Interpretación visual y digital de datos de sensores remotos para la identificación de deslizamientos rotacionales y traslacionales

dc.contributor.advisorLizarazo Salcedo, Iván Alberto
dc.contributor.advisorOchoa Gutierrez, Luis Hernan
dc.contributor.authorPérez Moreno, Michael Alejandro
dc.date.accessioned2022-03-17T17:40:11Z
dc.date.available2022-03-17T17:40:11Z
dc.date.issued2021-12-10
dc.descriptionilustraciones, fotografías, gráficas, mapas, planosspa
dc.description.abstractEsta tesis presenta un método para la detección y ubicación de movimientos en masa al analizar su distribución, patrón y recurrencia. El método propuesto para la detección de movimientos en masa utiliza herramientas de la geomática buscando reducir tiempos y facilitar la creación de inventarios de movimientos en masa. En este estudio se realizó la identificación visual de rasgos pictórico - morfológicos en deslizamientos ya identificados, y su posterior uso para la definición de criterios de clasificación de deslizamientos en un método semiautomático de clasificación basado en objetos geográficos (GEOBIA). Se identificaron patrones cualitativos que identifican los rasgos pictórico – morfológicos de deslizamientos. Posteriormente se realizó la clasificación basada en objetos, generando la segmentación de la imagen seguido de la clasificación basada en objetos geográficos identificando las coberturas de la tierra y deslizamientos. A partir de los patrones cualitativos se refinaron los objetos clasificados como deslizamientos y se clasificaron mediante el uso de la curvatura del terreno en deslizamientos del subtipo traslacional o rotacional. El resultado se validó en términos de área entre los polígonos clasificados como deslizamientos y de un inventario de movimientos en masa precedente. Se obtuvo que el área correctamente clasificada se situó entre un 60% a 50% y el área erróneamente clasificada fue entre el 25% a 15%. (Texto tomado de la fuente)spa
dc.description.abstractThe detection and location of mass movements allows to analyze their distribution, pattern and recurrence. The creation of methods that use tools provided by Geomatics seeks to reduce times, facilitate the creation, production of inventories and mass movement maps; which are the basic input for the generation of susceptibility maps. Computer advances allow the use of tools for the semi-automatic location of objects in satellite images, although there are several studies on the use of geographic information systems for the detection of these natural events, in Colombia a methodology has not been implemented or studied efficient and economical, which is an opportunity to further develop the implementation of geomatics in the location of mass movements in large areas. This project proposes the visual identification of pictorial-morphological features in already identified landslides, and their subsequent use for the definition of landslide classification criteria in a semi-automatic classification method based on geographic objects (GEOBIA). This semi-automatic method identifies some types of landslides with the use of satellite imagery supported by an existing inventory of mass movements. The method was applied in (2) two areas located in the rural part of the municipality of Villavicencio in the department of Meta, using satellite multispectral images from the Sentinel 2 mission and a digital terrain model (DTM) obtained from radar images of the Sentinel mission 1. In a first step, qualitative patterns were identified that identify a pictorial-morphological feature in landslides of an existing inventory of mass movements. For this, spectral criteria, temporal criteria, spatial criteria and an area criterion were used. Subsequently, the classification based on objects was carried out, generating the segmentation of the image followed by the classification based on geographical objects, identifying the land covers and landslides located in the study area. Next, with the identified qualitative patterns, the use of parameters such as the normalized vegetation index (NDVI), the soil gloss index (S2 BI), contextual data and the slope of the terrain was defined, which allowed to refine the objects. classified as landslides obtained from GEOBIA. Once these polygons were refined with the curvature of the terrain, they were classified into landslides of the translational and rotational subtype. Finally, the result obtained was validated in terms of area (extension) between the polygons classified as landslides and the pre-existing mass movement inventory data. It was obtained that the correctly classified area was between 56.6 % and 51 % in the two study areas analyzed. Regarding the erroneously classified area, 17 % and 25 % were obtained. According to the results obtained from this methodology, these allow an approximation of delimitation of candidate areas for the presence of landslides in large areas.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaTecnologías Geoespacialesspa
dc.format.extentxx, 189 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81273
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.references[lia, 2012a] (2012a). Chapter 1 - a systematic view of remote sensing. In S. Liang, X. Li, & J. Wang (Eds.), Advanced Remote Sensing (pp. 1 – 31). Boston: Academic Press.spa
dc.relation.references[lia, 2012b] (2012b). Chapter 2 - geometric processing and positioning techniques. In S. Liang, X. Li, & J. Wang (Eds.), Advanced Remote Sensing (pp. 33 – 74). Boston: Academic Press.spa
dc.relation.references[Acosta et al., 2004] Acosta, J. P., Vanegas, D. J., Ballén, F. R., Olarte, J. M., & Calderón, Y. (2004). Proyecto Compilación y Levantamiento de la Información Geomecánica: Propuesta Metodológica para el Desarrollo de la Cartografía Geológica para Ingeniería Volumen II. Bogotá: Instituto Colombiano de Geológica y Minería (INGEOMINAS).spa
dc.relation.references[Addink et al., 2012] Addink, E. A., Coillie, F. M. V., & Jong, S. M. D. (2012). Introduction to the geobia 2010 special issue: From pixels to geographic objects in remote sensing image analysis. International Journal of Applied Earth Observation and Geoinformation, 15, 1– 6. Special Issue on Geographic Object-based Image Analysis: GEOBIA.spa
dc.relation.references[Antonic, 2001] Antonic, O. (2001). DEM-based depth in sink as an environmental estimator. 138, 247–254.spa
dc.relation.references[Bedoya, 2009] Bedoya, G. (2009). Inventario de los desastres de origen natural en Colombia, 19702006- Limitantes, tendencias y necesidades futuras. Gestión y Ambiente, 11(1), 109– 120.spa
dc.relation.references[Bialas et al., 2019] Bialas, J., Oommen, T., & Havens, T. C. (2019). Optimal segmentation of high spatial resolution images for the classification of buildings using random forests. International Journal of Applied Earth Observation and Geoinformation, 82(June), 101895.spa
dc.relation.references[Braun, 2020] Braun, A. (2020). Sentinel-1 Toolbox DEM generation with Sentinel-1 Workflow and challenges. (January), 1–27.spa
dc.relation.references[Burrough & A, 1998] Burrough, P. & A, M. (1998). Principles Of Geographical Information Systems. Spatial Information Systems and Geostatistics. Oxford University Press.spa
dc.relation.references[Chang & Liu, 2004] Chang, K.-T. & Liu, J.-K. (2004). Landslide features interpreted by neural network method using a high-resolution satellite image and digital topographic data. International Archives of Photogrammetry Remote Sensing and Spatial Information Science, 35.spa
dc.relation.references[Chuvieco, 1990] Chuvieco, E. (1990). Fundamentos de teledetection espacial.spa
dc.relation.references[Chuvieco, 2002] Chuvieco, E. (2002). Chuvieco Teledetección Ambiental.spa
dc.relation.references[Chuvieco, 2016] Chuvieco, E. (2016). Fundamentals of Satellite Remote Sensing: An Environmental Approach. Environmental science. CRC Press, Taylor & Francis Group.spa
dc.relation.references[Comaniciu & Meer, 2002] Comaniciu, D. & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.spa
dc.relation.references[Comert et al., 2019] Comert, R., Avdan, U., Gorum, T., & Nefeslioglu, H. A. (2019). Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data. Engineering Geology, 260(August), 105264.spa
dc.relation.references[Cruden, 1991] Cruden, D. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology - Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 43.spa
dc.relation.references[Cruden, 1996] Cruden, V. (1996). Cruden,d.m., varnes, d.j., 1996, landslide types and processes, special report , transportation research board, national academy of sciences, 247:36-75. Special Report - National Research Council, Transportation Research Board, 247, 76.spa
dc.relation.references[Duque, 2008] Duque, G. (2008). Gestión del riesgo natural y el caso de Colombia Amenazas en la región. 2008, 54.spa
dc.relation.referencesDuque, 2017] Duque, G. (2017). El siniestro de Mocoa, designio de la imprevisión. (pp. 1–2).spa
dc.relation.references[Esa, 2020] Esa (2020). Resolutions. url:https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial. Accedido 28-03-2020.spa
dc.relation.references[Espejo, 2016] Espejo, O. (2016). Desarrollo de una metodología para estimación de la deforestación mediante el análisis multitemporal de imágenes multiespectrales en un entorno de análisis basado en objetos geográficos ( GEOBIA ). (pp. 177).spa
dc.relation.references[Espindola et al., 2006] Espindola, G. M., Camara, G., Reis, I. A., Bins, L. S., & Monteiro, A. M. (2006). Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. International Journal of Remote Sensing, 27(14), 3035–3040.spa
dc.relation.references[Fiorucci et al., 2019] Fiorucci, F., Ardizzone, F., Mondini, A. C., Viero, A., & Guzzetti, F. (2019). Visual interpretation of stereoscopic ndvi satellite images to map rainfall-induced landslides. Landslides, 16(1), 165–174.spa
dc.relation.references[Fiorucci et al., 2018] Fiorucci, F., Giordan, D., Santangelo, M., Dutto, F., Rossi, M., & Guzzetti, F. (2018). Criteria for the optimal selection of remote sensing optical images to map event landslides. Natural Hazards and Earth System Sciences, 18(1), 405–417.spa
dc.relation.references[Georgescu et al., 2003] Georgescu, B., Shimshoni, I., & Meer, P. (2003). Mean shift based clustering in high dimensions: A texture classifi cation example. Proceedings of the IEEE International Conference on Computer Vision, 1(Iccv), 456–463.spa
dc.relation.references[Gonçalves, 2018] Gonçalves, J. (2018). Advanced techniques with raster data: Part 1– unsupervised classification. url:https://www.r-exercises.com/2018/02/28/advanced-techniques-with-raster-data-part-1-unsupervised-classifi cation/. Accedido 07-06-2020.spa
dc.relation.references[Guzzetti et al., 2012] Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42–66.spa
dc.relation.references[Highland & Bobrowsky, 2008] Highland, L. M. & Bobrowsky, P. (2008). The landslide Handbook - A guide to understanding landslides. US Geological Survey Circular, (1325), 1–147.spa
dc.relation.references[Horning, 2013] Horning, N. (2013). Training guide to classify satellite images using segmentation and random forests.spa
dc.relation.references[Hölbling et al., 2017] Hölbling, D., Eisank, C., Albrecht, F., Vecchiotti, F., Friedl, B., Weinke, E., & Kociu, A. (2017). Comparing manual and semi-automated landslide mapping based on optical satellite images from different sensors. Geosciences (Switzerland), 7, 37.spa
dc.relation.references[Iw, 2020] Iw (2020). Sentinel 1. url:https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath. Accedido 28-03-2020.spa
dc.relation.references[Jensen, 2015] Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River, NJ, USA: Prentice Hall Press, 4th edition.spa
dc.relation.references[Kanungo et al., 2009] Kanungo, D., Arora, M., Sarkar, S., & Gupta, R. (2009). Landslide Susceptibility Zonation (LSZ) Mapping–A Review. Journal of South Asia Disaster Studies, 2(1), 81–105.spa
dc.relation.references[Keyport et al., 2018] Keyport, R. N., Oommen, T., Martha, T. R., Sajinkumar, K. S., & Gierke, J. S. (2018). Int J Appl Earth Obs Geoinformation A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images. 64(September 2017), 1–11.spa
dc.relation.references[Lewis, 2007] Lewis, Y. W. (2007). Deslizamientos de tierra: los básicos.spa
dc.relation.references[Lillesand et al., 2015] Lillesand, T., Kiefer, R., & Chipman, J. (2015). Remote Sensing and Image Interpretation, 7th Edition. Wiley.spa
dc.relation.references[Martha et al., 2010] Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., & Kumar, K. V. (2010). Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, 116(1-2), 24–36.spa
dc.relation.references[Martha et al., 2011] Martha, T. R., Kerle, N., Van Westen, C. J., Jetten, V., & Kumar, K. V. (2011). Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. In IEEE Transactions on Geoscience and Remote Sensing.spa
dc.relation.references[Martha et al., 2012] Martha, T. R., Kerle, N., van Westen, C. J., Jetten, V., & Vinod Kumar, K. (2012). Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), 105–119.spa
dc.relation.references[Miller & LaFlamme, 1958] Miller, C. L. & LaFlamme, R. A. (1958). The digital terrain model - Theory & Application. The American Society of photogrammetry, XXIV(3), 11.spa
dc.relation.references[Moine et al., 2009] Moine, M., Puissant, A., & Malet, J.-P. (2009). Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonette basin (Alpes-de-Haute-Provence, France). International Conference 'Landslide Processes: From Geomorphological Mapping to Dynamic Modelling', (pp. 63–68).spa
dc.relation.references[Montero, 2017] Montero, J. (2017). Clasificación de movimientos en masa y su distribución en terrenos geológicos de Colombia. Bogotá: Servicio Geológico Colombiano.spa
dc.relation.references[Olson, C.E., 1960] Olson, C.E. (1960). Elements of photographic interpretation common to several sensors. Photogrammetric Engineering, 26(4), 651–656.spa
dc.relation.references[Parker, 2010] Parker, M. (2010). Chapter 16 - radar basics. In M. Parker (Ed.), Digital Signal Processing 101 (pp. 191 – 200). Boston: Newnes.spa
dc.relation.references[Pérez Cerón et al., 2017] Pérez Cerón, R., Trejos González, G. A., Camargo Holguín, B. L., Chaparro Cordón, J. L., Navarro Alarcón, S. d. R., Ruiz Peña, G. L., Gamboa Rodríguez, C. A., & Ramírez Hernández, K. C. (2017). Las Amenazas por Movimientos en Masa de Colombia Una Visión a escala 1:100.000. Bogotá: Servicio Geológico Colombiano.spa
dc.relation.references[PMA-GMA, 2007] PMA-GMA (2007). Movimientos en Masa en la Región Andina: Una guía para la evaluación de amenazas. Publicación Geológica Multinacional, 4(0717-3733), 432.spa
dc.relation.references[Pulido & Gómez, 2001] Pulido, O. & Gómez, L. (2001). Geología de la Plancha 266 Villavicencio.spa
dc.relation.references[Rajbhandari et al., 2017] Rajbhandari, S., Aryal, J., Osborn, J., Musk, R., & Lucieer, A. (2017). Benchmarking the applicability of ontology in geographic object-based image analysis. ISPRS International Journal of Geo-Information, 6(12).spa
dc.relation.references[Rib & Liang, 1978] Rib, H. T. & Liang, T. (1978). Recognition and identification.spa
dc.relation.references[Richards, 1993] Richards, J. A. (1993). Remote Sensing Digital Image Analysis: An Introduction. Berlin, Heidelberg: Springer-Verlag, 2nd edition.spa
dc.relation.references[Roa, 2007] Roa, J. G. (2007). Estimación de áreas susceptibles a deslizamientos mediante datos e imágenes satelitales: Cuenca del río Mocotíes, estado Mérida-Venezuela. Revista Geográfica Venezolana , 48(2), 183–219.spa
dc.relation.references[Rodríguez et al., 2017] Rodríguez , E. A., Sandoval Ramírez, J. H., Chaparro Cordón, J. L., Trejos González, G. A., Enif, M. B., Ramírez Hernández, K. C., Castro Marín, E., Castro Guerra, J. A., & Ruiz Pe˜na, G. L. (2017). Guía Metodológica Para La Zonificación De Amenaza Por Movimientos En Masa.spa
dc.relation.references[Rodríguez et al., 2012] Rodríguez, E., Medina Bello, E., & Cárdenas, M. A. (2012). Hydrogeology applied to landslide hazard zoning.spa
dc.relation.references[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(C), 53–65.spa
dc.relation.references[Ruiz Peña et al., 2018] Ruiz Peña, G. L., Navarro Alarcón, S., Pérez Cerón, R., Sandoval Martínez, A., Chaparro Cordón, J. L., Rangel Flórez, M. S., Trejos González, G. A., Medina Ávila, D. F., Galindo Sáchica, Á. M., Reyes Merchán, A. A., Murcia Cañón, C. A., Pérez Moreno, M. A., Gamboa Rodríguez, C. A., Ramírez Hernández, K. C., & Avellaneda Avellaneda, G. (2018). Actualización del Estudio de Zonificación de Amenaza por Movimientos en Masa a Escala 1:25.000 y la Zonificación de Amenaza por Movimientos en Masa Tipo Avenida Torrencial Escala 1:25.000 en el Municipio Villavicencio. Departamento del Meta. Versión año 2018.spa
dc.relation.references[Santangelo et al., 2015] Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Fiorucci, F., & Guzzetti, F. (2015). An approach to reduce mapping errors in the production of landslide inventory maps. Natural Hazards and Earth System Sciences, 15(9), 2111–2126.spa
dc.relation.references[Sentinel 1, 2020] Sentinel 1 (2020). Sentinel 1. url:https://sentinel.esa.int/web/sentinel/missions/sentinel-1. Accedido 28-03-2020.spa
dc.relation.references[Sentinel2, 2020] Sentinel2 (2020). Sentinel 2. url:https://sentinel.esa.int/web/sentinel/missions/sentinel-2. Accedido 28-03-2020.spa
dc.relation.references[Serrato et al., 2015] Serrato, P. K., Muñoz, C. A., Alexander, L., & Garzón, V. (2015). Criterios pictórico-morfológicos para la identificación de movimientos en masa empleando imágenes de muy alta resolución espacial. (pp. 97–108).spa
dc.relation.references[Shivers, 2020] Shivers, S. P. (2020). Ndvi, the foundation for remote sensing phenology. url:https://www.usgs.gov/core-science-systems/eros/phenology/science/ndvi-foundation-remote-sensing-phenology? Accedido 31-10-2020.spa
dc.relation.references[Snap, 2020] Snap (2020). Sentinel 1. url:https://step.esa.int/main/download/snap-download. Accedido 28-03-2020.spa
dc.relation.references[Soeters & Westen, 1996] Soeters, R. & Westen, C. (1996). Slope instability recognition,analysis and zonation. In: Turner, A.K., Schuster, R.L. (Eds.), Landslide: Investigations and Mitigation. Special Report, vol. 247. Transportation Research Board, National Research Council, National Academy Press, Washington, D.C., (pp. 129–17).spa
dc.relation.references[Suarez Díaz, 1998] Suarez Díaz, J. (1998). 1- Caracterización de los movimientos. Deslizamientos y estabilidad de taludes en zonas tropicales.spa
dc.relation.references[Tarboton et al., 1991] Tarboton, D. G., Bras, R. L., & Rodríguez-Iturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrological Processes, 5(1), 81–100.spa
dc.relation.references[TEP, 2020] TEP, F. S. (2020). Sentinel-2 Brightness Index derived with ESA’s SNAP Sentinel-2 Toolbox. url:https://foodsecurity-tep.net/node/210. Accedido 24-08-2020.spa
dc.relation.references[Weih & Riggan, 2010] Weih, R. C. & Riggan, N. D. (2010). Object-based classification vs. pixel-based classifi cation: Comparitive importance of multi-resolution imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII, 1–6.spa
dc.relation.references[Wieczorek, 1984] Wieczorek, G. F. (1984). Preparing a Detailed Landslide-Inventory Map for Hazard Evaluation and Reduction. Environmental and Engineering Geoscience, xxi(3), 337–342.spa
dc.relation.references[Yang et al., 2015] Yang, W., Wang, M., Shi, P., Shen, L., & Liu, L. (2015). Object-oriented rapid identification of landslides based on terrain factors segmentation and classification. Journal of Natural Disasters, 24(4), 1–6.spa
dc.relation.references[Zevenbergen & Thorne, 1987] Zevenbergen, L. W. & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47–56.spa
dc.relation.references[Zhou et al., 2008] Zhou, Y. M., Jiang, S. Y., & Yin, M. L. (2008). A region-based image segmentation method with mean-shift clustering algorithm. Proceedings - 5th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2008, 2, 366–370.spa
dc.relation.references[Zou & Lin, 2013] Zou, Z. & Lin, X. (2013). Geoinformatics production for urban disasters risk reduction: A zero cost solution. volume 398.spa
dc.relation.references[Zuluaga & García, 2015] Zuluaga, J. & García, A. (2015). Plan de Ordenamiento Territorial Municipio de Villavicencio Componente General.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalDeslizamientosspa
dc.subject.proposalMovimientos en masaspa
dc.subject.proposalClasificación basado en objetos geográficosspa
dc.subject.proposalRasgos pictórico - morfológicosspa
dc.subject.proposalLandslideeng
dc.subject.proposalMass movementseng
dc.subject.proposalGEOBIAeng
dc.subject.proposalGISeng
dc.subject.unescoSistema de información geográficaspa
dc.subject.unescoGeographical information systemseng
dc.subject.unescoAnálisis de datosspa
dc.subject.unescoData analysiseng
dc.titleInterpretación visual y digital de datos de sensores remotos para la identificación de deslizamientos rotacionales y traslacionalesspa
dc.title.translatedVisual and digital interpretation of remote sensing data for the identification of rotational and translational landslideseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10324187102021.pdf
Tamaño:
6.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría de Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: