Recobro mejorado de petróleo y almacenamiento de CO2 mediante la Inyección de espumas de mezclas de CO2/N2 provenientes de flue gas potenciadas por nanopartículas

dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.authorBenjumea García, Maria Camila
dc.contributor.googlescholarrBbGu9YAAAAJspa
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.date.accessioned2024-11-05T16:48:08Z
dc.date.available2024-11-05T16:48:08Z
dc.date.issued2024-11-04
dc.descriptionIlustracionesspa
dc.description.abstractFlue gas foams for EOR projects are a promising alternative to overcome the high mobility limitations of gas injection in displacement processes, while contributing to global energy supply and decarbonization of industrial plants. In the context of CCUS projects, this technology allows cost savings in the CO2 capture stage and enables potential CO2 storage. Furthermore, by assisting this technology with nanoparticles, the foam stability can be improved, increasing the sweep efficiency and the oil recovery factor. Therefore, the aim of this work is to evaluate, at laboratory scale, the use of CO2/N2 foams potentiated with NPs in EOR processes with associated CO2 storage potential. In this sense, static tests were performed to evaluate the stability of foams, made with CO2/N2 mixtures representative of flue gas streams, by means of half-life tests, varying the surfactant and nanoparticle concentration, nanoparticle type and gas ratios. These experiments were complemented by adsorption tests to evaluate the NP-surfactant interaction and by microscopy tests to study foam morphology. In addition, two types of dynamic tests were performed to evaluate the foam strength and stability, incremental oil recovery factor, and potential CO2 storage using foams generated by the surfactant-alternating-gas injection strategy with and without nanoparticles. The flue gas foaming system with 2500 mg·L-1 of Surfonic L24-22 surfactant maintained a higher apparent viscosity and achieved 7% higher incremental oil recovery than the supercritical CO2 foaming system. Furthermore, the flue gas foam system with 100 mg·L-1 of SiO2 NPs and 3000 mg·L-1 of AOS was considered optimal in static foam stability tests and evaluated in dynamic tests. This system achieved increases in half-life and durability of 34% and 80%, respectively, and a faster process development with an incremental oil recovery factor of more than 13% over the flue gas system without NPs, and a CO2 storage potential of 11%. These results demonstrate the potential of this technology to reduce costs associated with gas injection operations, enable carbon storage, and eliminate the CO2 capture stage in CCUS projects. (Tomado de la fuente)eng
dc.description.abstractLas espumas de flue gas para proyectos de EOR son una alternativa prometedora para superar las limitaciones de alta movilidad de la inyección de gas en los procesos de desplazamiento, al tiempo que contribuyen al suministro energético global y a la descarbonización de las plantas industriales. En el contexto de los proyectos CCUS, esta tecnología permite ahorrar costos en la etapa de captura de CO2 y posibilita su potencial almacenamiento. Adicionalmente, esta tecnología se puede potenciar con nanopartículas, mejorando la estabilidad de la espuma, aumentando la eficiencia de barrido y el factor de recuperación de petróleo. Por lo tanto, el objetivo de este trabajo es evaluar, a escala de laboratorio, el uso de espumas de CO2/N2, representativas de corrientes de flue gas, potenciadas con NPs en procesos de EOR con potencial de almacenamiento de CO2 asociado. En este sentido, se realizaron pruebas estáticas para evaluar la estabilidad de las espumas, fabricadas con mezclas de CO2/N2 representativas de corrientes de gases de combustión, mediante pruebas de vida media, variando la concentración de surfactante y nanopartículas, el tipo de nanopartículas y las proporciones de gas Estos experimentos se complementaron con pruebas de adsorción para evaluar la interacción NP-surfactante y con pruebas de microscopía para estudiar la morfología de la espuma. Además, se realizaron dos tipos de pruebas dinámicas para evaluar la fuerza y estabilidad de la espuma, el factor de recobro incremental de petróleo y el potencial almacenamiento de CO2 mediante espumas generadas utilizando la estrategia de inyección de surfactante alternada con gas (SAG), con y sin nanopartículas. El sistema conformado por espumas de flue gas con 2500 mg·L-1 de tensioactivo Surfonic L24-22 mantuvo una viscosidad aparente más alta y alcanzó un 7% más en el factor de recobro incremental de petróleo que el sistema de espumas de CO2 supercrítico. Además, el sistema de espumas de gases de flue gas con 100 mg·L-1 de SiO2 NPs y 3000 mg·L-1 de AOS se consideró óptimo en las pruebas estáticas de estabilidad de la espuma y se evaluó en las pruebas dinámicas. Este sistema consiguió aumentos en la vida media y la durabilidad del 34% y el 80%, respectivamente, un desarrollo más rápido del proceso con un factor de recuperación de petróleo incremental de más del 13% respecto al sistema de flue gas sin NPs, y un potencial de almacenamiento de CO2 del 11%. Estos resultados demuestran el potencial de esta tecnología para reducir los costos asociados a las operaciones de inyección de gas, permitir el almacenamiento de carbono y eliminar la etapa de captura de CO2 en los proyectos CCUS.spa
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extent99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87150
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesIPCC, Global Warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5° C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. ipcc Geneva, 2018.spa
dc.relation.referencesN. Nazari et al., "Development of highly stable lamella using polyelectrolyte complex nanoparticles: An environmentally friendly scCO2 foam injection method for CO2 utilization using EOR," Fuel, vol. 261, p. 116360, 2020.spa
dc.relation.referencesA. Rognmo, S. Heldal, and M. Fernø, "Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: Enhanced CO2 storage and oil recovery from mature oil reservoirs," Fuel, vol. 216, pp. 621-626, 2018.spa
dc.relation.referencesL. L. Schramm, Emulsions, foams, and suspensions: fundamentals and applications. John Wiley & Sons, 2006.spa
dc.relation.referencesR. Farajzadeh, A. Andrianov, R. Krastev, W. Rossen, and G. Hirasaki, "Foam-oil interaction in porous media-Implications for foam-assisted enhanced oil recovery (SPE 154197)," in 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, 2012: European Association of Geoscientists & Engineers, pp. cp-293-00225spa
dc.relation.referencesZ. P. Alcorn et al., "An integrated carbon-dioxide-foam enhanced-oil-recovery pilot program with combined carbon capture, utilization, and storage in an onshore Texas heterogeneous carbonate field," SPE Reservoir Evaluation & Engineering, vol. 22, no. 04, pp. 1449-1466, 2019.spa
dc.relation.referencesS. H. Talebian, R. Masoudi, I. M. Tan, and P. L. Zitha, "Foam assisted CO2-EOR; concepts, challenges and applications," in SPE Asia Pacific Enhanced Oil Recovery Conference, 2013: SPE, pp. SPE-165280-MS.spa
dc.relation.referencesY. Zhang, Q. Liu, H. Ye, L. Yang, D. Luo, and B. Peng, "Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery," Journal of Petroleum Science and Engineering, vol. 202, p. 108561, 2021.spa
dc.relation.referencesD. Kearns, H. Liu, and C. Consoli, "Technology readiness and costs of CCS," Global CCS institute, vol. 3, 2021.spa
dc.relation.referencesR. Farajzadeh, A. Andrianov, H. Bruining, and P. L. Zitha, "Comparative study of CO2 and N2 foams in porous media at low and high pressure− temperatures," Industrial & Engineering Chemistry Research, vol. 48, no. 9, pp. 4542-4552, 2009.spa
dc.relation.referencesJ. Solbakken, "Experimental studies of N2-and CO2-foam properties in relation to enhanced oil recovery applications," 2015.spa
dc.relation.referencesJ. S. Solbakken, A. Skauge, and M. G. Aarra, "Supercritical CO2-Foam-The Importance of CO2 Density on Foams Performance," in SPE Asia Pacific Enhanced Oil Recovery Conference, 2013: SPE, pp. SPE-165296-MS.spa
dc.relation.referencesJ. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, "Wettability alteration of sandstone cores by alumina-based nanofluids," Energy & Fuels, vol. 27, no. 7, pp. 3659-3665, 2013.spa
dc.relation.referencesR. Gajbhiye, "Effect of CO2/N2 mixture composition on interfacial tension of crude oil," Acs Omega, vol. 5, no. 43, pp. 27944-27952, 2020.spa
dc.relation.referencesA. Abdelaal, R. Gajbhiye, and D. Al-Shehri, "Mixed CO2/N2 foam for EOR as a novel solution for supercritical CO2 foam challenges in sandstone reservoirs," ACS omega, vol. 5, no. 51, pp. 33140-33150, 2020.spa
dc.relation.referencesM. A. Siddiqui, R. N. Gajbhiye, A. S. Sultan, and S. Abu-Khamsin, "Testing the Stability of Mixed CO2/N2-Foam Using New Fluorosurfactant for Enhanced Oil Recovery," in SPE Kuwait Oil and Gas Show and Conference, 2015: OnePetro.spa
dc.relation.referencesS. Bender and S. Akin, "Flue gas injection for EOR and sequestration: Case study," Journal of Petroleum Science and Engineering, vol. 157, pp. 1033-1045, 2017.spa
dc.relation.referencesZ.-H. Wang et al., "Investigation of flue gas water-alternating gas (flue gas–WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir," Petroleum Science, vol. 18, pp. 870-882, 2021.spa
dc.relation.referencesQ. Du, H. Liu, G. Wu, J. Hou, K. Zhou, and Y. Liu, "Application of flue‐gas foam in thermal‐chemical flooding for medium‐depth heavy oil reservoirs," Energy Science & Engineering, vol. 7, no. 6, pp. 2936-2949, 2019.spa
dc.relation.referencesH. Sun, Z. Wang, Y. Sun, G. Wu, B. Sun, and Y. Sha, "Laboratory evaluation of an efficient low interfacial tension foaming agent for enhanced oil recovery in high temperature flue-gas foam flooding," Journal of Petroleum Science and Engineering, vol. 195, p. 107580, 2020.spa
dc.relation.referencesV. Belandria, "Estabilización de espumas no acuosas en presencia de sólidos finos," Laboratorio FIRP, Mérida, 2001spa
dc.relation.referencesA. M. Sæle, "CO2 Foam Dynamics During CO2 Enhanced Oil Recovery and CO2 Storage," 2023.spa
dc.relation.referencesO. Massarweh and A. S. Abushaikha, "A review of recent developments in CO2 mobility control in enhanced oil recovery," Petroleum, vol. 8, no. 3, pp. 291-317, 2022.spa
dc.relation.referencesA. E. Bayat, K. Rajaei, and R. Junin, "Assessing the effects of nanoparticle type and concentration on the stability of CO2 foams and the performance in enhanced oil recovery," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 511, pp. 222-231, 2016.spa
dc.relation.referencesS. Kumar and A. Mandal, "Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery," Applied Surface Science, vol. 420, pp. 9-20, 2017.spa
dc.relation.referencesT. N. Hunter, R. J. Pugh, G. V. Franks, and G. J. Jameson, "The role of particles in stabilising foams and emulsions," Advances in colloid and interface science, vol. 137, no. 2, pp. 57-81, 2008.spa
dc.relation.referencesS. Li, C. Qiao, Z. Li, and S. Wanambwa, "Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide," Energy & Fuels, vol. 31, no. 2, pp. 1478-1488, 2017.spa
dc.relation.referencesJ. Yu, M. Khalil, N. Liu, and R. Lee, "Effect of particle hydrophobicity on CO2 foam generation and foam flow behavior in porous media," Fuel, vol. 126, pp. 104-108, 2014.spa
dc.relation.referencesN. Yekeen et al., "A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery," Journal of Petroleum Science and Engineering, vol. 164, pp. 43-74, 2018.spa
dc.relation.referencesUnece and D. Hicks, "UNECE Sustainable Energy Committee Technology Brief Carbon Capture, Use and Storage," 03/01 2021.spa
dc.relation.referencesW. Heidug, J. Lipponen, S. McCoy, and P. Benoit, "Storing CO2 through Enhanced Oil Recovery: Combining EOR with CO2 storage (EOR+) for profit," Insight Series, 2015.spa
dc.relation.referencesJ. J. Shyeh-Yung, "Mechanisms of miscible oil recovery: effects of pressure on miscible and near-miscible displacements of oil by carbon dioxide," in SPE Annual Technical Conference and Exhibition?, 1991: SPE, pp. SPE-22651-MSspa
dc.relation.referencesJ. J. Bikerman, Foams. Springer Science & Business Media, 2013.spa
dc.relation.referencesL. L. Schramm, Foams: fundamentals and applications in the petroleum industry. ACS Publications, 1994.spa
dc.relation.referencesJ.-L. Salager, "Surfactants types and uses," FIRP booklet, vol. 300, 2002.spa
dc.relation.referencesA. Falls, G. Hirasaki, T. e. a. Patzek, D. Gauglitz, D. Miller, and T. Ratulowski, "Development of a mechanistic foam simulator: the population balance and generation by snap-off," SPE reservoir engineering, vol. 3, no. 03, pp. 884-892, 1988.spa
dc.relation.referencesL. Fussell, "Sweep Improvement Scoping Studies," in SPE Annual Technical Conference and Exhibition?, 1984: SPE, pp. SPE-13168-MS.spa
dc.relation.referencesJ. Hanssen, T. Holt, and L. Surguchev, "Foam processes: an assessment of their potential in North Sea reservoirs based on a critical evaluation of current field experience," in SPE Improved Oil Recovery Conference?, 1994: SPE, pp. SPE-27768-MS.spa
dc.relation.referencesP. Persoff, C. Radke, K. Pruess, S. Benson, and P. Witherspoon, "A laboratory investigation of foam flow in sandstone at elevated pressure," in SPE Western Regional Meeting, 1989: SPE, pp. SPE-18781-MS.spa
dc.relation.referencesR. Ettinger and C. Radke, "Influence of texture on steady foam flow in Berea sandstone," SPE reservoir engineering, vol. 7, no. 01, pp. 83-90, 1992.Vspa
dc.relation.referencesG. G. Bernard and W. Jacobs, "Effect of foam on trapped gas saturation and on permeability of porous media to water," Society of Petroleum Engineers Journal, vol. 5, no. 04, pp. 295-300, 1965.spa
dc.relation.referencesL. Holm, "The mechanism of gas and liquid flow through porous media in the presence of foam," Society of Petroleum Engineers Journal, vol. 8, no. 04, pp. 359-369, 1968.spa
dc.relation.referencesR. K. Prud'Homme and S. A. Khan, Foams: theory: measurements: applications. Routledge, 2017.spa
dc.relation.referencesT. Ransohoff and C. Radke, "Mechanisms of foam generation in glass-bead packs," SPE reservoir engineering, vol. 3, no. 02, pp. 573-585, 1988.spa
dc.relation.referencesW. Rossen and P. Gauglitz, "Percolation theory of creation and mobilization of foams in porous media," AIChE Journal, vol. 36, no. 8, pp. 1176-1188, 1990.spa
dc.relation.referencesM. Sagir et al., "Foams in EOR," Surfactants for Enhanced Oil Recovery Applications, pp. 41-63, 2020.spa
dc.relation.referencesO. Obisesan, R. Ahmed, and M. Amani, "The effect of salt on stability of aqueous foams," Energies, vol. 14, no. 2, p. 279, 2021.spa
dc.relation.referencesF. Friedmann and J. Jensen, "Some parameters influencing the formation and propagation of foams in porous media," in SPE Western Regional Meeting, 1986: SPE, pp. SPE-15087-MS.spa
dc.relation.referencesJ. J. Sheng, Enhanced oil recovery field case studies. Gulf professional publishing, 2013.spa
dc.relation.referencesT. Majeed, T. I. Sølling, and M. S. Kamal, "Foamstability: The interplay between salt-, surfactant-and critical micelle concentration," Journal of Petroleum Science and Engineering, vol. 187, p. 106871, 2020.spa
dc.relation.referencesZ. Khatib, G. Hirasaki, and A. Falls, "Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media," SPE reservoir engineering, vol. 3, no. 03, pp. 919-926, 1988.spa
dc.relation.referencesW. Rossen, "Foams in enhanced oil recovery. Foams: theory, measurements, and applications. New York, Marcel Dekker," 1996.spa
dc.relation.referencesY. Hurtado, C. A. Franco, M. Riazi, and F. B. Cortés, "Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol," Journal of Molecular Liquids, vol. 300, p. 112256, 2020.spa
dc.relation.referencesA. U. Rognmo et al., "Pore-to-core EOR upscaling for CO2 foam for CCUS," Spe Journal, vol. 24, no. 06, pp. 2793-2803, 2019.spa
dc.relation.referencesA. M. Sæle, A. Graue, and Z. P. Alcorn, "Unsteady-state CO2 foam injection for increasing enhanced oil recovery and carbon storage potential," 2022.spa
dc.relation.referencesG. J. Hirasaki and J. Lawson, "Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries," Society of Petroleum Engineers Journal, vol. 25, no. 02, pp. 176-190, 1985.spa
dc.relation.referencesS. Jones, G. Laskaris, S. Vincent-Bonnieu, R. Farajzadeh, and W. Rossen, "Surfactant effect on foam: From core flood experiments to implicit-texture foam-model parameters," in SPE Improved Oil Recovery Conference?, 2016: SPE, pp. SPE-179637-MS.spa
dc.relation.referencesB. Hill, S. Hovorka, and S. Melzer, "Geologic carbon storage through enhanced oil recovery," Energy Procedia, vol. 37, pp. 6808-6830, 2013.spa
dc.relation.referencesA. Bello, A. Ivanova, and A. Cheremisin, "A comprehensive review of the role of CO2 foam EOR in the reduction of carbon footprint in the petroleum industry," Energies, vol. 16, no. 3, p. 1167, 2023.spa
dc.relation.referencesS. Krevor et al., "Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications," International Journal of Greenhouse Gas Control, vol. 40, pp. 221-237, 2015.spa
dc.relation.referencesS. Davoodi, M. Al-Shargabi, D. A. Wood, M. Mehrad, and V. S. Rukavishnikov, "Carbon dioxide sequestration through enhanced oil recovery: A review of storage mechanisms and technological applications," Fuel, vol. 366, p. 131313, 2024.spa
dc.relation.referencesM. T. Alsaba, M. F. Al Dushaishi, and A. K. Abbas, "A comprehensive review of nanoparticles applications in the oil and gas industry," Journal of Petroleum Exploration and Production Technology, vol. 10, no. 4, pp. 1389-1399, 2020.spa
dc.relation.referencesX.-C. Tang, Y.-Q. Li, Z.-Y. Liu, and N. Zhang, "Nanoparticle-reinforced foam system for enhanced oil recovery (EOR): Mechanistic review and perspective," Petroleum Science, vol. 20, no. 4, pp. 2282-2304, 2023.spa
dc.relation.referencesM. Mansha et al., "Advancements in nanoparticle-based stabilization of CO2 Foam: Current trends, challenges, and future prospects," Journal of Molecular Liquids, vol. 391, p. 123364, 2023.spa
dc.relation.referencesT. Zhang, M. R. Roberts, S. L. Bryant, and C. Huh, "Foams and emulsions stabilized with nanoparticles for potential conformance control applications," in SPE International Conference on Oilfield Chemistry?, 2009: SPE, pp. SPE-121744-MS.spa
dc.relation.referencesB. Wei, L. Romero-Zerón, and D. Rodrigue, "Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): a review," Journal of Petroleum Exploration and Production Technology, vol. 4, pp. 113-121, 2014.spa
dc.relation.referencesQ. Sun, Z. Li, S. Li, L. Jiang, J. Wang, and P. Wang, "Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles," Energy & Fuels, vol. 28, no. 4, pp. 2384-2394, 2014.spa
dc.relation.referencesZ. Briceño-Ahumada, J. Soltero-Martínez, and R. Castillo, "Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review," Chemical Engineering Journal Advances, vol. 7, p. 100116, 2021.spa
dc.relation.referencesB. Long et al., "In-situ activation of nano-silica and its foam stabilization mechanism," Journal of Dispersion Science and Technology, vol. 41, no. 1, pp. 72-80, 2020.spa
dc.relation.referencesZ. AlYousef, M. Almobarky, and D. Schechter, "Enhancing the stability of foam by the use of nanoparticles," Energy & Fuels, vol. 31, no. 10, pp. 10620-10627, 2017.spa
dc.relation.referencesC. Song and W. Pan, "Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios," Catalysis Today, vol. 98, no. 4, pp. 463-484, 2004.spa
dc.relation.referencesZ. Abbas, T. Mezher, and M. R. Abu-Zahra, "CO2 purification. Part I: Purification requirement review and the selection of impurities deep removal technologies," International journal of greenhouse gas control, vol. 16, pp. 324-334, 2013.spa
dc.relation.referencesM. Sandoval et al., "Experimental investigation of EOR mechanisms for cyclic steam injection assisted by flue gas," Geoenergy Science and Engineering, vol. 221, 2023.spa
dc.relation.referencesW. Min and L. Zhang, "Application of Flue Gas Foam-Assisted Steam Flooding in Complex and Difficult-to-Produce Heavy Oil Reservoirs," ACS omega, vol. 9, no. 10, pp. 11574-11588, 2024.spa
dc.relation.referencesZ. Ji et al., "Experimental study on conformance control using acidic nanoparticles in a heterogeneous reservoir by flue gas flooding," Energies, vol. 16, no. 1, p. 315, 2022.spa
dc.relation.referencesH. Haishui, L. Shi, M. Desheng, J. Zemin, Y. Hongwei, and C. Xinglong, "Investigation of flue gas displacement and storage after the water flooding in a full diameter conglomerate long-core," Petroleum Exploration and Development, vol. 45, no. 5, pp. 903-909, 2018.spa
dc.relation.referencesQ. Cao, T. Wei, G. Wu, J. Yu, K. Tian, and A. Cao, "Experimental study on flue gas foam-assisted steam flooding: investigating characteristics of enhanced oil recovery and gas storage," Frontiers in Energy Research, vol. 11, p. 1328292, 2023.spa
dc.relation.referencesR. Farajzadeh, R. Krastev, and P. Zitha, "Foam films stabilized with alpha olefin sulfonate (AOS)," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 324, no. 1-3, pp. 35-40, 2008.spa
dc.relation.referencesY. Hurtado et al., "Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs," Energy & fuels, vol. 32, no. 5, pp. 5824-5833, 2018.spa
dc.relation.referencesA. H. Chun and A. N. Martin, "Measurement of hydrophile-lipophile balance of surface-active agents," Journal of pharmaceutical sciences, vol. 50, no. 9, pp. 732-736, 1961.spa
dc.relation.referencesS. Betancur et al., "Importance of the nanofluid preparation for ultra-low interfacial tension in enhanced oil recovery based on surfactant–nanoparticle–brine system interaction," ACS omega, vol. 4, no. 14, pp. 16171-16180, 2019.spa
dc.relation.referencesJ. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, no. 3, pp. 2052-2059, 2016.spa
dc.relation.referencesT. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”," Energy & Fuels, vol. 28, no. 8, pp. 4963-4975, 2014.spa
dc.relation.referencesA. A. Eftekhari, R. Krastev, and R. Farajzadeh, "Foam stabilized by fly ash nanoparticles for enhancing oil recovery," Industrial & engineering chemistry research, vol. 54, no. 50, pp. 12482-12491, 2015.spa
dc.relation.referencesM. Sagir, M. Mushtaq, M. S. Tahir, M. B. Tahir, and A. R. Shaik, Surfactants for enhanced oil recovery applications. Springer, 2020.spa
dc.relation.referencesA. F. Belhaj, K. A. Elraies, M. S. Alnarabiji, J. A. B. Shuhli, S. M. Mahmood, and L. W. Ern, "Experimental investigation of surfactant partitioning in pre-CMC and post-CMC regimes for enhanced oil recovery application," Energies, vol. 12, no. 12, p. 2319, 2019.spa
dc.relation.referencesM. Khajehpour, S. Reza Etminan, J. Goldman, F. Wassmuth, and S. Bryant, "Nanoparticles as foam stabilizer for steam-foam process," SPE Journal, vol. 23, no. 06, pp. 2232-2242, 2018.spa
dc.relation.referencesM. Thommes et al., "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and applied chemistry, vol. 87, no. 9-10, pp. 1051-1069, 2015.spa
dc.relation.referencesH. Vatanparast, F. Shahabi, A. Bahramian, A. Javadi, and R. Miller, "The role of electrostatic repulsion on increasing surface activity of anionic surfactants in the presence of hydrophilic silica nanoparticles," Scientific Reports, vol. 8, no. 1, p. 7251, 2018.spa
dc.relation.referencesN. Yekeen, M. A. Manan, A. K. Idris, A. M. Samin, and A. R. Risal, "Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles," Journal of Petroleum Science and Engineering, vol. 159, pp. 115-134, 2017.spa
dc.relation.referencesA. Bello, A. Ivanova, and A. Cheremisin, "Enhancing N2 and CO2 foam stability by surfactants and nanoparticles at high temperature and various salinities," Journal of Petroleum Science and Engineering, vol. 215, p. 110720, 2022.spa
dc.relation.referencesG. G. Bernard, L. Holm, and C. P. Harvey, "Use of surfactant to reduce CO2 mobility in oil displacement," Society of Petroleum Engineers Journal, vol. 20, no. 04, pp. 281-292, 1980.spa
dc.relation.referencesR. Farajzadeh, A. Andrianov, and P. Zitha, "Investigation of immiscible and miscible foam for enhancing oil recovery," Industrial & Engineering chemistry research, vol. 49, no. 4, pp. 1910-1919, 2010.spa
dc.relation.referencesL. J. Giraldo, O. E. Medina, V. Ortiz-Perez, C. A. Franco, and F. B. Cortés, "Enhanced carbon storage process from flue gas streams using rice husk silica nanoparticles: An approach in shallow coal bed methane reservoirs," Energy & Fuels, vol. 37, no. 4, pp. 2945-2959, 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembRecobro del petróleo
dc.subject.lembDióxido de carbono
dc.subject.lembPozos petroleros
dc.subject.lembNanopartículas
dc.subject.lembGases de combustión
dc.subject.proposalFoams-EOReng
dc.subject.proposalFoam stabilityeng
dc.subject.proposalFlue gaseng
dc.subject.proposalNanoparticleseng
dc.subject.proposalCO2 storageeng
dc.subject.proposalAlmacenamiento de CO2spa
dc.subject.proposalEspumas para EORspa
dc.subject.proposalEstabilidad de las espumasspa
dc.subject.proposalGases de combustiónspa
dc.subject.proposalNanopartículasspa
dc.titleRecobro mejorado de petróleo y almacenamiento de CO2 mediante la Inyección de espumas de mezclas de CO2/N2 provenientes de flue gas potenciadas por nanopartículaseng
dc.title.translatedRecobro mejorado de petróleo y almacenamiento de CO2 mediante la inyección de espumas de mezclas de CO2/N2 provenientes de Flue gas potenciadas por nanopartículasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152214901-2024.pdf
Tamaño:
2.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: