohan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: (2022). arXiv:2211.17183 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2211.17183spa
dc.relation.referencesJohan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: EPJ Web of Conferences 274.06010 (2022). arXiv:2211.04068 [hep-ph]. URL: https://doi.org/10.1051/epjconf/202227406010spa
dc.relation.referencesE. V. Shuryak and A. I. Vainshtein. In: Nuclear Physics B 201.1 (1982), pp. 141–158. URL: https://doi.org/10.1016/0550-3213(82)90377-7spa
dc.relation.referencesA. J. Macfarlane. In: Communications in Mathematical Physics 2 (1966), pp. 133–146. URL: https://doi.org/10.1007/BF01773348spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembPartículas (física nuclear)spa
dc.subject.lembParticles (Nuclear physics)eng
dc.subject.lembEspectroscopia de electronesspa
dc.subject.lembElectron spectroscopyeng
dc.subject.proposalAnomalous magnetic moment of the muoneng
dc.subject.proposalHLbLeng
dc.subject.proposalMellin-Barneseng
dc.subject.proposalOPEeng
dc.subject.proposalHypergeometric serieseng
dc.subject.proposalMultivariate residueseng
dc.subject.proposalKinematic singularitieseng
dc.titleShort distance constraints from HLbL contribution to the muon anomalous magnetic momenteng
dc.title.translatedLímites de corta distancia de la contribución HLbL al momento magnético anómalo del muonspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1007436748.2023.pdf
Tamaño:
803.09 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: