Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá

dc.contributor.advisorBotero Fernández, Verónica
dc.contributor.authorCastillo Giraldo, Soraya
dc.contributor.cvlacCastillo Giraldo, Sorayaspa
dc.contributor.googlescholarCastillo Giraldo, Sorayaspa
dc.contributor.orcidhttps://orcid.org/0000-0002-2968-8860spa
dc.contributor.researchgateCastillo Giraldo, Sorayaspa
dc.contributor.scopusCastillo Giraldo, Sorayaspa
dc.contributor.scopusCastillo Giraldo, Sorayaspa
dc.date.accessioned2023-06-01T21:03:36Z
dc.date.available2023-06-01T21:03:36Z
dc.date.issued2023-05-23
dc.descriptionIlustracionesspa
dc.description.abstractLa respuesta hidrológica (HR) de los cauces a eventos de precipitación, es reportada como un proceso de importante variabilidad debido a los múltiples y complejos factores controladores que lo influencian. Este trabajo explora dicha variabilidad en las sub-cuencas del valle de Aburrá (AV), enfocándose en los dos factores con mayor dominio en la HR a escala de evento: la precipitación detonante y las condiciones de humedad antecedentes. Para ello se comparó información hidrológica de nivel y precipitación de radar, con una resolución temporal fina, en 58 sub-cuencas dentro del área de estudio. A su vez, esta información fue contrastada con las principales características físicas de las subcuencas. Se realizaron también análisis de los registros de la primera red de humedad del suelo (SM) in-situ de la zona, que incluyó 7 sub-cuencas del AV, en comparación con la información de eventos de precipitación y crecientes. El análisis de los eventos de tormentas en el AV, exhibió una relación creciente entre las magnitudes de la precipitación acumulada y el nivel máximo alcanzado por las crecientes. El estudio sugiere que la manifestación de dicha relación es susceptible al tamaño de la muestra de eventos y a la metodología usada para identificar los mismos; al analizar con menos cantidad de eventos, las magnitudes de precipitaciones y crecientes no presentaron relaciones observables. Por otro lado, se encontró que al final de las temporadas de lluvia en el AV se necesitan menores magnitudes de lluvia para detonar crecientes, mientras que al final de las temporadas secas son necesarios eventos de precipitación de mayor acumulado. En contraste, los patrones encontrados respecto al rol de la precipitación en la HR, no presentaron relaciones observables con las principales características físicas de las sub-cuencas de interés. Respecto a la humedad del suelo, los análisis manifestaron relaciones crecientes entre los picos de SM y de las crecientes durante eventos de precipitación. Adicionalmente, se encontraron relaciones de umbral entre la precipitación acumulada y humedad del suelo máxima durante eventos de lluvia, así como entre las magnitudes pico de humedad del suelo y de las crecientes; ambos comportamientos de umbral asociadas a valores de similares SM. Estos hallazgos sugieren que al superar cierto umbral de humedad del suelo, los eventos de creciente más relevantes pueden presentar mayor probabilidad de ocurrencia. En general, los resultados de este estudio pusieron de manifiesto el rol de ambos factores controladores de la HR, la precipitación y las condiciones de humedad antecedente, en las subcuencas del Valle de Aburrá. Estos sugieren que el monitoreo de ambos factores es potencialmente útil para el entendimiento y la alerta temprana de eventos de creciente en el área de estudio. (Texto tomado de la fuente)spa
dc.description.abstractThe hydrological response (HR) of watersheds to storm events, is recognized as a quite variable process due to the multiple and complex controlling factors that can influence it. This work aims to explore this variability in the sub-basins within the Aburr´a Valley (AV) watershed, focused on the two most dominant factors regarding the HR: the triggering rainfall and the antecedent moisture conditions. To achieve this, we compared the hydrological information of water level and radar-derived precipitation, at a fine temporal scale, within 58 sub-basins in the study area. At the same time, these records were contrasted with the main physical features of the sub-basins. We also fulfilled an analysis of the first soil moisture network records in the zone, which include 7 of the AV sub-basins, in comparison to the precipitation and flood events. The analysis of the storm events within the AV exhibited an increasing relationship between the magnitudes of accumulated precipitation and the peak level reached by the floods. The study suggests that the display of that relationship is susceptible to the sizes of the events samples, as well as to the methodology used to identify them; in analysis with much fewer events, the magnitudes of rainfall and floods did not show perceptible relationships. On the other hand, it was found that at the end of the AV rainfall seasons, less rainfall is needed to trigger floods, while at the end of dry seasons, greater accumulated precipitation events are needed to trigger floods of similar magnitudes. In contrast, the patterns regarding the role of precipitation on the HR did not exhibit an observable relationship with the main physical features of the studied sub-basins. In regard to soil moisture, the analysis showed increasing relationships between the peaks of SM and floods during rainfall events. Additionally, threshold relationships were found between the accumulated precipitation and the peak soil moisture during events, as well as between the peak magnitudes of soil moisture and flood events; both threshold behaviors were found associated with similar SM values. These findings suggest that the most relevant flood events can be more probable if the soil moisture exceeds a certain threshold. In general, the results of this study exhibited the role of both HR controlling factors, rainfall and antecedent moisture conditions. They suggest the monitoring of both factors to be potentially useful for the understanding and the early warning of flood events within the study area.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Recursos Hidráulicosspa
dc.format.extent85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83955
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAli, G., Tetzlaff, D., Mcdonnell, J. J., Soulsby, C., Carey, S., Laudon, H., Mcguire, K., Buttle, J., Seibert, J., and Shanley, J. (2015). Comparison of threshold hydrologic response across northern catchments. Hydrological Processes, 29:3575–3591.spa
dc.relation.referencesAmbroise, B. (2004). Variable ‘active’ versus ‘contributing’ areas or periods: a necessary distinction. Hydrological Processes, 18:1149–1155.spa
dc.relation.referencesAres, M. G., Varni, M., and Chagas, C. (2020). Runoff response of a small agricultural basin in the argentine pampas considering connectivity aspects. Hydrological Processes, 34:3102–3119.spa
dc.relation.referencesAristizabal, E. and Yokota, S. (2008). Geomorphological evolution of the aburr´a valley, northern colombian andes, and implications for landslide occurrence.spa
dc.relation.referencesBartlett, M. S., Parolari, A. J., McDonnell, J. J., and Porporato, A. (2016). Beyond the scscn method: A theoretical framework for spatially lumped rainfall-runoff response. Water Resources Research, 52:4608–4627.spa
dc.relation.referencesBhaskar, N. R., French, M. N., and Kyiamah, G. K. (2000). Characterization of flash floods in eastern kentucky. Journal of Hydrologic Engineering, 5:327–331.spa
dc.relation.referencesBlume, T. and van Meerveld, H. J. (2015). From hillslope to stream: methods to investigate subsurface connectivity. Wiley Interdisciplinary Reviews: Water, 2:177–198spa
dc.relation.referencesCaballero, J. H., Rend´on, A., Gallego, J. J., and Uasapud, N. V. (2016). Inter-andean cauca river canyon. World Geomorphological Landscapes, pages 155–166.spa
dc.relation.referencesChang, X., Nie, F., Wang, S., Yang, Y., Zhou, X., and Zhang, C. (2016). Compound rank-k projections for bilinear analysis. IEEE Transactions on Neural Networks and Learning Systems, 27:1502–1513.spa
dc.relation.referencesCoopersmith, E. J., Cosh, M. H., Starks, P. J., Bosch, D. D., Collins, C. H., Seyfried, M., Livingston, S., and Prueger, J. (2021). Understanding temporal stability: a longterm analysis of usda ars watersheds. https://doi.org/10.1080/17538947.2021.1943550, 14:1243–1254.spa
dc.relation.referencesDorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiov´a, A., Sanchis-Dufau, A., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12:1–21.spa
dc.relation.referencesEmmanuel, I., Andrieu, H., Leblois, E., Janey, N., and Payrastre, O. (2015). Influence of rainfall spatial variability on rainfall–runoff modelling: Benefit of a simulation approach? Journal of Hydrology, 531:337–348spa
dc.relation.referencesFortesa, J., Latron, J., Garc´ıa-Comendador, J., Tom`as-Burguera, M., Company, J., Calsamiglia, A., and Estrany, J. (2020). Multiple temporal scales assessment in the hydrological response of small mediterranean-climate catchments. Water 2020, Vol. 12, Page 299, 12:299.spa
dc.relation.referencesGraham, C. B., Woods, R. A., and McDonnell, J. J. (2010). Hillslope threshold response to rainfall: (1) a field based forensic approach. Journal of Hydrology, 393:65–76.spa
dc.relation.referencesHao, R. N., Xu, Y. P., and Chiang, Y. M. (2021). Identification of the controlling factors for hydrological responses by artificial neural networks. Hydrological Processes, 35:e14420.spa
dc.relation.referencesHorton, R. E. (1933). The rˆole of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14:446–460.spa
dc.relation.referencesHouze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R. (2015). The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Reviews of Geophysics, 53:994–1021.spa
dc.relation.referencesJadidoleslam, N., Mantilla, R., Krajewski, W. F., and Goska, R. (2019). Investigating the role of antecedent smap satellite soil moisture, radar rainfall and modis vegetation on runoff production in an agricultural region. Journal of Hydrology, 579:124210.spa
dc.relation.referencesKim, J., Johnson, L., Cifelli, R., Thorstensen, A., and Chandrasekar, V. (2019). Assessment of antecedent moisture condition on flood frequency: An experimental study in napa river basin, ca. Journal of Hydrology: Regional Studies, 26:100629.spa
dc.relation.referencesLiu, F. and Deng, Y. (2021). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems, 29:986–995.spa
dc.relation.referencesMarchi, L., Borga, M., Preciso, E., and Gaume, E. (2010). Characterisation of selected extreme flash floods in europe and implications for flood risk management. Journal of Hydrology, 394:118–133.spa
dc.relation.referencesMarin, R. J., Garc´ıa, E. F., and Aristiz´abal, E. (2020). Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides. Engineering Geology, 278:105855spa
dc.relation.referencesNord, G., Boudevillain, B., Berne, A., Branger, F., Braud, I., Dramais, G., G´erard, S., Coz, J. L., Legoˆut, C., Molini´e, G., Baelen, J. V., Vandervaere, J. P., Andrieu, J., Aubert, C., Calianno, M., Delrieu, G., Grazioli, J., Hachani, S., Horner, I., Huza, J., Boursicaud, R. L., Raupach, T. H., Teuling, A. J., Uber, M., Vincendon, B., and Wijbrans, A. (2017). A high space-time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale mediterranean catchment (auzon) of the ard`eche region, france. Earth System Science Data, 9:221–249.spa
dc.relation.referencesOspina, S., Zapata, E., Velasquez, N., Ortiz, C. D. H., Sep´ulveda, J., Henao, M. Z. Z., Guzm´an, G., Ospina, S., Zapata, E., Velasquez, N., Ortiz, C. D. H., Sep´ulveda, J., Henao, M. Z. Z., and Guzm´an, G. (2019). A high-resolution model for the assessment and forecasting of wildfire susceptibility. AGUFM, 2019:NH43C–0946.spa
dc.relation.referencesPathiraja, S., Westra, S., and Sharma, A. (2012). Why continuous simulation? the role of antecedent moisture in design flood estimation. Water Resources Research, 48:6534spa
dc.relation.referencesPenna, D., Meerveld, H. J. T.-V., Gobbi, A., Borga, M., and Fontana, G. D. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15:689–702spa
dc.relation.referencesRose, L. A., Karwan, D. L., and Godsey, S. E. (2018). Concentration–discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrological Processes, 32:2829–2844.spa
dc.relation.referencesShahapure, K. R. and Nicholas, C. (2020). Cluster quality analysis using silhouette score. Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, pages 747–748.spa
dc.relation.referencesSumargo, E., McMillan, H., Weihs, R., Ellis, C. J., Wilson, A. M., and Ralph, F. M. (2021). A soil moisture monitoring network to assess controls on runoff generation during atmospheric river events. Hydrological Processes, 35:e13998.spa
dc.relation.referencesTurnbull, L., Wainwright, J., and Brazier, R. E. (2008). A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology, 1:23–34.spa
dc.relation.referencesUber, M., Vandervaere, J. P., Zin, I., Braud, I., Heistermann, M., Legoˆut, C., Molini´e, G., and Nord, G. (2018). How does initial soil moisture influence the hydrological response? a case study from southern france. Hydrology and Earth System Sciences, 22:6127–6146.spa
dc.relation.referencesVenkatesh, B., Lakshman, N., Purandara, B. K., and Reddy, V. B. (2011). Analysis of observed soil moisture patterns under different land covers in western ghats, india. Journal of Hydrology, 397:281–294.spa
dc.relation.referencesWang, Y., Gao, L., Huang, S., and Peng, X. (2022). Combined effects of rainfall types and antecedent soil moisture on runoff generation at a hillslope of red soil region. European Journal of Soil Science, 73:e13274.spa
dc.relation.referencesYang, Y., Zhang, J., Bao, Z., Ao, T., Wang, G., Wu, H., Wang, J., Yang, Y. ., Zhang, J. ., Bao, Z. ., Ao, T. ., Wang, G. ., Wu, H. ., Wang, J., and Alexakis, D. D. (2021). Evaluation of multi-source soil moisture datasets over central and eastern agricultural area of china using in situ monitoring network. Remote Sensing 2021, Vol. 13, Page 1175, 13:1175.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembHumedad de suelos
dc.subject.proposalRespuesta hidrológicaspa
dc.subject.proposalCrecientesspa
dc.subject.proposalPrecipitación detonantespa
dc.subject.proposalHumedad del suelospa
dc.subject.proposalMonitoreo en tiempo realspa
dc.subject.proposalRiesgo por inundaciónspa
dc.subject.proposalHydrological responseeng
dc.subject.proposalFloodseng
dc.subject.proposalTriggering rainfalleng
dc.subject.proposalSoil moistureeng
dc.subject.proposalReal-time monitoringeng
dc.subject.proposalFlood riskeng
dc.titleAnálisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburráspa
dc.title.translatedAnalysis of the influence of rainfall and antecedent conditions on the hydrograph generation at event scale in the Aburra Valley watershed
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1104430828_2023.pdf
Tamaño:
22.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: