Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.advisorRodríguez Rey, Boris Anghelo
dc.contributor.authorBernal García, Diego Nicolás
dc.contributor.researchgroupGrupo de Óptica e Información Cuánticaspa
dc.contributor.researchgroupSuperconductividad y nanotecnologíaspa
dc.date.accessioned2021-05-18T17:23:59Z
dc.date.available2021-05-18T17:23:59Z
dc.date.issued2020-08
dc.descriptiondiagramas, ilustraciones a color, tablasspa
dc.description.abstractIn this thesis, I present methods and techniques for the study and use of non- stationary quantum phenomena in cavity quantum electrodynamics and optomechanics. Thus, I introduce a multiple-scale perturbation technique that allows us to find excellent approximate solutions to time-local master equations describing open quantum systems, both in the stationary and nonstationary regimes. The technique provides the time-evolution of the corresponding dynamical map and, consequently, the time-evolution of the system density matrix for arbitrary initial conditions, allowing us to identify in each order the characteristic time scales involved in the problem. Furthermore, I present a nonstationary protocol for the sensing of a classical force driving a mechanical oscillator coupled to an electromagnetic cavity under two-tone driving. The applied force shifts the position of the mechanical oscillator, whose change can be monitored through the output electromagnetic field. For the purpose of analysing the force sensitivity quantitatively, I develop a theoretical framework based on the signal-to-noise ratio of linear spectral measurements, stationary or nonstationary, and I determine the conditions for optimal sensitivity. The results presented here open the door to the exploration of new forms to enhance quantum effects far from the traditional stationary regime.eng
dc.description.abstractEn esta tesis, presento métodos y técnicas para el estudio y aprovechamiento de fenómenos cuánticos no estacionarios en electrodinámica y optomecánica cuántica de cavidades. De esta manera, presento una técnica de perturbaciones de escalas múltiples que nos permite encontrar excelentes soluciones aproximadas a ecuaciones maestras locales en el tiempo describiendo sistemas cuánticos abiertos, tanto en el régimen estacionario como no estacionario. La técnica provee la evolución en el tiempo del mapa dinámico correspondiente y, en consecuencia, la evolución en el tiempo de la matriz densidad del sistema para condiciones iniciales arbitrarias, lo que nos permite identificar en cada orden las escalas de tiempo características involucradas en el problema. Además, presento un protocolo no estacionario para la detección de una fuerza clásica que impulsa un oscilador mecánico acoplado a una cavidad electromagnética bajo bombeo a dos tonos. La fuerza aplicada cambia la posición del oscilador mecánico, cuyo cambio puede ser monitoreado a través del campo electromagnético de salida. Con el fin de analizar cuantitativamente la sensibilidad a la fuerza, desarrollo un marco teórico basado en la razón señal-ruido en mediciones espectrales lineales, estacionarias o no estacionarias, y determino las condiciones para una sensibilidad óptima. Los resultados aquí presentados abren la puerta a la exploración de nuevas formas para potenciar los efectos cuánticos lejos del tradicional régimen estacionario.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ciencias - Físicaspa
dc.format.extent1 recurso en línea (187 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79529
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesA. Reiserer and G. Rempe, ‘Cavity-based quantum networks with single atoms and optical photons’, Rev. Mod. Phys. 87, 1379 (2015).spa
dc.relation.referencesS. Haroche, ‘Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary’, Reviews of Modern Physics 85, 1083 (2013).spa
dc.relation.referencesD. Castelvecchi, ‘Quantum computers ready to leap out of the lab in 2017’, Nature 541, 9 (2017).spa
dc.relation.referencesH. J. Kimble, ‘The quantum internet’, Nature 453, 1023 (2008).spa
dc.relation.references
I. Bloch, J. Dalibard and S. Nascimbène, ‘Quantum simulations with ultracold quantum gases’, Nature Physics 8, 267 (2012).spa
dc.relation.references
L. M. Duan and C. Monroe, ‘Colloquium: Quantum networks with trapped ions’, Reviews of Modern Physics 82, 1209 (2010).spa
dc.relation.referencesS. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann and G. Rempe, ‘An elementary quantum network of single atoms in optical cavities’, Nature 484, 195 (2012).spa
dc.relation.referencesA. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, ‘Quantum information processing using quantum dot spins and cavity QED’, Physical Review Letters 83, 4204 (1999).spa
dc.relation.referencesD. Englund, A. Faraon, I. Fushman and J. Vuckovic, ‘Quantum information processing on photonic crystal chips’, SPIE Newsroom, 2 (2008).spa
dc.relation.referencesC. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori and P. Delsing, ‘Observation of the dynamical Casimir effect in a superconducting circuit.’, Nature 479, 376 (2011).spa
dc.relation.referencesJ. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, ‘Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Net- work’, Physical Review Letters 78, 3221 (1997).spa
dc.relation.referencesB. Kraus and J. I. Cirac, ‘Discrete entanglement distribution with squeezed light.’, Physical Review Letters 92, 013602 (2004).spa
dc.relation.referencesS. Bose, P. L. Knight, M. B. Plenio and V. Vedral, ‘Proposal for Teleportation of an Atomic State via Cavity Decay’, Physical Review Letters 83, 5158 (1999).spa
dc.relation.referencesS. L. Braunstein and P. van Loock, ‘Quantum information with continuous variables’, Reviews of Modern Physics 77, 513 (2005).spa
dc.relation.referencesT. C. H. Liew and V. Savona, ‘Single photons from coupled quantum modes’, Physical Review Letters 104, 2 (2010).spa
dc.relation.referencesK. M. Birnbaum, A. Boca, R. Miller, a. D. Boozer, T. E. Northup and H. J. Kimble, ‘Photon blockade in an optical cavity with one trapped atom’, Nature 436, 87 (2005).spa
dc.relation.referencesA. Majumdar and D. Gerace, ‘Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity’, Physical Review B 87, 235319 (2013).spa
dc.relation.referencesK. Hammerer, A. S. Sørensen and E. S. Polzik, ‘Quantum interface between light and atomic ensembles’, Rev. Mod. Phys. 82, 1041 (2010).spa
dc.relation.referencesA. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl and M. D. Lukin, ‘Photon-photon interactions via Rydberg blockade’, Phys. Rev. Lett. 107, 1 (2011).spa
dc.relation.referencesO. L. Berman, R. Y. Kezerashvili and Y. E. Lozovik, ‘Quantum entanglement for two qubits in a nonstationary cavity’, PhysicalReviewA052308,1(2016).spa
dc.relation.referencesI. Carusotto, S. De Liberato, D. Gerace and C. Ciuti, ‘Back-reaction effects of quantum vacuum in cavity quantum electrodynamics’, Physical Review A 85, 023805 (2012).spa
dc.relation.referencesD. Chang, V. Vuletic and M. Lukin, ‘Quantum nonlinear optics — photon by photon’, Nature Photonics 8, 685 (2014).spa
dc.relation.referencesE. del Valle Reboul, ‘Quantum Electrodynamics with Quantum Dots in Microcavities’, PhD thesis (Universidad Autónoma de Madrid, 2009), p. 260.spa
dc.relation.referencesJ. I. Perea, D. Porras and C. Tejedor, ‘Dynamics of the excitations of a quantum dot in a microcavity’, Physical Review B 70, 115304 (2004).spa
dc.relation.referencesT. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, ‘Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity’, Nature 432, 200 (2004).spa
dc.relation.referencesA. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin and R. J. Schoelkopf, ‘Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation’, Physical Review A 69, 062320 (2004).spa
dc.relation.referencesJ. Larson, ‘Dynamics of the jaynes-cummings and rabi models: old wine in new bottles’, Physica Scripta 76, 146 (2007).spa
dc.relation.referencesE. Jaynes and F. Cummings, ‘Comparison of quantum and semiclassical radiation theories with application to the beam maser’, Proceedings of the IEEE 51 (1963).spa
dc.relation.referencesN. Quesada, H. Vinck-Posada and B. A. Rodríguez, ‘Density operator of a system pumped with polaritons: a Jaynes-Cummings-like approach.’, Journal of physics. Condensed matter : an Institute of Physics journal 23, 025301 (2011).spa
dc.relation.referencesJ. Vuckovic, D. Fattal, C. Santori, G. S. Solomon and Y. Yamamoto, ‘En- hanced single-photon emission from a quantum dot in a micropost microcavity’, Applied Physics Letters 82, 3596 (2003).spa
dc.relation.referencesD. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez and D. Ballarini, ‘Entanglement properties of quantum polaritons’, Phys. Rev. B 93, 205302 (2016).spa
dc.relation.referencesJ. P. Reithmaier, G. Sek, a. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and a. Forchel, ‘Strong coupling in a single quantum dot-semiconductor microcavity system.’, Nature 432, 197 (2004).spa
dc.relation.referencesT. Niemczyk et al., ‘Circuit quantum electrodynamics in the ultrastrong- coupling regime’, Nature Physics 6, 772 (2010).spa
dc.relation.referencesJ. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll and E. Solano, ‘Deep strong coupling regime of the jaynes-cummings model’, Phys. Rev. Lett. 105, 263603 (2010).spa
dc.relation.referencesP. Goy, J. M. Raimond, M. Gross and S. Haroche, ‘Observation of cavity- enhanced single-atom spontaneous emission’, Phys. Rev. Lett. 50, 1903 (1983).spa
dc.relation.referencesS. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond and S. Haroche, ‘Reconstruction of non-classical cavity field states with snapshots of their decoherence’, Nature 455, 510 (2008).spa
dc.relation.referencesM. Saffman, T. G. Walker and K. Mølmer, ‘Quantum information with rydberg atoms’, Rev. Mod. Phys. 82, 2313 (2010).spa
dc.relation.referencesD. P. DiVicenzo, ‘Mesoscopic Electron Transport’, in , edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Springer Netherlands, 1997) Chap. Topics in Quantum Computation.spa
dc.relation.referencesG. Scalari et al., ‘Ultrastrong coupling of the cyclotron transition of a 2d electron gas to a thz metamaterial’, Science 335, 1323 (2012).spa
dc.relation.referencesA. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin and R. J. Schoelkopf, ‘Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics’, Nature 431, 162 (2004).spa
dc.relation.referencesG. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch and a. Scherer, ‘Vacuum Rabi splitting in semiconductors’, Nature Physics 2, 81 (2006).spa
dc.relation.referencesL. Jacak, P. Hawrylak and A. Wójs, Quantum Dots (Springer, 1998).spa
dc.relation.referencesF. P. Laussy, E. Del Valle and C. Tejedor, ‘Strong coupling of quantum dots in microcavities’, Physical Review Letters 101, 1 (2008).spa
dc.relation.referencesK. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu and A. Imamoglu, ‘Quantum nature of a strongly-coupled single quantum dot-cavity system’, Nature 445, 896 (2006).spa
dc.relation.referencesD. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel and Y. Yamamoto, ‘Photon antibunching from a single quantum- dot-microcavity system in the strong coupling regime’, Phys. Rev. Lett. 98, 117402 (2007).spa
dc.relation.referencesC. A. Vera, N. Quesada, H. Vinck-Posada and B. A. Rodríguez, ‘Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum dot system’, Journal of Physics: Condensed Matter 21, 395603 (2009).spa
dc.relation.referencesJ. Kasprzak, S. Reitzenstein, E. a. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel and W. Langbein, ‘Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system’, Nature Materials 9, 304 (2010).spa
dc.relation.referencesY.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu and J.-W. Pan, ‘On-demand semiconductor single-photon source with near-unity indistinguishability’, Nature nanotechnology 8, 213 (2013).spa
dc.relation.referencesR. Oulton, ‘Quantum dots: Electrifying cavities’, Nature Nanotechnology 9, 169 (2014).spa
dc.relation.referencesJ. Clarke and F. K. Wilhelm, ‘Superconducting quantum bits’, Nature 453, 1031 (2008).spa
dc.relation.referencesY.-x. Liu, J. Q. You, L. F. Wei, C. P. Sun and F. Nori, ‘Optical Selection Rules and Phase-Dependent Adiabatic State Control in a Superconducting Quantum Circuit’, Physical Review Letters 95, 087001 (2005).spa
dc.relation.referencesC. Navarrete-Benlloch, J. J. García-Ripoll and D. Porras, ‘Inducing Non- classical Lasing via Periodic Drivings in Circuit Quantum Electrodynamics’, Physical Review Letters 113, 193601 (2014).spa
dc.relation.referencesA. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba and F. Beltram, ‘Signatures of the ultrastrong light-matter coupling regime’, Physical Review B 79, 201303 (2009).spa
dc.relation.referencesP. D. Nation, J. R. Johansson, M. P. Blencowe and F. Nori, ‘Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits’, Rev. Mod. Phys. 84, 1 (2012).spa
dc.relation.referencesG. T. Moore, ‘Quantum Theory of the Electromagnetic Field in a Variable- Length One-Dimensional Cavity’, Journal of Mathematical Physics 11, 2679 (1970).spa
dc.relation.referencesA. Dodonov and V. Dodonov, ‘Nonstationary casimir effect in cavities with two resonantly coupled modes’, Physics Letters A 289, 291 (2001).spa
dc.relation.referencesE. Yablonovitch, ‘Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: unruh-davies-fulling-dewitt radiation and the nonadiabatic casimir effect’, Phys. Rev. Lett. 62, 1742 (1989).spa
dc.relation.referencesC. K. Law, ‘Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium’, Physical Review A 49, 433 (1994).spa
dc.relation.referencesM. Razavy and J. Terning, ‘Quantum radiation in a one-dimensional cavity with moving boundaries’, Physical Review D 31, 307 (1985).spa
dc.relation.referencesC. K. Law, ‘Resonance response of the quantum vacuum to an oscillating boundary’, Physical Review Letters 73, 1931 (1994).spa
dc.relation.referencesC. K. Law, ‘Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation’, Physical Review A 51, 2537 (1995).spa
dc.relation.referencesA. M. Fedotov, N. B. Narozhny and Y. E. Lozovik, ‘’Shaking’ of an atom in a non-stationary cavity’, Phys. Lett. A 274, 213 (2000).spa
dc.relation.referencesJ. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, ‘Dynamical casimir effect in a superconducting coplanar waveguide’, Phys. Rev. Lett. 103, 147003 (2009).spa
dc.relation.referencesP. Lähteenmäki, G. S. Paraoanu, J. Hassel and P. J. Hakonen, ‘Dynamical Casimir effect in a Josephson metamaterial.’, Proceedings of the National Academy of Sciences of the United States of America 110, 4234 (2013).spa
dc.relation.referencesS. Vezzoli, A. Mussot, N. Westerberg, A. Kudlinski, H. Dinparasti Saleh, A. Prain, F. Biancalana, E. Lantz and D. Faccio, ‘Optical analogue of the dy- namical Casimir effect in a dispersion-oscillating fibre’, Commun. Phys. 2, 1 (2019).spa
dc.relation.referencesH. Wang, X. Gu, Y.-x. Liu, A. Miranowicz and F. Nori, ‘Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system’, Phys. Rev. A 92, 033806 (2015).spa
dc.relation.referencesA. V. Dodonov, R. L. Nardo, R. Migliore, A. Messina and V. V. Dodonov, ‘Analytical and numerical analysis of the atom-field dynamics in non-stationary cavity QED’, J. Phys. B: At. Mol. Opt. Phys. 44, 225502 (2011).spa
dc.relation.referencesJ. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, ‘The dynamical Casimir effect in superconducting microwave circuits’, Physical Review A 052509, 18 (2010).spa
dc.relation.referencesM. Aspelmeyer, T. J. Kippenberg and F. Marquardt, ‘Cavity optomechanics’, Rev. Mod. Phys. 86, 1391 (2014).spa
dc.relation.referencesJ. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert and R. W. Simmonds, ‘Sideband cool- ing of micromechanical motion to the quantum ground state’, Nature 475, 359 (2011).spa
dc.relation.referencesJ. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer and O. Painter, ‘Laser cooling of a nanomechanical oscillator into its quantum ground state’, Nature 478, 89 (2011).spa
dc.relation.referencesU. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel and M. Aspelmeyer, ‘Cooling of a levitated nanoparticle to the motional quantum ground state’, Science 367, 892 (2020).spa
dc.relation.referencesT. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala and H. J. Kimble, ‘Observation of strong coupling between one atom and a monolithic microresonator’, Nature 443, 671 (2006).spa
dc.relation.referencesS. Gröblacher, K. Hammerer, M. R. Vanner and M. Aspelmeyer, ‘Observa- tion of strong coupling between a micromechanical resonator and an optical cavity field’, Nature 460, 724 (2009).spa
dc.relation.referencesJ. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker and R. W. Simmonds, ‘Circuit cavity electromechanics in the strong-coupling regime’, Nature 471, 204 (2011).spa
dc.relation.referencesD. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms and D. M. Stamper-Kurn, ‘Non-classical light generated by quantum-noise-driven cavity optomechanics’, Nature 488, 476 (2012).spa
dc.relation.referencesA. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer and O. Painter, ‘Squeezed light from a silicon micromechanical resonator’, Nature 500, 185 (2013).spa
dc.relation.referencesT. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel and C. A. Regal, ‘Strong Optomechanical Squeezing of Light’, Phys. Rev. X 3, 031012 (2013).spa
dc.relation.referencesS. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser and T. J. Kippenberg, ‘Optomechanically Induced Transparency’, Science 330, 1520 (2010).spa
dc.relation.referencesA. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang and O. Painter, ‘Electromagnetically induced transparency and slow light with optomechanics’, Nature 472, 69 (2011).spa
dc.relation.referencesT. A. Palomaki, J. D. Teufel, R. W. Simmonds and K. W. Lehnert, ‘Entangling Mechanical Motion with Microwave Fields’, Science 342, 710 (2013).spa
dc.relation.referencesC. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley and M. A. Sillanpää, ‘Stabilized entanglement of massive mechanical oscillators’, Nature 556, 478 (2018).spa
dc.relation.referencesK. W. Murch, K. L. Moore, S. Gupta and D. M. Stamper-Kurn, ‘Observa- tion of quantum-measurement backaction with an ultracold atomic gas’, Nat. Phys. 4, 561 (2008).spa
dc.relation.referencesM. H. Schleier-Smith, I. D. Leroux, H. Zhang, M. A. Van Camp and V. Vuletić, ‘Optomechanical cavity cooling of an atomic ensemble’, Phys. Rev. Lett. 107, 1 (2011).spa
dc.relation.referencesA. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg, ‘Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction’, Phys. Rev. Lett. 97, 243905 (2006).spa
dc.relation.referencesS. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer and A. Zeilinger, ‘Self-cooling of a micromirror by radiation pressure’, Nature 444, 67 (2006).spa
dc.relation.referencesO. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard and A. Heidmann, ‘Radiation- pressure cooling and optomechanical instability of a micromirror’, Nature 444, 71 (2006).spa
dc.relation.referencesR. Glauber and M. Lewenstein, ‘Quantum optics of dielectric media’, Physical Review A 43, 467 (1991).spa
dc.relation.referencesJ. Bjorken and S. Drell, Relativistic quantum mechanics, International series in pure and applied physics (McGraw-Hill, 1964).spa
dc.relation.referencesR. Loudon, The quantum theory of light (OUP Oxford, 2000).spa
dc.relation.referencesC. W. Gardiner and M. J. Collett, ‘Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation’, Phys. Rev. A 31, 3761 (1985).spa
dc.relation.referencesM. J. Collett and C. W. Gardiner, ‘Squeezing of intracavity and traveling- wave light fields produced in parametric amplification’, Phys. Rev. A 30, 1386 (1984).spa
dc.relation.referencesC. Gardiner and P. Zoller, Quantum noise, A handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics (Springer-Verlag, Berlin, Heidelberg, 2004).spa
dc.relation.referencesJ. Combes, J. Kerckhoff and M. Sarovar, ‘The SLH framework for modeling quantum input-output networks’, Adv. Phys. X 2, 784 (2017).spa
dc.relation.referencesD. F. Walls and G. J. Milburn, Quantum optics, 2nd (Springer-Verlag, Berlin, Heidelberg, 2008).spa
dc.relation.referencesC. Gardiner, Stochastic methods (Springer Berlin, 2009).spa
dc.relation.referencesK. Jacobs, Stochastic processes for physicists (Cambridge University Press, Cambridge, 2010).spa
dc.relation.referencesH. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge University Press, Cambridge, 2009).spa
dc.relation.referencesH. Carmichael, Statistical methods in quantum optics 1 (Springer, 1999).spa
dc.relation.referencesH.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2007).spa
dc.relation.references
D. N. Bernal-García, B. A. Rodríguez and H. Vinck-Posada, ‘Multiple-scale analysis of open quantum systems’, Phys. Lett. A 383, 1698 (2019).spa
dc.relation.references
A. Kavokin, J. J. Baumberg, G. Malpuech and F. P. Laussy, Microcavities (Oxford University Press, Oxford, 2007).spa
dc.relation.referencesÁ. Rivas and S. F. Huelga, Open Quantum Systems, SpringerBriefs in Physics (Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2012).spa
dc.relation.referencesM. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In- formation, Vol. 52, 6 (Cambridge University Press, Cambridge, Nov. 2010), pp. 604–605.spa
dc.relation.referencesH. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009), p. 460.spa
dc.relation.referencesH. J. Carmichael, Statistical Methods in Quantum Optics 2, Theoretical and Mathematical Physics (Springer-Verlag Berlin Heidelberg, 2008).spa
dc.relation.referencesW. Magnus, ‘On the exponential solution of differential equations for a linear operator’, Commun. Pure Appl. Math. 7, 649 (1954).spa
dc.relation.referencesX. X. Yi, C. Li and J. C. Su, ‘Perturbative expansion for the master equation and its applications’, Phys. Rev. A 62, 013819 (2000).spa
dc.relation.referencesC. H. Fleming and N. I. Cummings, ‘Accuracy of perturbative master equations’, Phys. Rev. E 83, 031117 (2011).spa
dc.relation.referencesF. B. Anders and A. Schiller, ‘Real-time dynamics in quantum-impurity systems: a time-dependent numerical renormalization-group approach’, Phys. Rev. Lett. 95, 196801 (2005).spa
dc.relation.referencesR. Bulla, T. A. Costi and T. Pruschke, ‘Numerical renormalization group method for quantum impurity systems’, Rev. Mod. Phys. 80, 395 (2008).spa
dc.relation.referencesM. J. Hartmann, J. Prior, S. R. Clark and M. B. Plenio, ‘Density matrix renormalization group in the heisenberg picture’, Phys. Rev. Lett. 102, 057202 (2009).spa
dc.relation.referencesF. Reiter and A. S. Sørensen, ‘Effective operator formalism for open quantum systems’, Phys. Rev. A 85, 032111 (2012).spa
dc.relation.referencesE. M. Kessler, ‘Generalized schrieffer-wolff formalism for dissipative systems’, Phys. Rev. A 86, 012126 (2012).spa
dc.relation.referencesD. Chru ści ński and A. Kossakowski, ‘Feshbach projection formalism for open quantum systems’, Phys. Rev. Lett. 111, 050402 (2013).spa
dc.relation.referencesJ. Cui, J. I. Cirac and M. C. Bañuls, ‘Variational matrix product operators for the steady state of dissipative quantum systems’, Phys. Rev. Lett. 114, 220601 (2015).spa
dc.relation.referencesA. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2011).spa
dc.relation.referencesL. M. Sieberer, M. Buchhold and S. Diehl, ‘Keldysh field theory for driven open quantum systems’, Rep. Prog. Phys. 79, 096001 (2016).spa
dc.relation.referencesA. C. Y. Li, F. Petruccione and J. Koch, ‘Perturbative approach to Markovian open quantum systems’, Sci. Rep. 4, 4887 (2015).spa
dc.relation.referencesA. C. Y. Li, F. Petruccione and J. Koch, ‘Resummation for nonequilibrium perturbation theory and application to open quantum lattices’, Phys. Rev. X 6, 021037 (2016).spa
dc.relation.referencesC. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scient- ists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer- Verlag New York, 1999).spa
dc.relation.referencesM. Janowicz, ‘Method of multiple scales in quantum optics’, Phys. Rep. 375, 327 (2003).spa
dc.relation.referencesW. Scherer, ‘Quantum averaging. I. Poincare-von Zeipel is Rayleigh Schrodinger’, J. Phys. A: Math. Gen. 27, 8231 (1994).spa
dc.relation.referencesG. Sandri, ‘A new method of expansion in mathematical physics - I’, Nuovo Cim. 36, 67 (1965).spa
dc.relation.referencesR. Ramnath and G. Sandri, ‘A generalized multiple scales approach to a class of linear differential equations’, J. Math. Anal. Appl. 28, 339 (1969).spa
dc.relation.referencesJ. K. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Vol. 114, Applied Mathematical Sciences (Springer-Verlag New York, 1996).spa
dc.relation.referencesA. H. Nayfeh, Perturbation methods (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2004).spa
dc.relation.referencesS. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Westview Press, Boulder, CO, 2014).spa
dc.relation.referencesC. M. Bender and L. M. A. Bettencourt, ‘Multiple-Scale Analysis of the Quantum Anharmonic Oscillator.’, Phys. Rev. Lett. 77, 4114 (1996).spa
dc.relation.referencesC. M. Bender and L. M. A. Bettencourt, ‘Multiple-scale analysis of quantum systems’, Phys. Rev. D 54, 7710 (1996).spa
dc.relation.referencesG. Auberson and M. Capdequi Peyranère, ‘Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques’, Phys. Rev. A 65, 032120 (2002).spa
dc.relation.referencesM. W. Janowicz and J. M. a. Ashbourn, ‘Dynamics of the four-level Λ system in a two-mode cavity’, Phys. Rev. A 55, 2348 (1997).spa
dc.relation.referencesM. Janowicz, ‘Suppression of the Rabi oscillations in a cavity partially filled with a dielectric having a time-dependent refractive index’, Phys. Rev. A 57, 5016 (1998).spa
dc.relation.referencesM. Janowicz, ‘Evolution of wave fields and atom-field interactions in a cavity with one oscillating mirror’, Phys. Rev. A 57, 4784 (1998).spa
dc.relation.referencesD. A. R. Dalvit and F. D. Mazzitelli, ‘Creation of photons in an oscillating cavity with two moving mirrors’, Phys. Rev. A 59, 3049 (1999).spa
dc.relation.referencesM. Crocce, D. A. R. Dalvit and F. D. Mazzitelli, ‘Resonant photon creation in a three-dimensional oscillating cavity’, Phys. Rev. A 64, 013808 (2001).spa
dc.relation.referencesM. Crocce, D. A. R. Dalvit and F. D. Mazzitelli, ‘Quantum electromagnetic field in a three-dimensional oscillating cavity’, Phys. Rev. A 66, 033811 (2002).spa
dc.relation.referencesA. V. Dodonov and V. V. Dodonov, ‘Approximate analytical results on the cavity dynamical Casimir effect in the presence of a two-level atom’, 015805, 1 (2012).spa
dc.relation.referencesP. B. Kahn and Y. Zarmi, ‘Consistent Application of the Method of Multiple- Time Scales to Nonlinear Systems’, in Nonlinear phenomena research perspectives, edited by C. W. Wang (Nova Science Publishers, Inc, New York, 2007) Chap. 4, pp. 103–30.spa
dc.relation.referencesK. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, edited by K. Kraus, A. Böhm, J. D. Dollard and W. H. Wootters, Vol. 190, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, Ber- lin, Heidelberg, 1983).spa
dc.relation.referencesG. Schaller, Open Quantum Systems Far from Equilibrium, Vol. 881, Lecture Notes in Physics (Springer International Publishing, 2014).spa
dc.relation.referencesD. Bruß and G. Leuchs, eds., Lectures on Quantum Information (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2006).spa
dc.relation.referencesH.-P. Breuer, E.-M. Laine, J. Piilo and B. Vacchini, ‘Colloquium : Non-Markovian dynamics in open quantum systems’, Rev. Mod. Phys. 88, 021002 (2016).spa
dc.relation.referencesK. Kraus, ‘General state changes in quantum theory’, Ann. Phys. 64, 311 (1971).spa
dc.relation.referencesM. D. Choi, ‘Completely positive linear maps on complex matrices’, Linear Algebra Appl. 10, 285 (1975).spa
dc.relation.referencesV. Gorini, A. Kossakowski and E. C. G. Sudarshan, ‘Completely positive dynamical semigroups of N-level systems’, J. Math. Phys. 17, 821 (1976).spa
dc.relation.referencesE. Andersson, J. D. Cresser and M. J. W. Hall, ‘Finding the Kraus decomposition from a master equation and vice versa’, J. Mod. Opt. 54, 1695 (2007).spa
dc.relation.referencesL.Li, M.J.W.Halland, H.M.Wiseman,‘Concepts of quantum non-markovianity: a hierarchy’, Physics Reports 759, 1 (2018).spa
dc.relation.referencesÁ. Rivas, S. F. Huelga and M. B. Plenio, ‘Entanglement and non-Markovianity of quantum evolutions’, Phys. Rev. Lett. 105, 1 (2010).spa
dc.relation.referencesÁ. Rivas, S. F. Huelga and M. B. Plenio, ‘Quantum non-Markovianity: Characterization, quantification and detection’, Rep. Prog. Phys. 77 (2014).spa
dc.relation.referencesR. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Vol. 717, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, 2007).spa
dc.relation.referencesG. Lindblad, ‘On the generators of quantum dynamical semigroups’, Commun. Math. Phys. 48, 119 (1976).spa
dc.relation.referencesM. J. W. Hall, J. D. Cresser, L. Li and E. Andersson, ‘Canonical form of master equations and characterization of non-Markovianity’, Phys. Rev. A 89, 042120 (2014).spa
dc.relation.referencesM. R. Hush, I. Lesanovsky and J. P. Garrahan, ‘Generic map from non- Lindblad to Lindblad master equations’, Phys. Rev. A 91, 032113 (2015).spa
dc.relation.referencesD. Chruściński and A. Kossakowski, ‘Non-Markovian Quantum Dynamics: Local versus Nonlocal’, Phys. Rev. Lett. 104, 070406 (2010).spa
dc.relation.referencesF. P. Laussy, E. del Valle and C. Tejedor, ‘Luminescence spectra of quantum dots in microcavities. i. bosons’, Phys. Rev. B 79, 235325 (2009).spa
dc.relation.referencesP. Lodahl, S. Mahmoodian and S. Stobbe, ‘Interfacing single photons and single quantum dots with photonic nanostructures’, Rev. Mod. Phys. 87, 347 (2015).spa
dc.relation.referencesD. N. Bernal-García, H. Vinck-Posada and M. J. Woolley, ‘Nonstationary force sensing under dissipative mechanical quantum squeezing’, (2020), arXiv:2007. 13051 [quant-ph].spa
dc.relation.referencesV. B. Braginsky, Y. I. Vorontsov and K. S. Thorne, ‘Quantum Nondemolition Measurements’, Science 209, 547 (1980).spa
dc.relation.referencesC. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg and M. Zimmermann, ‘On the measurement of a weak classical force coupled to a quantum- mechanical oscillator. I. Issues of principle’, Rev. Mod. Phys. 52, 341 (1980).spa
dc.relation.referencesC. M. Caves and G. J. Milburn, ‘Quantum-mechanical model for continuous position measurements’, Phys. Rev. A 36, 5543 (1987).spa
dc.relation.referencesV. B. Braginsky, F. Y. Khalili and K. S. Thorne, Quantum measurement (Cambridge University Press, Cambridge, 1992).spa
dc.relation.referencesM. F. Bocko and R. Onofrio, ‘On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress’, Rev. Mod. Phys. 68, 755 (1996).spa
dc.relation.referencesY. Chen, ‘Macroscopic quantum mechanics: theory and experimental concepts of optomechanics’, J. Phys. B 46, 104001 (2013).spa
dc.relation.referencesS. L. Danilishin and F. Y. Khalili, ‘Quantum Measurement Theory in Gravitational- Wave Detectors’, Living Rev. Relativ. 15, 5 (2012).spa
dc.relation.referencesE. Zeuthen, E. S. Polzik and F. Y. Khalili, ‘Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity’, (2019), arXiv:1908.03416 [gr-qc].spa
dc.relation.referencesG. J. Milburn, K. Jacobs and D. F. Walls, ‘Quantum-limited measurements with the atomic force microscope’, Phys. Rev. A 50, 5256 (1994).spa
dc.relation.referencesH.-J. Butt, B. Cappella and M. Kappl, ‘Force measurements with the atomic force microscope: Technique, interpretation and applications’, Surf. Sci. Rep. 59, 1 (2005).spa
dc.relation.referencesM. Poggio and C. L. Degen, ‘Force-detected nuclear magnetic resonance: recent advances and future challenges’, Nanotechnology 21, 342001 (2010).spa
dc.relation.referencesS. Davuluri, ‘Optomechanics for absolute rotation detection’, Phys. Rev. A 94, 013808 (2016).spa
dc.relation.referencesS. Davuluri and Y. Li, ‘Absolute rotation detection by coriolis force measurement using optomechanics’, New Journal of Physics 18, 103047 (2016).spa
dc.relation.referencesD. Carney, S. Ghosh, G. Krnjaic and J. M. Taylor, ‘Gravitational Direct Detection of Dark Matter’, (2019), arXiv:1903.00492 [hep-ph].spa
dc.relation.referencesD. Carney, A. Hook, Z. Liu, J. M. Taylor and Y. Zhao, ‘Ultralight dark matter detection with mechanical quantum sensors’, (2019), arXiv:1908.04797 [hep-ph].spa
dc.relation.referencesS. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toro š, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim and G. Milburn, ‘Spin entanglement witness for quantum gravity’, Phys. Rev. Lett. 119, 240401 (2017).spa
dc.relation.referencesC. Marletto and V. Vedral, ‘Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity’, Phys. Rev. Lett. 119, 240402 (2017).spa
dc.relation.referencesD. Carney, P. C. E. Stamp and J. M. Taylor, ‘Tabletop experiments for quantum gravity: a user’s manual’, Classical and Quantum Gravity 36, 034001 (2019).spa
dc.relation.referencesM. Carlesso, A. Bassi, M. Paternostro and H. Ulbricht, ‘Testing the gravitational field generated by a quantum superposition’, (2019), arXiv:1906. 04513 [quant-ph].spa
dc.relation.referencesM. Carlesso and M. Paternostro, ‘Opto-mechanical test of collapse models’, (2019), arXiv:1906.11041 [quant-ph].spa
dc.relation.referencesV. B. Braginsky, ‘Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator’, Zh. Eksp. Teor. Fiz 53, 1434 (1967); J. Exp. Theor. Phys 26, 831 (1968).spa
dc.relation.referencesC. M. Caves, ‘Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer’, Phys. Rev. Lett. 45, 75 (1980).spa
dc.relation.referencesA. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt and R. J. Schoelkopf, ‘Introduction to quantum noise, measurement, and amplification’, Rev. Mod. Phys. 82, 1155 (2010).spa
dc.relation.referencesV. B. Braginsky and Y. I. Vorontsov, ‘Quantum-mechanical limitations in macroscopic experiments and modern experimental technique’, Usp. Fiz. Nauk. 114, 41 (1974); Sov. Phys. Usp. 17, 644 (1975).spa
dc.relation.referencesR. P. Giffard, ‘Ultimate sensitivity limit of a resonant gravitational wave an- tenna using a linear motion detector’, Phys. Rev. D 14, 2478 (1976).spa
dc.relation.referencesM. Aspelmeyer, T. J. Kippenberg and F. Marquardt, eds., Cavity optomechanics, Nano- and Micromechanical Resonators Interacting with Light (Springer- Verlag, Berlin, Heidelberg, 2014).spa
dc.relation.referencesB. P. A. et al, ‘Observation of Gravitational Waves from a Binary Black Hole Merger’, Phys. Rev. Lett. 116, 061102 (2016).spa
dc.relation.referencesD. Mason, J. Chen, M. Rossi, Y. Tsaturyan and A. Schliesser, ‘Continuous force and displacement measurement below the standard quantum limit’, Nat. Phys. 15, 745 (2019).spa
dc.relation.referencesS. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leib- fried, D. H. Slichter and D. T. C. Allcock, ‘Quantum amplification of mechanical oscillator motion’, Science 364, 1163 (2019).spa
dc.relation.referencesS. Huang and G. S. Agarwal, ‘Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier’, Phys. Rev. A 95, 023844 (2017).spa
dc.relation.referencesW. Zhao, S.-D. Zhang, A. Miranowicz and H. Jing, ‘Weak-force sensing with squeezed optomechanics’, Sci. China-Phys. Mech. Astron. 63, 224211 (2019).spa
dc.relation.referencesX.-Y. Wang, B. Xiong, W.-Z. Zhang and L. Zhou, ‘Improve the sensitivity of an optomechanical sensor with the auxiliary mechanical oscillator’, Eur. Phys. J. D 72, 117 (2018).spa
dc.relation.referencesW.-Z. Zhang, L.-B. Chen, J. Cheng and Y.-F. Jiang, ‘Quantum-correlation- enhanced weak-field detection in an optomechanical system’, Phys. Rev. A 99, 063811 (2019).spa
dc.relation.referencesP. A. Ivanov, K. Singer, N. V. Vitanov and D. Porras, ‘Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces’, Phys. Rev. Applied 4, 054007 (2015).spa
dc.relation.referencesA. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh and D. Vitali, ‘Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection’, New J. Phys. 18, 073040 (2016).spa
dc.relation.referencesA. Motazedifard, A. Dalafi, F. Bemani and M. H. Naderi, ‘Force sensing in hybrid bose-einstein-condensate optomechanics based on parametric amplification’, Phys. Rev. A 100, 023815 (2019).spa
dc.relation.referencesS. Davuluri and Y. Li, ‘Shot-noise-limited interferometry for measuring a classical force’, Phys. Rev. A 98, 043809 (2018).spa
dc.relation.referencesA. A. Clerk, F. Marquardt and K. Jacobs, ‘Back-action evasion and squeezing of a mechanical resonator using a cavity detector’, New J. Phys. 10, 095010 (2008).spa
dc.relation.referencesM. J. Woolley, A. C. Doherty, G. J. Milburn and K. C. Schwab, ‘Nanomechanical squeezing with detection via a microwave cavity’, Phys. Rev. A 78, 062303 (2008).spa
dc.relation.referencesJ. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk and K. C. Schwab, ‘Back-action-evading measurements of nanomechanical motion’, Nat. Phys. 6, 213 (2010).spa
dc.relation.referencesJ. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk and K. C. Schwab, ‘Mechanically detecting and avoiding the quantum fluctuations of a microwave field’, Science 344, 1262 (2014).spa
dc.relation.referencesI. Shomroni, L. Qiu, D. Malz, A. Nunnenkamp and T. J. Kippenberg, ‘Optical backaction-evading measurement of a mechanical oscillator’, Nat.Commun. 10, 2086 (2019).spa
dc.relation.referencesA. Kronwald, F. Marquardt and A. A. Clerk, ‘Arbitrarily large steady-state bosonic squeezing via dissipation’, Phys. Rev. A 88, 063833 (2013).spa
dc.relation.referencesA. Kronwald, F. Marquardt and A. A. Clerk, ‘Dissipative optomechanical squeezing of light’, New J. Phys. 16, 063058 (2014).spa
dc.relation.referencesF. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado and J. D. Teufel, ‘Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object’, Phys. Rev. X 5, 041037 (2015).spa
dc.relation.referencesE. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk and K. C. Schwab, ‘Quantum squeezing of motion in a mechanical resonator’, Science 349, 952 (2015).spa
dc.relation.referencesJ.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel and M. A. Sillanpää, ‘Squeezing of Quantum Noise of Motion in a Micromechanical Resonator’, Phys. Rev. Lett. 115, 243601 (2015).spa
dc.relation.referencesC. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk and K. C. Schwab, ‘Quantum Nondemolition Measurement of a Quantum Squeezed State beyond the 3 dB Limit’, Phys. Rev. Lett. 117, 100801 (2016).spa
dc.relation.referencesI. Shomroni, A. Youssefi, N. Sauerwein, L. Qiu, P. Seidler, D. Malz, A. Nunnen- kamp and T. J. Kippenberg, ‘Two-tone optomechanical instability in backaction- evading measurements’, (2018), arXiv:1812.11022 [quant-ph].spa
dc.relation.referencesM. J. Woolley and A. A. Clerk, ‘Two-mode back-action-evading measurements in cavity optomechanics’, Phys. Rev. A 87, 063846 (2013).spa
dc.relation.referencesC. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, A. A. Clerk, M. J. Woolley and M. A. Sillanpää, ‘Quantum Backaction Evading Measurement of Collective Mechanical Modes’, Phys. Rev. Lett. 117, 140401 (2016).spa
dc.relation.referencesM. J. Woolley and A. A. Clerk, ‘Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir’, Phys. Rev. A 89, 063805 (2014).spa
dc.relation.referencesF. Massel, ‘Backaction-evading measurement of entanglement in optomechanics’, Phys. Rev. A 100, 023824 (2019).spa
dc.relation.referencesA. Papoulis and S. U. Pillai, Probability, random variables and stochastic processes, 4th (McGraw-Hill, New York, 2002).spa
dc.relation.referencesJ. Anandan, ‘Geometric phase for cyclic motions and the quantum state space metric’, Phys. Lett. A 147, 3 (1990).spa
dc.relation.referencesA. K. Pati, U. Singh and U. Sinha, ‘Measuring non-hermitian operators via weak values’, Phys. Rev. A 92, 052120 (2015).spa
dc.relation.referencesG. R. Cooper and C. D. McGillem, Probabilistic methods of signal and system analysis, 3rd (Oxford University Press, Oxford, UK, 1998).spa
dc.relation.referencesR. Grover Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filtering, 4th (John Wiley & Sons, 2012).spa
dc.relation.referencesK. M. M. Prabhu, Window functions and their applications in signal processing (CRC Press, Boca Raton, 2014).spa
dc.relation.referencesM. Lucamarini, D. Vitali and P. Tombesi, ‘Scheme for a quantum-limited force measurement with an optomechanical device’, Phys. Rev. A 74, 063816 (2006).spa
dc.relation.referencesD. Vitali, S. Mancini and P. Tombesi, ‘Optomechanical scheme for the detection of weak impulsive forces’, Phys. Rev. A 64, 051401 (2001). ‘Erratum: optomechanical scheme for the detection of weak impulsive forces [Phys. Rev. A 64, 051401(R) (2001)]’, ibid. 69, 049904 (2004).spa
dc.relation.referencesD. Vitali, S. Mancini, L. Ribichini and P. Tombesi, ‘Mirror quiescence and high-sensitivity position measurements with feedback’, Phys. Rev. A 65, 063803 (2002). ‘Erratum: mirror quiescence and high-sensitivity positionmeasurements with feedback [Phys. Rev. A 65, 063803 (2002)]’, ibid. 69, 029901 (2004).spa
dc.relation.referencesR. D. Klauber, Student friendly quantum field theory (Sandtrove Press, 2013).spa
dc.relation.referencesJ. Gea-Banacloche, N. Lu, L. M. Pedrotti, S. Prasad, M. O. Scully and K. Wódkiewicz, ‘Treatment of the spectrum of squeezing based on the modes of the universe. I. Theory and a physical picture’, Phys. Rev. A 41, 369 (1990).spa
dc.relation.referencesA. Dechant and E. Lutz, ‘Wiener-Khinchin Theorem for Nonstationary Scale-Invariant Processes’, Phys. Rev. Lett. 115, 080603 (2015).spa
dc.relation.referencesB. R. Kusse and E. A. Westwig, Mathematical physics, 2nd (Wiley-VCH Ver- lag GmbH, Weinheim, Germany, 2006).spa
dc.relation.referencesG. W. Ford, J. T. Lewis and R. F. O’Connell, ‘Quantum Langevin equation’, Physical Review A 37, 4419 (1988).spa
dc.relation.referencesV. Giovannetti and D. Vitali, ‘Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion’, Phys. Rev. A 63, 023812 (2001).spa
dc.relation.referencesW. Bowen and G. Milburn, Quantum optomechanics (CRCPress,BocaRaton, 2015).spa
dc.relation.referencesD. F. Walls and G. J. Milburn, Quantum optics, 2nd (Springer-Verlag, Berlin, Heidelberg, 2007).spa
dc.relation.referencesF. Marquardt, J. P. Chen, A. A. Clerk and S. M. Girvin, ‘Quantum theory of cavity-assisted sideband cooling of mechanical motion’, Phys. Rev. Lett. 99, 093902 (2007).spa
dc.relation.referencesI. Wilson-Rae, N. Nooshi, W. Zwerger and T. J. Kippenberg, ‘Theory of ground state cooling of a mechanical oscillator using dynamical backaction’, Phys. Rev. Lett. 99, 093901 (2007).spa
dc.relation.referencesD. G. Blair, ed., The detection of gravitational waves (Cambridge University Press, Cambridge, 1991).spa
dc.relation.referencesS. Bermúdez-Feijóo, D. N. Bernal-García and H. Vinck-Posada, ‘Statistical properties of light emitted from a nonstationary atom-cavity system’, in Quantum nanophotonics 2018, Vol. 10734, edited by J. A. Dionne, M. Lawrence and
M. T. Sheldon (International Society for Optics and Photonics, 2018), pp. 17– 29.spa
dc.relation.referencesJ. C. González-Espitia, D. N. Bernal-García and H. Vinck-Posada, ‘Statistical properties of light emitted by active media embedded on a microcavity system’, in Quantum nanophotonics 2018, Vol. 10734, edited by J. A. Dionne, M. Lawrence and M. T. Sheldon (International Society for Optics and Photonics, 2018), pp. 36–46.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.otherElectrodinámica
dc.subject.otherElectrodynamics
dc.subject.proposalQuantum opticseng
dc.subject.proposalCavity quantum electrodynamicseng
dc.subject.proposalCircuit quantum electrodynamicseng
dc.subject.proposalNonstationary quantum phenomenaeng
dc.subject.proposalMultiple-scale perturbation techniqueeng
dc.subject.proposalForce sensingeng
dc.subject.proposalÓptica cuánticaspa
dc.subject.proposalElectrodinámica cuántica de cavidadesspa
dc.subject.proposalElectrodinámica cuántica de circuitosspa
dc.subject.proposalFenómenos cuánticos no estacionariosspa
dc.subject.proposalTécnica de perturbaciones de escalas múltiplesspa
dc.subject.proposalSensado de fuerzasspa
dc.subject.unescoTeoría cuántica
dc.subject.unescoQuantum theory
dc.titleNonstationary quantum phenomena in cavity quantum electrodynamics and optomechanicseng
dc.title.translatedFenómenos cuánticos no estacionarios en electrodinámica cuántica de cavidades y optomecánicaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleElectrodinámica cuántica de cavidades no estacionariasspa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098646876.2020.pdf
Tamaño:
5.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: