Implementation of an active thermography inspection methodology for the early detection of delamination damage in APS-sprayed YSZ thermal barrier coatings subjected to thermal fatigue
dc.contributor.advisor | Toro, Alejandro | |
dc.contributor.advisor | Restrepo Martínez, Alejandro | |
dc.contributor.author | García Revuelta, Andrés Felipe | |
dc.contributor.orcid | García Revuelta, Andrés Felipe [0009-0001-2985-5550] | |
dc.contributor.orcid | Toro, Alejandro [0000-0002-5589-5820] | |
dc.contributor.orcid | Restrepo Martínez, Alejandro [0000-0001-8978-2077] | |
dc.date.accessioned | 2025-08-27T15:16:27Z | |
dc.date.available | 2025-08-27T15:16:27Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | The purpose of this study is to investigate and implement active infrared thermography as a non-destructive method for the early detection of delaminating thermal barrier coatings. To accomplish this, thermal barrier coatings were fabricated using atmospheric plasma spraying as the deposition method. A nickel-based superalloy, Inconel 625, was used as the substrate, followed by an MCrAlY bond coat and a YSZ ceramic top coat, resulting in thicknesses of approximately 217 $\mu$m and a porosity of 9-10\%. Thermal shock tests were then performed as a method of inducing delamination. These tests were conducted at a temperature of 1050°C with a holding time of 4 minutes, followed by quenching in water at room temperature. The number of cycles ranged from 0 to 260, and the samples were examined by thermography as well as by conventional methods (LOM, SEM, and XRD). The TC was found to be more prone to delamination under the proposed experimental conditions, however, failure surfaces were also detected at the BC/TGO and TGO/TC interface. TGO formation occurred from early to post-failure stages. For infrared thermography, a dedicated setup was designed and algorithms were applied to analyze the acquired data, improving the ability to detect failures at an early stage. The results showed that the technique is capable of detecting defects before they become visible by visual inspection and that the results obtained are consistent with those obtained by conventional methods. (Tomado de la fuente) | eng |
dc.description.abstract | En el presente trabajo se busca estudiar e implementar la técnica de termografía activa infrarroja como método no destructivo para detectar de forma temprana los recubrimientos de barrera térmica que se delaminan. Para ello, se fabricaron recubrimientos de barrera térmica mediante aspersión de plasma atmosférico como método de proyección. Se usó una superaleación de base níquel Inconel 625 como sustrato, seguido de una capa de anclaje de MCrAlY y una capa cerámica de YSZ, obteniendo espesores de alrededor de 217 $\mu$m y una porosidad de 9-10\%. Posteriormente, como método de inducción de delaminaciones, se llevaron a cabo ensayos de choque térmico a una temperatura de 1050 °C, con un tiempo de sostenimiento de 4 minutos y posterior temple en agua a temperatura ambiente. El número de ciclos varió desde 0 hasta 260, y las muestras se inspeccionaron por termografía y por métodos convencionales (LOM, SEM y DRX). Se encontró que la TC es más propensa a la delaminación para las condiciones experimentales propuestas, sin embargo, también se detectaron superficies de falla en la interfaz BC/TGO y TGO/TC. La formación de TGO ocurrió desde etapas iniciales, hasta etapas posteriores a la falla. Para la termografía infrarroja, se elaboró un montaje y se usaron algoritmos para el análisis de los datos adquiridos, lo que mejoró la capacidad de detección de las fallas en etapas tempranas. Los resultados mostraron que la técnica es capaz de detectar fallas cuando aún no son visibles mediante inspección visual y que los resultados obtenidos son congruentes con los obtenidos por métodos convencionales. | spa |
dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | |
dc.description.sponsorship | Ministerio de Ciencia, Tecnología e Innovación. | |
dc.description.sponsorship | Empresas Públicas de Medellín, EPM | |
dc.format.extent | 74 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88484 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | J. De la Roche Yepes, “Hot corrosion resistance of dense Ceria-Yttria Stabilized Zirconia/Yttria Stabilized Zirconia (CYSZ/YSZ) Bilayer Coatings deposited by atmospheric plasma spray,” https://repositorio.unal.edu.co/hand Trabajo de Grado - Doctorado, Universidad Nacional de Colombia, Mar. 2020. | |
dc.relation.references | H. B. Guo, R. Vaßen, and D. Stöver, “Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings,” Surface and Coatings Technology, vol. 192, no. 1, pp. 48–56, Mar. 2005, issn: 0257-8972. doi: 10.1016/J.SURFCOAT.2004.02.004. | |
dc.relation.references | E. H. Jordan, L. Xie, X. Ma, et al., “Superior thermal barrier coatings using solution precursor plasma spray,” Journal of Thermal Spray Technology 2004 13:1, vol. 13, no. 1, pp. 57–65, 2004, issn: 1544-1016. doi: 10.1007/S11666-004-0050-6. | |
dc.relation.references | M. G. Gok, G. Goller, M. G. Gok, and G. Goller, “State of the Art of Gadolinium Zirconate Based Thermal Barrier Coatings: Design, Processing and Characterization,” in Methods for Film Synthesis and Coating Procedures, IntechOpen, Apr. 2019, isbn: 978-1-78985-860-0. doi: 10.5772/intechopen.85451. | |
dc.relation.references | Q. Tao, Y. Wang, D. Wei, and S. Yang, “Thermal oxidation description methodology of thermal barrier coatings on gas turbine blades considering service characteristics,” Chinese Journal of Aeronautics, vol. 37, no. 6, pp. 410–424, Jun. 2024, issn: 1000-9361. doi: 10.1016/j.cja.2024.03.035. | |
dc.relation.references | H. Tsai and P. Tsai, “Microstructures and Properties of Laser-Glazed Plasma-Sprayed ZrO2-YO1.5/Ni- 22Cr-10AI-1Y Thermal Barrier Coatings,” Journal of Materials Engineering and Performance, vol. 4, no. 6, pp. 689–696, Dec. 1995, issn: 1544-1024. doi: 10.1007/BF02646445. | |
dc.relation.references | Z. Lu, M.-S. Kim, S.-W. Myoung, et al., “Thermal stability and mechanical properties of thick thermal barrier coatings with vertical type cracks,” Transactions of Nonferrous Metals Society of China, vol. 24, s29–s35, Jul. 2014, issn: 1003-6326. doi: 10.1016/S1003-6326(14)63284-2. | |
dc.relation.references | B. Gleeson, “Thermal Barrier Coatings for Aeroengine Applications,” https://doi.org/10.2514/1.20734, vol. 22, no. 2, pp. 375–383, May 2012, issn: 15333876. doi: 10.2514/1.20734. | |
dc.relation.references | J. D. Osorio, A. Toro, and J. P. Hernández-Ortiz, “THERMAL BARRIER COATINGS FOR GAS TURBINE APPLICATIONS: FAILURE MECHANISMS AND KEY MICROSTRUCTURAL FEATURES,” DYNA, vol. 79, no. 176, pp. 149–158, Dec. 2012, http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0012- 73532012000600018&lng=en&nrm=iso&tlng=en, issn: 0012-7353. | |
dc.relation.references | S. Bravo, J. Torres-González, J. Morales-Hernández, et al., “Effect of the manufacturing parameters on the quality of the ceramic thermal barrier coating after ageing by thermal treatment,” Revista Mexicana de Ingeniería Química, vol. 20, no. 1, pp. 229–239, Sep. 2020, issn: 1665-2738, 2395-8472. doi: 10.24275/rmiq/Mat1041. | |
dc.relation.references | D. F. Zambrano, A. Barrios, L. E. Tobón, et al., “Thermal properties and phase stability of YttriaStabilized Zirconia (YSZ) coating deposited by Air Plasma Spray onto a Ni-base superalloy,” Ceramics International, vol. 44, no. 4, pp. 3625–3635, Mar. 2018, issn: 0272-8842. doi: 10.1016/j.ceramint. 2017.11.109. | |
dc.relation.references | R. McPherson, “A review of microstructure and properties of plasma sprayed ceramic coatings,” Surface and Coatings Technology, vol. 39–40, no. C, pp. 173–181, Dec. 1989, issn: 0257-8972. doi: 10.1016/0257-8972(89)90052-2. | |
dc.relation.references | I. O. Golosnoy, A. Cipitria, and T. W. Clyne, “Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work,” Journal of Thermal Spray Technology, vol. 18, no. 5, pp. 809–821, Dec. 2009, issn: 1544-1016. doi: 10.1007/s11666-009-9337-y. | |
dc.relation.references | J.R. Davis & Associates. and ASM International. Thermal Spray Society Training Committee., Handbook of Thermal Spray Technology. ASM International, 2004, isbn: 0-87170-795-0. | |
dc.relation.references | M. Seraffon, “Performances of air plasma sprayed thermal barrier coatings for industrial gas turbines,” http://dspace.lib.cranfield.ac.uk/handle/1826/7772, Ph.D. dissertation, Cranfield University, 2012. | |
dc.relation.references | D. R. Clarke and C. G. Levi, “Materials Design for the Next Generation Thermal Barrier Coatings,” Annual Review of Materials Research, vol. 33, no. Volume 33, 2003, pp. 383–417, Aug. 2003, issn: 1531-7331, 1545-4118. doi: 10.1146/annurev.matsci.33.011403.113718. | |
dc.relation.references | S. Bose, High Temperature Coatings. Elsevier Inc, Jan. 2007, https://shop.elsevier.com/books/hightemperature-coatings/bose/978-0-7506-8252-7, isbn: 978-0-7506-8252-7. | |
dc.relation.references | J. E. Petitjean, R. M. Kearsey, and X. Huang, “On the thermodynamics and microstructure of variably cooled and co-doped Y2O3-ZrO2 for application to thermal barrier coatings,” Surface and Coatings Technology, vol. 205, no. 7, pp. 1843–1849, Dec. 2010, issn: 0257-8972. doi: 10.1016/j.surfcoat. 2010.08.024. | |
dc.relation.references | J. D. Osorio Ramírez, “Propiedades de transporte en recubrimientos cerámicos utilizados en turbinas a gas,” https://repositorio.unal.edu.co/handle/unal/9092, Ph.D. dissertation, Universidad Nacional de Colombia, 2011. | |
dc.relation.references | K. W. Schlichting, N. P. Padture, and P. G. Klemens, “Thermal conductivity of dense and porous yttria-stabilized zirconia,” Journal of Materials Science, vol. 36, no. 12, pp. 3003–3010, Jun. 2001, issn: 1573-4803. doi: 10.1023/A:1017970924312. | |
dc.relation.references | R. Darolia, “Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects,” International Materials Reviews, vol. 58, no. 6, pp. 315–348, Aug. 2013, issn: 0950-6608. doi: 10.1179/1743280413Y.0000000019. | |
dc.relation.references | N. P. Padture, M. Gell, and E. H. Jordan, “Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science, vol. 296, no. 5566, pp. 280–284, Apr. 2002, issn: 00368075. doi: 10.1126/ SCIENCE.1068609. | |
dc.relation.references | B. Franke, “Nondestructive Evaluation Of Thermal Barrier Coatings With Thermal Wave Imaging And Photostimulated Luminescence Spectroscopy,” https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1444&context=et Ph.D. dissertation, University of Central Florida, Orlando, Florida, 2005. | |
dc.relation.references | A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, “Mechanisms controlling the durability of thermal barrier coatings,” Progress in Materials Science, vol. 46, no. 5, pp. 505–553, Jan. 2001, issn: 0079-6425. doi: 10.1016/S0079-6425(00)00020-7. | |
dc.relation.references | O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines—Part I: Experiments,” Surface and Coatings Technology, vol. 202, no. 20, pp. 5027–5032, Jul. 2008, issn: 0257-8972. doi: 10.1016/j.surfcoat.2008.05.006. | |
dc.relation.references | P. Planques, V. Vidal, P. Lours, et al., “Mechanical and Thermo-physical Properties of Plasma-Sprayed Thermal Barrier Coatings: A Literature Survey,” Oxidation of Metals, vol. 88, no. 1, pp. 133–143, Aug. 2017, issn: 1573-4889. doi: 10.1007/s11085-016-9693-1. | |
dc.relation.references | J. de la Roche, P. A. Gómez, J. M. Alvarado-Orozco, and A. Toro, “Hot corrosion and thermal shock resistance of Dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy,” Journal of the European Ceramic Society, vol. 40, no. 15, pp. 5692–5703, Dec. 2020, issn: 0955-2219. doi: 10.1016/j.jeurceramsoc.2020.07.004. | |
dc.relation.references | S. Marinetti, D. Robba, F. Cernuschi, P. G. Bison, and E. Grinzato, “Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects,” Infrared Physics & Technology, vol. 49, no. 3, pp. 281–285, Jan. 2007, issn: 1350-4495. doi: 10.1016/j.infrared.2006.06.018. | |
dc.relation.references | P. G. Bison, S. Marinetti, E. G. Grinzato, V. P. Vavilov, F. Cernuschi, and D. Robba, “Inspecting thermal barrier coatings by IR thermography,” in Thermosense XXV, vol. 5073, SPIE, Apr. 2003, pp. 318–327. doi: 10.1117/12.486019. | |
dc.relation.references | R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared Thermography for Temperature Measurement and Non-Destructive Testing,” Sensors, vol. 14, no. 7, pp. 12 305– 12 348, Jul. 2014, issn: 1424-8220. doi: 10.3390/s140712305. | |
dc.relation.references | S. Doshvarpassand, C. Wu, and X. Wang, “An overview of corrosion defect characterization using active infrared thermography,” Infrared Physics & Technology, vol. 96, pp. 366–389, Jan. 2019, issn: 1350-4495. doi: 10.1016/j.infrared.2018.12.006. | |
dc.relation.references | G. S. Ptaszek, “Investigation and development of transient thermography for detection of disbonds in thermal barrier coating systems,” http://hdl.handle.net/10044/1/11205, Ph.D. dissertation, Imperial College London, Dec. 2012. | |
dc.relation.references | X. Maldague, Nondestructive Evaluation of Materials by Infrared Thermography, Springer-Verlag London Limited 1993. Springer London, 1993, https://link.springer.com/book/10.1007/978-1-4471- 1995-1, isbn: 978-0-387-19769-2. | |
dc.relation.references | Z. Huang, J. Zhu, L. Zhuo, et al., “Non-destructive evaluation of uneven coating thickness based on active long pulse thermography,” NDT & E International, vol. 130, p. 102 672, Sep. 2022, issn: 0963-8695. doi: 10.1016/j.ndteint.2022.102672. | |
dc.relation.references | D. P. Almond, S. L. Angioni, and S. G. Pickering, “Long pulse excitation thermographic non-destructive evaluation,” NDT & E International, vol. 87, pp. 7–14, Apr. 2017, issn: 0963-8695. doi: 10.1016/j. ndteint.2017.01.003. | |
dc.relation.references | J. E. Kretzmann, “Evaluating the industrial application of non-destructive inspection of composites using transient thermography,” http://hdl.handle.net/10019.1/98636, Ph.D. dissertation, Stellenbosch : Stellenbosch University, Mar. 2016. | |
dc.relation.references | M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications, 2nd Edition | Wiley, https://onlinelibrary.wiley.com/doi/book/10.1002/9783527693306. | |
dc.relation.references | R. Shrestha and W. Kim, “Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography – Part I: Simulation,” Infrared Physics & Technology, vol. 83, pp. 124–131, Jun. 2017, issn: 1350-4495. doi: 10.1016/j.infrared.2017.04.016. | |
dc.relation.references | D. L. Balageas and J.-M. and Roche, “Common tools for quantitative time-resolved pulse and stepheating thermography – part I: Theoretical basis,” Quantitative InfraRed Thermography Journal, vol. 11, no. 1, pp. 43–56, Jan. 2014, issn: 1768-6733. doi: 10.1080/17686733.2014.891324. | |
dc.relation.references | E. D’Accardi, D. Palumbo, R. Tamborrino, P. Cavallo, and U. Galietti, “Pulsed Thermography: Evaluation and quantitative analysis of defects through different post-processing algorithms,” in Proceedings of the 2018 International Conference on Quantitative InfraRed Thermography, QIRT Council, 2018. doi: 10.21611/qirt.2018.048. | |
dc.relation.references | E. D’Accardi, D. Palumbo, R. Tamborrino, and U. Galietti, “Quantitative analysis of thermographic data through different algorithms,” Procedia Structural Integrity, AIAS2017 - 46th Conference on Stress Analysis and Mechanical Engineering Design, 6-9 September 2017, Pisa, Italy, vol. 8, pp. 354–367, Jan. 2018, issn: 2452-3216. doi: 10.1016/j.prostr.2017.12.036. | |
dc.relation.references | G. Ptaszek, P. Cawley, D. Almond, and S. Pickering, “Transient thermography testing of unpainted thermal barrier coating (TBC) systems,” NDT & E International, vol. 59, pp. 48–56, Oct. 2013, issn: 0963-8695. doi: 10.1016/j.ndteint.2013.05.001. | |
dc.relation.references | Y. Chung, S. Lee, and W. Kim, “Latest Advances in Common Signal Processing of Pulsed Thermography for Enhanced Detectability: A Review,” Applied Sciences, vol. 11, no. 24, p. 12 168, Jan. 2021, issn: 2076-3417. doi: 10.3390/app112412168. | |
dc.relation.references | V. Shankar, K. Bhanu Sankara Rao, and S. L. Mannan, “Microstructure and mechanical properties of Inconel 625 superalloy,” Journal of Nuclear Materials, vol. 288, no. 2, pp. 222–232, Feb. 2001, issn: 0022-3115. doi: 10.1016/S0022-3115(00)00723-6. | |
dc.relation.references | L. Shoemaker, “Alloys 625 and 725: Trends in Properties and Applications,” Superalloys 718, 625, 706 and Various Derivatives (2005), pp. 409–418, 2005. doi: 10.7449/2005/Superalloys_2005_409_418. | |
dc.relation.references | O. Group, SinplexPro™, https://www.oerlikon.com/metco/en/products-services/thermal-spray-equipment/thermalspray-components/spray-guns/plasma/external-atmospheric-plasma/sinplexpro™/. | |
dc.relation.references | H. F. Garces, A. Tran, H. Sternlicht, et al., “Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats,” Surface and Coatings Technology, vol. 404, p. 126 459, Dec. 2020, issn: 0257-8972. doi: 10.1016/j.surfcoat.2020.126459. | |
dc.relation.references | Godox, AD600Pro-Product-GODOX Photo Equipment Co.,Ltd. https://godox.com/product-d/AD600Pro.html, https://www.bhphotovideo.com/lit_files/378651.pdf. | |
dc.relation.references | R. Madding, “Finding R-values of Stud-Frame Constructed Houses with IR Thermography,” Inframation 2008, vol. 9, pp. 261–277, Jan. 2008. | |
dc.relation.references | G. Dinardo, L. Fabbiano, G. Vacca, and R. Tamborrino, “Automatic defect detection and characterization by thermographic images based on damage classifiers evaluation,” Metrology and Measurement Systems; 2020; vol. 27; No 2; 219-242, 2020, issn: 2080-9050, E-ISSN 2300-1941. doi: 10.24425/mms.2020.132771. | |
dc.relation.references | J. Reber, Multi ROI/Mask Editor Class, https://www.mathworks.com/matlabcentral/fileexchange/31388- multi-roi-mask-editor-class, Aug. 2024. | |
dc.relation.references | C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671–675, Jul. 2012, issn: 1548-7105. doi: 10.1038/nmeth.2089. | |
dc.relation.references | M. Pourbafrani, R. S. Razavi, S. R. Bakhshi, M. R. Loghman-Estarki, and H. Jamali, “Effect of microstructure and phase of nanostructured YSZ thermal barrier coatings on its thermal shock behaviour,” Surface Engineering, vol. 31, no. 1, pp. 64–73, Jan. 2015, issn: 0267-0844. doi: 10.1179/ 1743294414Y.0000000397. | |
dc.relation.references | M. Shi, Z. Xue, Z. Zhang, X. Ji, E. Byon, and S. Zhang, “Effect of spraying powder characteristics on mechanical and thermal shock properties of plasma-sprayed YSZ thermal barrier coating,” Surface and Coatings Technology, vol. 395, p. 125 913, Aug. 2020, issn: 0257-8972. doi: 10.1016/j.surfcoat. 2020.125913. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
dc.subject.ddc | 530 - Física::531 - Mecánica clásica | |
dc.subject.lemb | Termografía | |
dc.subject.lemb | Tecnología infrarroja | |
dc.subject.lemb | Esfuerzos y deformaciones | |
dc.subject.proposal | Recubrimientos de Barrera Térmica | eng |
dc.subject.proposal | Delaminación | eng |
dc.subject.proposal | Termografía Infrarroja | eng |
dc.subject.proposal | Thermal Shock Testing | eng |
dc.subject.proposal | Pruebas de choque térmico | spa |
dc.subject.proposal | Thermal Barrier Coatings | spa |
dc.subject.proposal | Delamination | spa |
dc.subject.proposal | Infrared Thermography | spa |
dc.title | Implementation of an active thermography inspection methodology for the early detection of delamination damage in APS-sprayed YSZ thermal barrier coatings subjected to thermal fatigue | eng |
dc.title.translated | Implementación de una metodología de inspección por termografía activa para la detección temprana de daño por delaminación en recubrimientos de YSZ aplicados por APS sometidos a fatiga térmica | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
- Tamaño:
- 16.2 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: