Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)

dc.contributor.advisorGil Gonzalez, Jesús Humberto
dc.contributor.advisorDurango Restrepo, Diego Luis
dc.contributor.authorGómez López, Karen Daniela
dc.contributor.researchgroupQuímica de Productos Naturales y de los Alimentosspa
dc.date.accessioned2022-03-24T20:06:46Z
dc.date.available2022-03-24T20:06:46Z
dc.date.issued2021-12
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstracteng
dc.description.abstractEn el presente trabajo se sintetiza la producción y acumulación de isoflavonoides presentes en soya (Glycine max L.) evaluando la aplicación de derivados obtenidos de los ácido 1-oxo-indano-4-carboxílico y ácido 6-bromo-1-oxo-indano-4-carboxílico con permutación en la posición carboxílica (acoplamiento de aminoácidos, esterificación y sustitución nucleofílica), reducción del grupo 1-oxo y acoplamientos tipo Suzuki-Miyaura en la posición 6. Metodológicamente, el trabajo abarcó la identificación y caracterización de isoflavonoides y derivados sintéticos por diferentes técnicas cromatográficas (CCF, CC y CLAE) y la confirmación de sus estructuras por algunos métodos espectroscópicos y espectrométricos (1H y 13C RMN 1D 2D, UV, LC-MS, IR). Adicionalmente, se desarrolló un método por cromatografía líquida para detectar y cuantificar dichos metabolitos. Establecidos los métodos de análisis, la acumulación de los isoflavonoides fue evaluada en plántulas se soya como respuesta a los derivados sintetizado. Los análisis ejecutados involucraron la determinación de isoflavonoides en diferentes tejidos de la planta (cotiledones y tallo/raíz), en el curso del tiempo, efecto dosis-respuesta por la aplicación de MeJA, aplicación exógena derivados sintéticos y finalmente la evaluación de la actividad antioxidante. Los resultados revelaron que la acumulación de isoflavonoides para las condiciones planteadas presenta distribución diferente dependiendo de la fase de crecimiento (VC), tejido de la planta, tiempo de incubación (máxima acumulación a las 24 h), dosis de elicitor (0.16 mM) y tipo de elicitor (1-oxo-indanoil-isoleucina metil éster indujo los mayores contenidos). Por último fue posible encontrar actividad antioxidante en los extractos evaluados. Estos resultados aportan información valiosa sobre los procesos de mejora en la obtención de metabolitos secundarios con actividad biológica a partir de soya. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, the production and accumulation of isoflavonoids present in soybeans (Glycine max L.) is synthesized by evaluating the application of derivatives obtained from 1-oxo-indane-4- carboxylic acid and 6-bromo-1-oxo-indane-4-carboxylic acid with permutation at the carboxylic position (amino acid coupling, esterification and nucleophilic substitution), reduction of the 1-oxo group and Suzuki-Miyaura coupling at position 6. Methodologically, the work included the identification and characterization of isoflavonoids and synthetic derivatives by different chromatographic techniques (TLC, CC and HPLC) and the confirmation of their structures by some spectroscopic and spectrometric methods (1H and 13C NMR 1D 2D, UV, LC-MS, IR). Additionally, a liquid chromatography method was developed to detect and quantify these metabolites. Once the analysis methods were established, the accumulation of isoflavonoids was evaluated in soybean seedlings in response to the synthesized derivatives. The analyzes carried out involved the determination of isoflavonoids in different plant tissues (cotyledons and stem/root), in the course of time, dose-response effect due to the application of MeJA, exogenous application of synthetic derivatives and finally the evaluation of the antioxidant activity. The results revealed that the accumulation of isoflavonoids for the proposed conditions presents different distribution depending on the growth phase (VC), plant tissue, incubation time (maximum accumulation at 24 h), elicitor dose (0.16 mM) and type of elicitor (1-oxo-indanoyl-isoleucine methyl ester induced the highest contents). Finally, it was possible to find antioxidant activity in the extracts evaluated. These results provide valuable information on the improvement processes in obtaining secondary metabolites with biological activity from soybeans.eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica de Productos Naturalesspa
dc.format.extentxx, 106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81377
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAkula, R & Ravisha, G. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11). pp 1720-1731.spa
dc.relation.referencesBektas, Y & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5. pp1-17.spa
dc.relation.referencesBelchí , S., Almagro, L., Lijavetzky, D., Bru, R., & Pedreño, M. (2012). Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Reports, 3(1). pp 81-89.spa
dc.relation.referencesBoughton, A., Hoover, K & Felton, G. (2006). Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis et Applicata, 120(3). pp 175-188.spa
dc.relation.referencesCarrao, M., Berhow, M., Gontijo, J & Neves, M. (2009). Environmental and genetic variation of isoflavone content of soybean seeds grown in Brazil. Pesquisa Agropecuária Brasileira, 44(11). pp 1444-1451.spa
dc.relation.referencesChen, LR & Chen KH. (2021). Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview. International Journal of Molecular Sciences, 22(6). pp 1-23.spa
dc.relation.referencesChen, H., Jones, A. D & Howe, G. A. (2006). Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Letters, 580(11), pp 2540-2546.spa
dc.relation.referencesConrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10). pp 524-531.spa
dc.relation.referencesDajanta, K., Janpum, P & Leksing, W. (2013). Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (thua nao). International Food Research Journal, 20(6). pp 3125-3132.spa
dc.relation.referencesDixon, RA. (2001). Natural products and plant disease resistance. Nature, 411.pp 843-847.spa
dc.relation.referencesDuarte, H., de Morais, L., Rocha, S., de Souza, M., Deniz, N & de Mejía, E. (2011). Nutritional and bioactive compounds of soybean: Benefits on human health. Soybean and health. pp 465-488.spa
dc.relation.referencesDurango, D., Murillo, J., Echeverri, F., Escobar, G & Quiñones, W. (2018). Isoflavonoid composition and biological activity of extracts from soybean seedlings treated by different elicitors. Anais da Academia Brasileira de Ciências, 90(2 sup1 1). pp 1955-1971.spa
dc.relation.referencesEswaranandam, S., Salyer, J., Chen, P & Lee, S. (2012). Effect of elicitor spray at different reproductive stages on saponin content of soybean. Journal of Food Science, 77(2). pp 81-86.spa
dc.relation.referencesFaraj, A & Vasanthan, T. (2004). Soybean isoflavones: Effects of processing and health benefits. Food Reviews International, 20(1). pp 51-75.spa
dc.relation.referencesFaurie, B., Cluzet, S & Mérillon, JM. (2009). Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. Journal of Plant Physiology, 166(17). pp1863-1877.spa
dc.relation.referencesFonseca, S., Chico, J. M & Solano, R. (2009). The jasmonate pathway: The ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5). pp 539-547.spa
dc.relation.referencesGeng, X., Jin, L., Shimada, M., Kim, M & Mackey, D. (2014). The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 240(6). pp1149-1165.spa
dc.relation.referencesHerde, M., Gartner, K., Kollner, T., Fode, B., Boland, W., Gershenzon, J., Gatz, C & Tholl, D. (2008). Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-Homoterpene TMTT. The Plant Cell, 20(4). pp 1152-1168.spa
dc.relation.referencesHo, T., Lee, J., Jeong, C., Paek, K & Park, S. (2018). Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Applied Microbiology and Biotechnology, 102(3). pp 199-209spa
dc.relation.referencesHu, Q., Boland, W & Liu, J. (2005). 6-Substituted indanoyl isoleucine conjugate induces tobacco plant responses in secondary metabolites. Zeitschrift für Naturforschung C, 60(1-2). pp 1-4.spa
dc.relation.referencesHu, Z., Islam, A., Chen, S., Hu, B., Shen, S., Wu, Y & Wang, Y. (2019). Effects of warming and reduced precipitation on soil respiration and N2O fluxes from winter wheat-soybean cropping systems. Geodema, 337(8). pp 956-964.spa
dc.relation.referencesIsah, T., Umar, S., Mujib, A., Sharma, M., Rajasekharan, P., Zafar, N & Frukh, A. (2017). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult, 132. pp 1-27.spa
dc.relation.referencesIsanga, J & G. Zhang. (2008). Soybean bioactive components and their implications to health—A review. Food Reviews International, 24(2). pp 252-276.spa
dc.relation.referencesKaku, H., Nishizawa, Y., Ishii, N., Akimoto, C., Dohmae,N., Takio, K., Minami, E & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceeding of the National Academy of Sciences,103(29). pp11086-11091.spa
dc.relation.referencesKalaiselvan, V., Kalaivani, M., Vijayakumar, A., Sureshkumar, K & Venkateskumar, K. (2010). Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacognosy Reviews, 4(8). pp 111-117.spa
dc.relation.referencesKallscheuer, N., Classen, T., Drepper, T., & Marienhagen, J. (2019). Production of plant metabolites with applications in the food industry using engineered microorganisms. Current Opinion in Biotechnology, 56. pp 7-17.spa
dc.relation.referencesKim, M., Jang, G., Ji, Y., Kim, K., Kim, H., Lee, J & Jeong, H. (2016). Isoflavone composition and estrogenic activity of germinated soybeans (Glycine max) according to variety. Journal of the Korean Society of Food Science and Nutrition, 45(10). pp 1430-1437.spa
dc.relation.referencesKřížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6). pp 1076-1053.spa
dc.relation.referencesLee, S., Ahn, J, Khahn, T, Chun, S., Kim, S., Ro, H., Song, H & Chung, I. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grownunder two different light conditions. Journal of Agricutural and Food Chemistry, 55(23). pp 9415-9421.spa
dc.relation.referencesLee, C., Yang, L., Xu, J., Yeung, S., Huang, Y., & Chen, Z. (2005). Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 90(4). pp 735-741.spa
dc.relation.referencesLittleson, M., Russel, C., Frye, E., Ling, K., Jamieson, C & Watson, A. (2016). Synthetic approaches to coronafacic acid, coronamic acid, and coronatine. Synthesis, 48(20). pp 3429-3448.spa
dc.relation.referencesLiu, H., Huang, C., Dong, W., Du, Y., Bai, X & Li, X. (2005). Biodegradation of xanthan by newly isolated Cellulomonas sp. LX, releasing elicitor-active xantho-oligosaccharides-induced phytoalexin synthesis in soybean cotyledons. Process Biochemistry, 40(12). pp 3701–3706.spa
dc.relation.referencesMalencic, D., Maksimovic, Z., Popovic, M & Miladinovic, J. (2008). Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresource Technology, 99(14). pp 6688-6691spa
dc.relation.referencesMalencic, D., Popovic, M & Miladinovic, J. (2007). Phenolic content and antioxidant properties of Soybean (Glycine max (L.) Merr.) seeds. Molecules, 12. pp 576–581.spa
dc.relation.referencesMasilamani, Madhan., Wei, J & Sampson, H. (2012). Regulation of the immune response by soybean isoflavones. Immunologic Research, 54(1-3). pp 95-110.spa
dc.relation.referencesMendoza, D., Roa, C & Ahumada, C. (2015). Efecto de las isoflavonas de la soja en la salud ósea de adultos y niños. Salud Uninorte, 31(1). pp 138-152.spa
dc.relation.referencesMuresan, L., Clapa,D., Borsai, O., Rusu, T., Wang, T & Park, J. (2020). Potential impacts of soil tillage system on isoflavone concentration of soybean as functional food ingredients. Land, 9(10). pp 386-399.spa
dc.relation.referencesNakamura, Y., Paetz, C., Brandt, W., David, A. Rendón, M., Herrera, A., Mithöfer, A & Boland, W. (2014). Synthesis of 6-substituted 1-oxoindanoyl isoleucine conjugates and modeling studies with the COI1-JAZ co-receptor complex of Lima Bean. Journal of Chemical Ecology,40(7). pp 687-699.spa
dc.relation.referencesNamdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1(2007). pp 69-79.spa
dc.relation.referencesNg, T & colaboladores. (2011). Glyceollin, a soybean phytoalexin with medicinal properties. Applied Microbiology and Biotechnology, 90. pp 59-68.spa
dc.relation.referencesOksman, KM & Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science, 9(9). pp 433-440.spa
dc.relation.referencesPabich, M & Materska, M. (2019). Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients, 11(7). pp 1-13.spa
dc.relation.referencesPopa, D., & Rusu, M. (2017). Isoflavones: Vegetable sources, biological activity, and analytical methods for their assessment. Superfood and Functional Food-The development of superfoods and their roles as medicine, pp 133-152.spa
dc.relation.referencesPratap, A., Gupta, S., Kumar, J & Solanki, R. (2011). Soybean. Technological Innovations in Major World Oil Crops, 1. pp 293-321.spa
dc.relation.referencesPurcell, LC., Montserrat, S & Ashlock, L. (2014). Soybean growth and development. Arkansas Soybean Production Handbook, 2.pp 1-8.spa
dc.relation.referencesRen, C., Chen, Y., Fang, F & Chao, C. (2012). Time and dosage effects of an endophytic fungal elicitor on the volatile oil production and physiology of Atractylodes lancea suspension cells. Journal of Medicinal Plants Research, 6(40). pp 5369-5376.spa
dc.relation.referencesRizzo, G & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. Nutrients, 10 (1). pp 43-92.spa
dc.relation.referencesSchüler, G., Gorls, H & Boland, W. (2001). 6-Substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. European Journal of Organic Chemistry, 2001(9). pp 1663-1668.spa
dc.relation.referencesSchüler, G., Mithofer, A., Baldwin, IT., Berger, S., Ebel, J., Santos, JG., Herrmann, G., Hölscher, D., Kramell, R., Kutchan, TM., Schneider, B., Stenzel, I., Wasternack, C & Boland, W. (2004). Coronalon: a powerful tool in plant stress physiology. FEBS Letters, 563(1-3). pp 17-22.spa
dc.relation.referencesSerrano, M., Coluccia, F., Torres, M., L'Haridon, F & Métraux, JP. (2014). The cuticle and plant defense to pathogens. Frontiers in Plant Science, 5. pp 1-8.spa
dc.relation.referencesTaiz, L & Zeiger, E. (2006). Fisiología vegetal. Castelló de la Plana: Publicaciones de la Universitat Jaume.spa
dc.relation.referencesTaku, K., Melby, M., Kronenberg, F., Kurzer, M & Messina, M. (2012). Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-anzhaialysis of randomized controlled trials. Menopause: The journal of the North American Menopause Society, 19(7). pp 776-790.spa
dc.relation.referencesTeekachunhatean, S., Hanprasertpong, N & Teekachunhatean, T. (2013). Factors affecting isoflavone content in soybean seeds grown in Thailand. International Journal of Agronomy, 2013(6). pp 1-11spa
dc.relation.referencesThines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, SY., Howe, G & Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448(7154), pp 661-665.spa
dc.relation.referencesUmezawa, C & Shin, M. (1999). Antimicrobial compounds in plants. Natural Antimicrobial Systems. Encyclopedia of Food Microbiology. pp 1576-1582spa
dc.relation.referencesVan Wees, SC., Van der Ent, S & Pieterse, CM. (2008). Plant immune responses triggered by beneficial microbes. Currento Opinion in Plant Biology, 11(4). pp 443-448.spa
dc.relation.referencesVicent, A & Fitzpatrick, L. (2000). Soy isoflavones: Are they useful in menopause? Mayo Clinic Proceedings, 75(11). pp 1174-1184.spa
dc.relation.referencesWang, J & Wu, J. (2013). Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Advances in Biochemical. Engineering/Biotechnology, 134. pp 55-89.spa
dc.relation.referencesYamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T & Shibuyaa, N. (2000). Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. The Plant Cell, 12(5). pp 817-826.spa
dc.relation.referencesYamaguchi, Y & Huffaker, A. (2011). Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology, 14(4). pp 351-357.spa
dc.relation.referencesYan, R., Li, S. L., Chung, H. S., Tam, Y. K., & Lin, G. (2005). Simultaneous quantification of 12 bioactive components of Ligusticum chuanxiong Hort. by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 37(1). pp 87-95.spa
dc.relation.referencesYang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4). pp 762-787.spa
dc.relation.referencesYousefian, S., Lohrasebi, T., Farhadpour, M., & Haghbeen, K. (2020). Efect of methyl jasmonate on phenolic acids accumulation and the expression profle of their biosynthesis related genes in Mentha spicata hairy root cultures. Plant Cell, Tissue and Organ Culture, 142. 285-297.spa
dc.relation.referencesYu, SY., Yoo, SJ., Yang, L., Zapata, C., Srinivasan, A., Hay, BA & Baker, NE. (2002). A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development, 129(13). pp 3269-3278.spa
dc.relation.referencesYu, W., Yu, M., Zhao, R., Sheng, J., Li, Y & Shen, L. (2019). Ethylene perception is associated with methyl-jasmonate-mediated immune response against Botrytis cinerea in tomato fruit. Journal of Agricultural and Food Chemistry, 67(24), pp 6725-6735.spa
dc.relation.referencesZhai, Q., Yan, C., Li, L., Xie, D & Li, C. (2017). Jasmonates. Hormone Metabolism and Signaling in Plants, 243-272.spa
dc.relation.referencesZhao, YF., Jones, WT., Sutherland, P., Palmer, DA., Mitchell, RE., Reynolds, PH., Damicone, J & Bender, CL. (2001). Detection of the phytotoxin coronatine by ELISA and localization in infected plant tissue. Physiological and Molecular Plant Pathology, 58(6). pp 247-258.spa
dc.relation.referencesZheng, X., Spivey, N., Zeng, W., Liu, P., Fu, Z., Klessig, D., He, SY & Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11(6), pp 587-596.spa
dc.relation.referencesZimmermann, S., Nürnberger, T., Frachisse, J., Wirtz, W & Guern, J (1997). Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proceedings of the National Academy of Sciences, 94(6). pp 2751-2755.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalIsoflavonoidespa
dc.subject.proposalElicitorspa
dc.subject.proposalActividad antioxidantespa
dc.subject.proposalIsoflavonoideng
dc.subject.proposalAntioxidant activityeng
dc.titleSíntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)spa
dc.title.translatedSynthesis of 1-oxo-indane-4-carboxylic acid derivatives and evaluation of their elicitor effect on bioactive isoflavonoids in soybean (Glycine max L)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1117535160.2021.pdf
Tamaño:
2.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: