Recobro mejorado de petróleo y almacenamiento de CO2 mediante la Inyección de espumas de mezclas de CO2/N2 provenientes de flue gas potenciadas por nanopartículas
dc.contributor.advisor | Cortés Correa, Farid Bernardo | |
dc.contributor.author | Benjumea García, Maria Camila | |
dc.contributor.googlescholar | rBbGu9YAAAAJ | spa |
dc.contributor.researchgroup | Fenómenos de Superficie Michael Polanyi | spa |
dc.date.accessioned | 2024-11-05T16:48:08Z | |
dc.date.available | 2024-11-05T16:48:08Z | |
dc.date.issued | 2024-11-04 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Flue gas foams for EOR projects are a promising alternative to overcome the high mobility limitations of gas injection in displacement processes, while contributing to global energy supply and decarbonization of industrial plants. In the context of CCUS projects, this technology allows cost savings in the CO2 capture stage and enables potential CO2 storage. Furthermore, by assisting this technology with nanoparticles, the foam stability can be improved, increasing the sweep efficiency and the oil recovery factor. Therefore, the aim of this work is to evaluate, at laboratory scale, the use of CO2/N2 foams potentiated with NPs in EOR processes with associated CO2 storage potential. In this sense, static tests were performed to evaluate the stability of foams, made with CO2/N2 mixtures representative of flue gas streams, by means of half-life tests, varying the surfactant and nanoparticle concentration, nanoparticle type and gas ratios. These experiments were complemented by adsorption tests to evaluate the NP-surfactant interaction and by microscopy tests to study foam morphology. In addition, two types of dynamic tests were performed to evaluate the foam strength and stability, incremental oil recovery factor, and potential CO2 storage using foams generated by the surfactant-alternating-gas injection strategy with and without nanoparticles. The flue gas foaming system with 2500 mg·L-1 of Surfonic L24-22 surfactant maintained a higher apparent viscosity and achieved 7% higher incremental oil recovery than the supercritical CO2 foaming system. Furthermore, the flue gas foam system with 100 mg·L-1 of SiO2 NPs and 3000 mg·L-1 of AOS was considered optimal in static foam stability tests and evaluated in dynamic tests. This system achieved increases in half-life and durability of 34% and 80%, respectively, and a faster process development with an incremental oil recovery factor of more than 13% over the flue gas system without NPs, and a CO2 storage potential of 11%. These results demonstrate the potential of this technology to reduce costs associated with gas injection operations, enable carbon storage, and eliminate the CO2 capture stage in CCUS projects. (Tomado de la fuente) | eng |
dc.description.abstract | Las espumas de flue gas para proyectos de EOR son una alternativa prometedora para superar las limitaciones de alta movilidad de la inyección de gas en los procesos de desplazamiento, al tiempo que contribuyen al suministro energético global y a la descarbonización de las plantas industriales. En el contexto de los proyectos CCUS, esta tecnología permite ahorrar costos en la etapa de captura de CO2 y posibilita su potencial almacenamiento. Adicionalmente, esta tecnología se puede potenciar con nanopartículas, mejorando la estabilidad de la espuma, aumentando la eficiencia de barrido y el factor de recuperación de petróleo. Por lo tanto, el objetivo de este trabajo es evaluar, a escala de laboratorio, el uso de espumas de CO2/N2, representativas de corrientes de flue gas, potenciadas con NPs en procesos de EOR con potencial de almacenamiento de CO2 asociado. En este sentido, se realizaron pruebas estáticas para evaluar la estabilidad de las espumas, fabricadas con mezclas de CO2/N2 representativas de corrientes de gases de combustión, mediante pruebas de vida media, variando la concentración de surfactante y nanopartículas, el tipo de nanopartículas y las proporciones de gas Estos experimentos se complementaron con pruebas de adsorción para evaluar la interacción NP-surfactante y con pruebas de microscopía para estudiar la morfología de la espuma. Además, se realizaron dos tipos de pruebas dinámicas para evaluar la fuerza y estabilidad de la espuma, el factor de recobro incremental de petróleo y el potencial almacenamiento de CO2 mediante espumas generadas utilizando la estrategia de inyección de surfactante alternada con gas (SAG), con y sin nanopartículas. El sistema conformado por espumas de flue gas con 2500 mg·L-1 de tensioactivo Surfonic L24-22 mantuvo una viscosidad aparente más alta y alcanzó un 7% más en el factor de recobro incremental de petróleo que el sistema de espumas de CO2 supercrítico. Además, el sistema de espumas de gases de flue gas con 100 mg·L-1 de SiO2 NPs y 3000 mg·L-1 de AOS se consideró óptimo en las pruebas estáticas de estabilidad de la espuma y se evaluó en las pruebas dinámicas. Este sistema consiguió aumentos en la vida media y la durabilidad del 34% y el 80%, respectivamente, un desarrollo más rápido del proceso con un factor de recuperación de petróleo incremental de más del 13% respecto al sistema de flue gas sin NPs, y un potencial de almacenamiento de CO2 del 11%. Estos resultados demuestran el potencial de esta tecnología para reducir los costos asociados a las operaciones de inyección de gas, permitir el almacenamiento de carbono y eliminar la etapa de captura de CO2 en los proyectos CCUS. | spa |
dc.description.curriculararea | Ingeniería Química E Ingeniería De Petróleos.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.format.extent | 99 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87150 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | IPCC, Global Warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5° C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. ipcc Geneva, 2018. | spa |
dc.relation.references | N. Nazari et al., "Development of highly stable lamella using polyelectrolyte complex nanoparticles: An environmentally friendly scCO2 foam injection method for CO2 utilization using EOR," Fuel, vol. 261, p. 116360, 2020. | spa |
dc.relation.references | A. Rognmo, S. Heldal, and M. Fernø, "Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: Enhanced CO2 storage and oil recovery from mature oil reservoirs," Fuel, vol. 216, pp. 621-626, 2018. | spa |
dc.relation.references | L. L. Schramm, Emulsions, foams, and suspensions: fundamentals and applications. John Wiley & Sons, 2006. | spa |
dc.relation.references | R. Farajzadeh, A. Andrianov, R. Krastev, W. Rossen, and G. Hirasaki, "Foam-oil interaction in porous media-Implications for foam-assisted enhanced oil recovery (SPE 154197)," in 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, 2012: European Association of Geoscientists & Engineers, pp. cp-293-00225 | spa |
dc.relation.references | Z. P. Alcorn et al., "An integrated carbon-dioxide-foam enhanced-oil-recovery pilot program with combined carbon capture, utilization, and storage in an onshore Texas heterogeneous carbonate field," SPE Reservoir Evaluation & Engineering, vol. 22, no. 04, pp. 1449-1466, 2019. | spa |
dc.relation.references | S. H. Talebian, R. Masoudi, I. M. Tan, and P. L. Zitha, "Foam assisted CO2-EOR; concepts, challenges and applications," in SPE Asia Pacific Enhanced Oil Recovery Conference, 2013: SPE, pp. SPE-165280-MS. | spa |
dc.relation.references | Y. Zhang, Q. Liu, H. Ye, L. Yang, D. Luo, and B. Peng, "Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery," Journal of Petroleum Science and Engineering, vol. 202, p. 108561, 2021. | spa |
dc.relation.references | D. Kearns, H. Liu, and C. Consoli, "Technology readiness and costs of CCS," Global CCS institute, vol. 3, 2021. | spa |
dc.relation.references | R. Farajzadeh, A. Andrianov, H. Bruining, and P. L. Zitha, "Comparative study of CO2 and N2 foams in porous media at low and high pressure− temperatures," Industrial & Engineering Chemistry Research, vol. 48, no. 9, pp. 4542-4552, 2009. | spa |
dc.relation.references | J. Solbakken, "Experimental studies of N2-and CO2-foam properties in relation to enhanced oil recovery applications," 2015. | spa |
dc.relation.references | J. S. Solbakken, A. Skauge, and M. G. Aarra, "Supercritical CO2-Foam-The Importance of CO2 Density on Foams Performance," in SPE Asia Pacific Enhanced Oil Recovery Conference, 2013: SPE, pp. SPE-165296-MS. | spa |
dc.relation.references | J. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, "Wettability alteration of sandstone cores by alumina-based nanofluids," Energy & Fuels, vol. 27, no. 7, pp. 3659-3665, 2013. | spa |
dc.relation.references | R. Gajbhiye, "Effect of CO2/N2 mixture composition on interfacial tension of crude oil," Acs Omega, vol. 5, no. 43, pp. 27944-27952, 2020. | spa |
dc.relation.references | A. Abdelaal, R. Gajbhiye, and D. Al-Shehri, "Mixed CO2/N2 foam for EOR as a novel solution for supercritical CO2 foam challenges in sandstone reservoirs," ACS omega, vol. 5, no. 51, pp. 33140-33150, 2020. | spa |
dc.relation.references | M. A. Siddiqui, R. N. Gajbhiye, A. S. Sultan, and S. Abu-Khamsin, "Testing the Stability of Mixed CO2/N2-Foam Using New Fluorosurfactant for Enhanced Oil Recovery," in SPE Kuwait Oil and Gas Show and Conference, 2015: OnePetro. | spa |
dc.relation.references | S. Bender and S. Akin, "Flue gas injection for EOR and sequestration: Case study," Journal of Petroleum Science and Engineering, vol. 157, pp. 1033-1045, 2017. | spa |
dc.relation.references | Z.-H. Wang et al., "Investigation of flue gas water-alternating gas (flue gas–WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir," Petroleum Science, vol. 18, pp. 870-882, 2021. | spa |
dc.relation.references | Q. Du, H. Liu, G. Wu, J. Hou, K. Zhou, and Y. Liu, "Application of flue‐gas foam in thermal‐chemical flooding for medium‐depth heavy oil reservoirs," Energy Science & Engineering, vol. 7, no. 6, pp. 2936-2949, 2019. | spa |
dc.relation.references | H. Sun, Z. Wang, Y. Sun, G. Wu, B. Sun, and Y. Sha, "Laboratory evaluation of an efficient low interfacial tension foaming agent for enhanced oil recovery in high temperature flue-gas foam flooding," Journal of Petroleum Science and Engineering, vol. 195, p. 107580, 2020. | spa |
dc.relation.references | V. Belandria, "Estabilización de espumas no acuosas en presencia de sólidos finos," Laboratorio FIRP, Mérida, 2001 | spa |
dc.relation.references | A. M. Sæle, "CO2 Foam Dynamics During CO2 Enhanced Oil Recovery and CO2 Storage," 2023. | spa |
dc.relation.references | O. Massarweh and A. S. Abushaikha, "A review of recent developments in CO2 mobility control in enhanced oil recovery," Petroleum, vol. 8, no. 3, pp. 291-317, 2022. | spa |
dc.relation.references | A. E. Bayat, K. Rajaei, and R. Junin, "Assessing the effects of nanoparticle type and concentration on the stability of CO2 foams and the performance in enhanced oil recovery," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 511, pp. 222-231, 2016. | spa |
dc.relation.references | S. Kumar and A. Mandal, "Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery," Applied Surface Science, vol. 420, pp. 9-20, 2017. | spa |
dc.relation.references | T. N. Hunter, R. J. Pugh, G. V. Franks, and G. J. Jameson, "The role of particles in stabilising foams and emulsions," Advances in colloid and interface science, vol. 137, no. 2, pp. 57-81, 2008. | spa |
dc.relation.references | S. Li, C. Qiao, Z. Li, and S. Wanambwa, "Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide," Energy & Fuels, vol. 31, no. 2, pp. 1478-1488, 2017. | spa |
dc.relation.references | J. Yu, M. Khalil, N. Liu, and R. Lee, "Effect of particle hydrophobicity on CO2 foam generation and foam flow behavior in porous media," Fuel, vol. 126, pp. 104-108, 2014. | spa |
dc.relation.references | N. Yekeen et al., "A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery," Journal of Petroleum Science and Engineering, vol. 164, pp. 43-74, 2018. | spa |
dc.relation.references | Unece and D. Hicks, "UNECE Sustainable Energy Committee Technology Brief Carbon Capture, Use and Storage," 03/01 2021. | spa |
dc.relation.references | W. Heidug, J. Lipponen, S. McCoy, and P. Benoit, "Storing CO2 through Enhanced Oil Recovery: Combining EOR with CO2 storage (EOR+) for profit," Insight Series, 2015. | spa |
dc.relation.references | J. J. Shyeh-Yung, "Mechanisms of miscible oil recovery: effects of pressure on miscible and near-miscible displacements of oil by carbon dioxide," in SPE Annual Technical Conference and Exhibition?, 1991: SPE, pp. SPE-22651-MS | spa |
dc.relation.references | J. J. Bikerman, Foams. Springer Science & Business Media, 2013. | spa |
dc.relation.references | L. L. Schramm, Foams: fundamentals and applications in the petroleum industry. ACS Publications, 1994. | spa |
dc.relation.references | J.-L. Salager, "Surfactants types and uses," FIRP booklet, vol. 300, 2002. | spa |
dc.relation.references | A. Falls, G. Hirasaki, T. e. a. Patzek, D. Gauglitz, D. Miller, and T. Ratulowski, "Development of a mechanistic foam simulator: the population balance and generation by snap-off," SPE reservoir engineering, vol. 3, no. 03, pp. 884-892, 1988. | spa |
dc.relation.references | L. Fussell, "Sweep Improvement Scoping Studies," in SPE Annual Technical Conference and Exhibition?, 1984: SPE, pp. SPE-13168-MS. | spa |
dc.relation.references | J. Hanssen, T. Holt, and L. Surguchev, "Foam processes: an assessment of their potential in North Sea reservoirs based on a critical evaluation of current field experience," in SPE Improved Oil Recovery Conference?, 1994: SPE, pp. SPE-27768-MS. | spa |
dc.relation.references | P. Persoff, C. Radke, K. Pruess, S. Benson, and P. Witherspoon, "A laboratory investigation of foam flow in sandstone at elevated pressure," in SPE Western Regional Meeting, 1989: SPE, pp. SPE-18781-MS. | spa |
dc.relation.references | R. Ettinger and C. Radke, "Influence of texture on steady foam flow in Berea sandstone," SPE reservoir engineering, vol. 7, no. 01, pp. 83-90, 1992.V | spa |
dc.relation.references | G. G. Bernard and W. Jacobs, "Effect of foam on trapped gas saturation and on permeability of porous media to water," Society of Petroleum Engineers Journal, vol. 5, no. 04, pp. 295-300, 1965. | spa |
dc.relation.references | L. Holm, "The mechanism of gas and liquid flow through porous media in the presence of foam," Society of Petroleum Engineers Journal, vol. 8, no. 04, pp. 359-369, 1968. | spa |
dc.relation.references | R. K. Prud'Homme and S. A. Khan, Foams: theory: measurements: applications. Routledge, 2017. | spa |
dc.relation.references | T. Ransohoff and C. Radke, "Mechanisms of foam generation in glass-bead packs," SPE reservoir engineering, vol. 3, no. 02, pp. 573-585, 1988. | spa |
dc.relation.references | W. Rossen and P. Gauglitz, "Percolation theory of creation and mobilization of foams in porous media," AIChE Journal, vol. 36, no. 8, pp. 1176-1188, 1990. | spa |
dc.relation.references | M. Sagir et al., "Foams in EOR," Surfactants for Enhanced Oil Recovery Applications, pp. 41-63, 2020. | spa |
dc.relation.references | O. Obisesan, R. Ahmed, and M. Amani, "The effect of salt on stability of aqueous foams," Energies, vol. 14, no. 2, p. 279, 2021. | spa |
dc.relation.references | F. Friedmann and J. Jensen, "Some parameters influencing the formation and propagation of foams in porous media," in SPE Western Regional Meeting, 1986: SPE, pp. SPE-15087-MS. | spa |
dc.relation.references | J. J. Sheng, Enhanced oil recovery field case studies. Gulf professional publishing, 2013. | spa |
dc.relation.references | T. Majeed, T. I. Sølling, and M. S. Kamal, "Foamstability: The interplay between salt-, surfactant-and critical micelle concentration," Journal of Petroleum Science and Engineering, vol. 187, p. 106871, 2020. | spa |
dc.relation.references | Z. Khatib, G. Hirasaki, and A. Falls, "Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media," SPE reservoir engineering, vol. 3, no. 03, pp. 919-926, 1988. | spa |
dc.relation.references | W. Rossen, "Foams in enhanced oil recovery. Foams: theory, measurements, and applications. New York, Marcel Dekker," 1996. | spa |
dc.relation.references | Y. Hurtado, C. A. Franco, M. Riazi, and F. B. Cortés, "Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol," Journal of Molecular Liquids, vol. 300, p. 112256, 2020. | spa |
dc.relation.references | A. U. Rognmo et al., "Pore-to-core EOR upscaling for CO2 foam for CCUS," Spe Journal, vol. 24, no. 06, pp. 2793-2803, 2019. | spa |
dc.relation.references | A. M. Sæle, A. Graue, and Z. P. Alcorn, "Unsteady-state CO2 foam injection for increasing enhanced oil recovery and carbon storage potential," 2022. | spa |
dc.relation.references | G. J. Hirasaki and J. Lawson, "Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries," Society of Petroleum Engineers Journal, vol. 25, no. 02, pp. 176-190, 1985. | spa |
dc.relation.references | S. Jones, G. Laskaris, S. Vincent-Bonnieu, R. Farajzadeh, and W. Rossen, "Surfactant effect on foam: From core flood experiments to implicit-texture foam-model parameters," in SPE Improved Oil Recovery Conference?, 2016: SPE, pp. SPE-179637-MS. | spa |
dc.relation.references | B. Hill, S. Hovorka, and S. Melzer, "Geologic carbon storage through enhanced oil recovery," Energy Procedia, vol. 37, pp. 6808-6830, 2013. | spa |
dc.relation.references | A. Bello, A. Ivanova, and A. Cheremisin, "A comprehensive review of the role of CO2 foam EOR in the reduction of carbon footprint in the petroleum industry," Energies, vol. 16, no. 3, p. 1167, 2023. | spa |
dc.relation.references | S. Krevor et al., "Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications," International Journal of Greenhouse Gas Control, vol. 40, pp. 221-237, 2015. | spa |
dc.relation.references | S. Davoodi, M. Al-Shargabi, D. A. Wood, M. Mehrad, and V. S. Rukavishnikov, "Carbon dioxide sequestration through enhanced oil recovery: A review of storage mechanisms and technological applications," Fuel, vol. 366, p. 131313, 2024. | spa |
dc.relation.references | M. T. Alsaba, M. F. Al Dushaishi, and A. K. Abbas, "A comprehensive review of nanoparticles applications in the oil and gas industry," Journal of Petroleum Exploration and Production Technology, vol. 10, no. 4, pp. 1389-1399, 2020. | spa |
dc.relation.references | X.-C. Tang, Y.-Q. Li, Z.-Y. Liu, and N. Zhang, "Nanoparticle-reinforced foam system for enhanced oil recovery (EOR): Mechanistic review and perspective," Petroleum Science, vol. 20, no. 4, pp. 2282-2304, 2023. | spa |
dc.relation.references | M. Mansha et al., "Advancements in nanoparticle-based stabilization of CO2 Foam: Current trends, challenges, and future prospects," Journal of Molecular Liquids, vol. 391, p. 123364, 2023. | spa |
dc.relation.references | T. Zhang, M. R. Roberts, S. L. Bryant, and C. Huh, "Foams and emulsions stabilized with nanoparticles for potential conformance control applications," in SPE International Conference on Oilfield Chemistry?, 2009: SPE, pp. SPE-121744-MS. | spa |
dc.relation.references | B. Wei, L. Romero-Zerón, and D. Rodrigue, "Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): a review," Journal of Petroleum Exploration and Production Technology, vol. 4, pp. 113-121, 2014. | spa |
dc.relation.references | Q. Sun, Z. Li, S. Li, L. Jiang, J. Wang, and P. Wang, "Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles," Energy & Fuels, vol. 28, no. 4, pp. 2384-2394, 2014. | spa |
dc.relation.references | Z. Briceño-Ahumada, J. Soltero-Martínez, and R. Castillo, "Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review," Chemical Engineering Journal Advances, vol. 7, p. 100116, 2021. | spa |
dc.relation.references | B. Long et al., "In-situ activation of nano-silica and its foam stabilization mechanism," Journal of Dispersion Science and Technology, vol. 41, no. 1, pp. 72-80, 2020. | spa |
dc.relation.references | Z. AlYousef, M. Almobarky, and D. Schechter, "Enhancing the stability of foam by the use of nanoparticles," Energy & Fuels, vol. 31, no. 10, pp. 10620-10627, 2017. | spa |
dc.relation.references | C. Song and W. Pan, "Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios," Catalysis Today, vol. 98, no. 4, pp. 463-484, 2004. | spa |
dc.relation.references | Z. Abbas, T. Mezher, and M. R. Abu-Zahra, "CO2 purification. Part I: Purification requirement review and the selection of impurities deep removal technologies," International journal of greenhouse gas control, vol. 16, pp. 324-334, 2013. | spa |
dc.relation.references | M. Sandoval et al., "Experimental investigation of EOR mechanisms for cyclic steam injection assisted by flue gas," Geoenergy Science and Engineering, vol. 221, 2023. | spa |
dc.relation.references | W. Min and L. Zhang, "Application of Flue Gas Foam-Assisted Steam Flooding in Complex and Difficult-to-Produce Heavy Oil Reservoirs," ACS omega, vol. 9, no. 10, pp. 11574-11588, 2024. | spa |
dc.relation.references | Z. Ji et al., "Experimental study on conformance control using acidic nanoparticles in a heterogeneous reservoir by flue gas flooding," Energies, vol. 16, no. 1, p. 315, 2022. | spa |
dc.relation.references | H. Haishui, L. Shi, M. Desheng, J. Zemin, Y. Hongwei, and C. Xinglong, "Investigation of flue gas displacement and storage after the water flooding in a full diameter conglomerate long-core," Petroleum Exploration and Development, vol. 45, no. 5, pp. 903-909, 2018. | spa |
dc.relation.references | Q. Cao, T. Wei, G. Wu, J. Yu, K. Tian, and A. Cao, "Experimental study on flue gas foam-assisted steam flooding: investigating characteristics of enhanced oil recovery and gas storage," Frontiers in Energy Research, vol. 11, p. 1328292, 2023. | spa |
dc.relation.references | R. Farajzadeh, R. Krastev, and P. Zitha, "Foam films stabilized with alpha olefin sulfonate (AOS)," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 324, no. 1-3, pp. 35-40, 2008. | spa |
dc.relation.references | Y. Hurtado et al., "Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs," Energy & fuels, vol. 32, no. 5, pp. 5824-5833, 2018. | spa |
dc.relation.references | A. H. Chun and A. N. Martin, "Measurement of hydrophile-lipophile balance of surface-active agents," Journal of pharmaceutical sciences, vol. 50, no. 9, pp. 732-736, 1961. | spa |
dc.relation.references | S. Betancur et al., "Importance of the nanofluid preparation for ultra-low interfacial tension in enhanced oil recovery based on surfactant–nanoparticle–brine system interaction," ACS omega, vol. 4, no. 14, pp. 16171-16180, 2019. | spa |
dc.relation.references | J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, no. 3, pp. 2052-2059, 2016. | spa |
dc.relation.references | T. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”," Energy & Fuels, vol. 28, no. 8, pp. 4963-4975, 2014. | spa |
dc.relation.references | A. A. Eftekhari, R. Krastev, and R. Farajzadeh, "Foam stabilized by fly ash nanoparticles for enhancing oil recovery," Industrial & engineering chemistry research, vol. 54, no. 50, pp. 12482-12491, 2015. | spa |
dc.relation.references | M. Sagir, M. Mushtaq, M. S. Tahir, M. B. Tahir, and A. R. Shaik, Surfactants for enhanced oil recovery applications. Springer, 2020. | spa |
dc.relation.references | A. F. Belhaj, K. A. Elraies, M. S. Alnarabiji, J. A. B. Shuhli, S. M. Mahmood, and L. W. Ern, "Experimental investigation of surfactant partitioning in pre-CMC and post-CMC regimes for enhanced oil recovery application," Energies, vol. 12, no. 12, p. 2319, 2019. | spa |
dc.relation.references | M. Khajehpour, S. Reza Etminan, J. Goldman, F. Wassmuth, and S. Bryant, "Nanoparticles as foam stabilizer for steam-foam process," SPE Journal, vol. 23, no. 06, pp. 2232-2242, 2018. | spa |
dc.relation.references | M. Thommes et al., "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and applied chemistry, vol. 87, no. 9-10, pp. 1051-1069, 2015. | spa |
dc.relation.references | H. Vatanparast, F. Shahabi, A. Bahramian, A. Javadi, and R. Miller, "The role of electrostatic repulsion on increasing surface activity of anionic surfactants in the presence of hydrophilic silica nanoparticles," Scientific Reports, vol. 8, no. 1, p. 7251, 2018. | spa |
dc.relation.references | N. Yekeen, M. A. Manan, A. K. Idris, A. M. Samin, and A. R. Risal, "Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles," Journal of Petroleum Science and Engineering, vol. 159, pp. 115-134, 2017. | spa |
dc.relation.references | A. Bello, A. Ivanova, and A. Cheremisin, "Enhancing N2 and CO2 foam stability by surfactants and nanoparticles at high temperature and various salinities," Journal of Petroleum Science and Engineering, vol. 215, p. 110720, 2022. | spa |
dc.relation.references | G. G. Bernard, L. Holm, and C. P. Harvey, "Use of surfactant to reduce CO2 mobility in oil displacement," Society of Petroleum Engineers Journal, vol. 20, no. 04, pp. 281-292, 1980. | spa |
dc.relation.references | R. Farajzadeh, A. Andrianov, and P. Zitha, "Investigation of immiscible and miscible foam for enhancing oil recovery," Industrial & Engineering chemistry research, vol. 49, no. 4, pp. 1910-1919, 2010. | spa |
dc.relation.references | L. J. Giraldo, O. E. Medina, V. Ortiz-Perez, C. A. Franco, and F. B. Cortés, "Enhanced carbon storage process from flue gas streams using rice husk silica nanoparticles: An approach in shallow coal bed methane reservoirs," Energy & Fuels, vol. 37, no. 4, pp. 2945-2959, 2023. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | spa |
dc.subject.lemb | Recobro del petróleo | |
dc.subject.lemb | Dióxido de carbono | |
dc.subject.lemb | Pozos petroleros | |
dc.subject.lemb | Nanopartículas | |
dc.subject.lemb | Gases de combustión | |
dc.subject.proposal | Foams-EOR | eng |
dc.subject.proposal | Foam stability | eng |
dc.subject.proposal | Flue gas | eng |
dc.subject.proposal | Nanoparticles | eng |
dc.subject.proposal | CO2 storage | eng |
dc.subject.proposal | Almacenamiento de CO2 | spa |
dc.subject.proposal | Espumas para EOR | spa |
dc.subject.proposal | Estabilidad de las espumas | spa |
dc.subject.proposal | Gases de combustión | spa |
dc.subject.proposal | Nanopartículas | spa |
dc.title | Recobro mejorado de petróleo y almacenamiento de CO2 mediante la Inyección de espumas de mezclas de CO2/N2 provenientes de flue gas potenciadas por nanopartículas | eng |
dc.title.translated | Recobro mejorado de petróleo y almacenamiento de CO2 mediante la inyección de espumas de mezclas de CO2/N2 provenientes de Flue gas potenciadas por nanopartículas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152214901-2024.pdf
- Tamaño:
- 2.26 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: