Prediction of the occurrence of flares in the solar cycle 24 from the evolution of magnetic polarity barycenters in active regions

dc.contributor.advisorVargas Domínguez, Santiagospa
dc.contributor.advisorBonaccini Calia, Domenicospa
dc.contributor.authorGranados Hernández, Nataliaspa
dc.contributor.researchgroupGrupo de Astrofísicaspa
dc.date.accessioned2022-02-02T19:46:17Z
dc.date.available2022-02-02T19:46:17Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractSolar bipolar active regions and the processes that occur in them have been studied and analyzed for decades, generating many types of models and characterizations for the occurrence of different eruptive events that take place in the solar photosphere. Within these regions, the most characteristic explosive events are solar flares, which are big bursts of energy release, that depending on its magnitude, can represent negative effects on Earth and the technology developed by humans. For this reason, over the years, scientists have tried to predict the occurrence of these events. This work main target is the construction of a model that allows predicting the occurrence of solar flares, analyzing variables of importance in bipolar active regions such as their longitudinal magnetic field, areas of their umbra and the distance between the barycenters of the sunspots involved with opposite polarities. Variations on these parameters have demonstrated to be relevant for the occurrence of flaring events. Data processing is applied on HMI/SHARPs magnetograms and the method of the Weighted Horizontal Magnetic Gradient is used, finding a temporal relationship between the maximum of this variable and the moment of the occurrence of the flare, in a sample of 102 active regions of different GOES class.eng
dc.description.abstractLas regiones activas bipolares solares y los procesos que ocurren en ellas han sido estudiados y analizados durante décadas, generando muchos tipos de modelos y caracterizaciones para la ocurrencia de diferentes eventos eruptivos que tienen lugar en la fotosfera solar. Dentro de estas regiones, los eventos explosivos más característicos son las fulguraciones solares, que son grandes ráfagas de liberación de energía, que dependiendo de su magnitud, pueden representar efectos negativos sobre la Tierra y la tecnología desarrollada por los humanos. Por esta razón, a lo largo de los años, los científicos han tratado de predecir la ocurrencia de estos eventos. El objetivo principal de este trabajo es la construcción de un modelo que permita predecir la ocurrencia de fulguraciones solares, analizando variables de importancia en regiones activas bipolares como su campo magnético longitudinal, áreas de su umbra y la distancia entre los baricentros de las manchas solares involucradas de polaridad opuesta. Las variaciones de estos parámetros han demostrado ser relevantes para la ocurrencia de estos eventos eruptivos. Se aplica procesamiento de datos sobre magnetogramas HMI/SHARPs y se utiliza el método del Gradiente Magnético Horizontal Ponderado, encontrando una relación temporal entre el máximo de esta variable y el momento de la ocurrencia de la fulguración, en una muestra de 102 regiones activas de diferente clase GOES. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Astronomíaspa
dc.description.methodsMetodología cuantitativa.spa
dc.description.notesIncluye anexosspa
dc.description.researchareaAstrofísica solarspa
dc.format.extentv, 70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80859
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentObservatorio Astronómico Nacionalspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesBenz, A. O. (2002).Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae. Astro-physics and Space Science Library. Springer Netherlands.spa
dc.relation.referencesBenz, A. O. (2008). Flare observations.Living Reviews in Solar Physics, 5(1).spa
dc.relation.referencesChamberlin, P., Pesnell, W. D., and Thompson, B. (2012).The Solar Dynamics Observatory.Springer-Verlag New York.spa
dc.relation.referencesChaplin, W. J. . (2006).The Music of the Sun : The Story of Helioseismology. Oxford : Oneworld.spa
dc.relation.referencesCollins Petersen, C. (2017).Astronomy 101: from the sun and moon to wormholes and warp drive,key theories, discoveries, and facts about the universe. Adams Media, Avon, MA, USA.spa
dc.relation.referencesCravens, T. E. (1997). Physics of Solar System Plasmas. Cambridge Atmospheric and SpaceScience Series. Cambridge University Press.spa
dc.relation.referencesDikpati, M., de Toma, G., and Gilman, P. A. (2006). Predicting the strength of solar cycle 24using a flux-transport dynamo-based tool.Geophysical Research Letters, 33(5).spa
dc.relation.referencesErdelyi, R., Korsos, M. B., Huang, X., Yang, Y., Pizzey, D., Wrathmall, S. A., Hughes, I., Dyer,M., Dhillon, V. S., Belucz, B., Brajsa, R., Chatterjee, P., Cheng, X., Deng, Y., Dominguez, S. V.,Joya, R., Gomory, P., Gyenge, N. G., Hanslmeier, A., Kucera, A., Kuridze, D., Li, F., Liu, Z.,Long, X., Mathioudakis, M., Matthews, S., McAteer, J. R., Pevtsov, A. A., Potzi, W., Romano,P., Shen, J., Temesvary, J., Tlatov, A. G., Triana, C., Utz, D., Veronig, A. M., Wang, Y., Yan,Y., Zaqarashvili, T., and Zuccarello, F. (2021). The solar activity monitor network - samnet.Journal of Space Weather and Space Climate.spa
dc.relation.referencesGarfinkle, D. and Garfinkle, R. (2008).Three Steps to the Universe: From the Sun to Black Holesto the Mystery of Dark Matter. University of Chicago Press.spa
dc.relation.referencesGlogowski, K., Bobra, M. G., Choudhary, N., Amezcua, A. B., and Mumford, S. J. (2019). drms: Apython package for accessing hmi and aia data.Journal of Open Source Software, 4(40):1614.spa
dc.relation.referencesGranados Hernández, N. (2019). Análisis de centroides de polaridad magnética en regionessolares activas. Master’s thesis, Universidad Nacional de Colombia, Bogotá,Colombia.spa
dc.relation.referencesGranados-Hernández, N. and Vargas-Domínguez, S. (2020). Análisis de polaridades magnéticasen regiones activas para la predicción de fulguraciones solares.Rev. Acad. Colomb. Cienc. Ex.Fis. Nat., 44(173):984–995.spa
dc.relation.referencesHanslmeier, A. (2008).The Sun and Space Weather. Astrophysics and Space Science Library.Springer, 2nd edition.spa
dc.relation.referencesHARP (1997). Harps - hmi active region patches. http://jsoc.stanford.edu/HMI/HARPS. html.spa
dc.relation.referencesHill, F., Martens, P., Yoshimura, K., Gurman, J., Hourclé, J., Dimitoglou, G., Suárez-Solá, I., Wampler, S., Reardon, K., Davey, A., Richard, B., and Tian, K. (2009). The virtual solar observatory—a resource for international heliophysics research. Earth, Moon, and Planets, 104:315–330.spa
dc.relation.referencesHowell, E. (2018). Solar dynamics observatory: Staring at the sun. https://www.space.com/ 22081-solar-dynamics-observatory.html.spa
dc.relation.referencesJoya, R., Domínguez, S. V., Sánchez, C. T. J., and Calia, D. B. (2020). Nodo colombiano para la red internacional de monitoreo de actividad solar. Revista Innovación y Ciencia., XXVII(4).spa
dc.relation.referencesJSOC (1997). Joint science operations center. http://jsoc.stanford.edu/.spa
dc.relation.referencesKarttunen, H., Kröger, P., Oja, H., Poutanen, M., and Donner, K. J. (2017). Fundamental Astronomy. Springer-Verlag Berlin Heidelberg, 6 edition.spa
dc.relation.referencesKenneth R, L. (2006). Sun, Eart and Sky. Springer, Medford, MA, USA.spa
dc.relation.referencesKnipp, D. J., Fraser, B. J., Shea, M. A., and Smart, D. F. (2018). On the little-known consequences of the 4 august 1972 ultra-fast coronal mass ejecta: Facts, commentary, and call to action. Space Weather, 16(11):1635–1643.spa
dc.relation.referencesKorsós, M. B., Baranyi, T., and Ludmány, A. (2014). PRE-FLARE DYNAMICS OF SUNSPOT GROUPS. The Astrophysical Journal, 789(2):107.spa
dc.relation.referencesKorsós, M. B., Ludmány, A., Erdélyi, R., and Baranyi, T. (2015). ON FLARE PREDICTABILITY BASED ON SUNSPOT GROUP EVOLUTION. The Astrophysical Journal, 802(2):L21.spa
dc.relation.referencesKorsós, M. B., Yang, S., and Erdelyi, R. (2019). Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes. Journal of Space Weather and Space Climate.spa
dc.relation.referencesMoore, P. (2005). Philip’s Encyclopedia of Astronomy. Prentice Hall Inc., 1 edition.spa
dc.relation.referencesMurdin, P. (2001). Encyclopedia Of Astronomy & Astrophysics. Nature Publishing Group.spa
dc.relation.referencesPhillips, T. (2014). Near miss: The solar superstorm of july 2012. https://science.nasa. gov/science-news/science-at-nasa/2014/23jul_superstorm/.spa
dc.relation.referencesSchrijver, C.J.and Zwaan, C. (2000). Solar and Stellar Magnetic Activity. Cambridge Astrophysics. Cambridge University Press.spa
dc.relation.referencesSeverino, G. (2017). The Structure and Evolution of the Sun. Undergraduate Lecture Notes in Physics. Springer International Publishing, 1 edition.spa
dc.relation.referencesvan Allen, J. A. (1983). Origins of magnetospheric physics.spa
dc.relation.referencesVaquero J.M., V. M. (2009). The Sun Recorded Through History Authors. Astrophysics and Space Science Library. Springer-Verlag New York.spa
dc.relation.referencesVolker Bothmer, I. A. D. (2007). Space Weather: Physics and Effects. Environmental Sciences. Springer-Verlag Berlin Heidelberg.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.lembSolar activityeng
dc.subject.lembActividad solarspa
dc.subject.lembSolar radiationeng
dc.subject.lembRadación solarspa
dc.subject.lembData collectingeng
dc.subject.lembRecopilación de datosspa
dc.subject.proposalFlareeng
dc.subject.proposalPredictioneng
dc.subject.proposalSunspotseng
dc.subject.proposalFulguraciónspa
dc.subject.proposalPredicciónspa
dc.subject.proposalSpace weathereng
dc.subject.proposalBipolar active regioneng
dc.subject.proposalClima espacialspa
dc.subject.proposalRegión activa bipolarspa
dc.subject.proposalManchas solaresspa
dc.titlePrediction of the occurrence of flares in the solar cycle 24 from the evolution of magnetic polarity barycenters in active regionseng
dc.title.translatedPredicción de la ocurrencia de fulguraciones en el ciclo solar 24 a partir de la evolución de los baricentros de polaridad magnética en regiones activasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014227568.2021.pdf
Tamaño:
8.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: