Aplicación de una red neuronal convolucional para la predicción de mallas de población en el área metropolitana de Bogotá

dc.contributor.advisorNiño Vásquez, Luís Fernando
dc.contributor.authorMontero Leguizamón, Aníbal
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISIspa
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2021-10-04T14:59:48Z
dc.date.available2021-10-04T14:59:48Z
dc.date.issued2021-09-29
dc.descriptionilustraciones, fotografías, mapas, tablasspa
dc.description.abstractSaber cuántas personas viven en un área determinada y saber en dónde habitan específicamente, son preguntas tradicionalmente abordadas desde la Demografía. El presente trabajo plantea la alternativa de utilizar imágenes satelitales para predecir el número de habitantes a partir de mallas de población. Se extrajo un conjunto de imágenes de Landsat 8, a partir de un diseño muestral proporcional al tamaño (PPS) aplicado sobre una malla de población censal del 2018 en Colombia. Se entrenó la arquitectura LeNet-5 modificada para realizar regresión sobre el número de habitantes por celda a partir del conjunto de imágenes obtenido. Se realizaron pruebas del modelado sobre una submuestra de la malla de población en Colombia y sobre la malla de población correspondiente a los municipios que componen el área metropolitana de Bogotá en 2018, arrojando MAEs de 947,8 y 1.181,9, respectivamente, igualando e incluso superando los resultados encontrados en el estado del arte. (Texto tomado de la fuente)spa
dc.description.abstractKnowing how many people live in an area and knowing where they live specifically are questions commonly approached through Demography. The present work proposes the using of satellite images to predict the number of inhabitants based on population grids as an alternative approach. A Landsat 8 images dataset was generated using a Probability Proportional to Size (PPS) sample extracted on a 2018 census population grid in Colombia. A LeNet-5 architecture was modified to predict the number of inhabitants per cell and trained with the previous image dataset obtained. The trained model was tested with a subsample of the population grid in Colombia and the population grid corresponding to the municipalities of the Bogotá metropolitan area in 2018. The model reached MAEs of 947.8 and 1181.9, respectively. These results equal and even exceed the performance found in the state of the art.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.methodsSe abordó una estrategia de investigación cuantitativa. Tal y como se relacionan los conceptos mencionados en el título y el objetivo general de la investigación, y en cuanto a la definición operacional de las variables implicadas en la investigación, se modeló la malla de población en el área metropolitana de Bogotá a partir de las características detectadas en las imágenes de sensores remotos a través de CNN. se adoptó un tipo de investigación no experimental y con significación temporal de tipo transversal.spa
dc.description.researchareaSistemas Inteligentesspa
dc.format.extentXVI, 46 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80363
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesS. Amaral, A. A. Gavlak, M. I. S. Escada, and A. M. V. Monteiro, “Using remote sensing and census tract data to improve representation of population spatial distribution: Case studies in the Brazilian Amazon,” Population and Environment, vol. 34, no. 1, pp. 142–170, sep 2012. [Online]. Available: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s11111-012-0168-2spa
dc.relation.referencesEurostat, “Glossary:Population grid cell - Statistics Explained.” [Onli- ne]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary: Population{\ }grid{\ }cellspa
dc.relation.references“Population grids - Statistics Explained.” [Online]. Available: https://ec.europa. eu/eurostat/statistics-explained/index.php/Population{\ }gridsspa
dc.relation.referencesC. Robinson, F. Hohman, and B. Dilkina, “A deep learning approach for population esti- mation from satellite imagery,” in Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities, GeoHumanities 2017. Association for Computing Machi- nery, Inc, nov 2017, pp. 47–54.spa
dc.relation.referencesM. Ferguson, R. Ak, Y.-T. Lee, and K. Law, “Automatic localization of casting defects with convolutional neural networks,” 2017, pp. 1726–1735.spa
dc.relation.referencesY. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document Recognition,” in Proceedings of the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665spa
dc.relation.referencesN. M. Short, U. S. N. Aeronautics, S. A. Scientific, T. I. Branch, E. R. R. S. A. C. (U.S.), and G. S. F. Center, The Landsat Tutorial Workbook: Basics of Satellite Remote Sensing, ser. NASA reference publication. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1982. [Online]. Available: https://books.google.com.co/books?id=9RsrAAAAIAAJspa
dc.relation.referencesM. A. Wulder, T. R. Loveland, D. P. Roy, C. J. Crawford, J. G. Masek, C. E. Wood- cock, R. G. Allen, M. C. Anderson, A. S. Belward, W. B. Cohen, J. Dwyer, A. Erb, F. Gao, P. Griffiths, D. Helder, T. Hermosilla, J. D. Hipple, P. Hostert, M. J. Hughes, J. Huntington, D. M. Johnson, R. Kennedy, A. Kilic, Z. Li, L. Lymburner, J. McCorkel, N. Pahlevan, T. A. Scambos, C. Schaaf, J. R. Schott, Y. Sheng, J. Storey, E. Vermote, J. Vogelmann, J. C. White, R. H. Wynne, and Z. Zhu, “Current status of Landsat pro- gram, science, and applications,” Remote Sensing of Environment, vol. 225, pp. 127–147, may 2019.spa
dc.relation.referencesE. European Space Agency, Sentinel-2 User Handbook. European Space Agency, 2015.spa
dc.relation.referencesP. Doupe, E. Bruzelius, J. Faghmous, and S. G. Ruchman, “Equitable Development through Deep Learning: The Case of Sub-National Population Density Estimation,” in Proceedings of the 7th Annual Symposium on Computing for Development, ser. ACM DEV ’16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.1145/3001913.3001921spa
dc.relation.referencesF. Batista e Silva, J. Gallego, and C. Lavalle, “A high-resolution population grid map for Europe,” Journal of Maps, vol. 9, no. 1, pp. 16–28, 2013.spa
dc.relation.referencesL. Wang and X. Li, “Population estimation with remote sensing,” in Comprehensive Remote Sensing. Elsevier, jan 2017, vol. 1-9, pp. 59–66.spa
dc.relation.referencesR. C. Taragi, K. S. Bisht, and B. S. Sokhi, “Generating population census data through aerial remote sensing,” Journal of the Indian Society of Remote Sensing, vol. 22, no. 3, pp. 131–138, sep 1994. [Online]. Available: https: //link-springer-com.ezproxy.unal.edu.co/article/10.1007/BF03024774spa
dc.relation.referencesK. Karume, C. Schmidt, K. Kundert, M. E. Bagula, B. F. Safina, R. Schomacker, D. Ganza, O. Azanga, C. Nfundiko, N. Karume, and G. N. Mushagalusa, “Use of Remote Sensing for Population Number Determination,” The Open Access Journal of Science and Technology, vol. 05, no. 03, 2017.spa
dc.relation.referencesB.-g. Zhang, “Application of remote sensing technology to population estimation,” Chinese Geographical Science, vol. 13, no. 3, pp. 267–271, sep 2003. [Online]. Available: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s11769-003-0029-0spa
dc.relation.referencesA. Sorichetta, G. M. Hornby, F. R. Stevens, A. E. Gaughan, C. Linard, and A. J. Tatem, “High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020,” Scientific Data, vol. 2, sep 2015.spa
dc.relation.referencesS. Zhao, Y. Liu, R. Zhang, and B. Fu, “China’s population spatialization based on three machine learning models,” Journal of Cleaner Production, vol. 256, p. 120644, may 2020.spa
dc.relation.referencesF. HORTON, “Remote sensing techniques and urban acquisition,” ESTESJ, SEN- GERL(eds.). Remote Sensing Techniques, pp. 243–276, 1974.spa
dc.relation.referencesE. C. B. L. F. Curtis, “Introduction to environmental remote sensing,” Chapman and Hall Ltd, pp. 238–241, 1986.spa
dc.relation.referencesA. E. Ayila, B. Paul Babatunde, and J. P. Yohanna, “Population estimation and census track demarcation in Hwolshe, Plateau State, Nigeria: A geospatial approach,” Remote Sensing Applications: Society and Environment, vol. 10, pp. 183–189, apr 2018.spa
dc.relation.referencesC. T. Lloyd, A. Sorichetta, and A. J. Tatem, “Data Descriptor: High resolution global gridded data for use in population studies,” Scientific Data, vol. 4, no. 1, pp. 1–17, jan 2017. [Online]. Available: www.nature.com/sdata/spa
dc.relation.referencesA. Dmowska and T. F. Stepinski, “A high resolution population grid for the contermi- nous United States: The 2010 edition,” Computers, Environment and Urban Systems, vol. 61, pp. 13–23, jan 2017.spa
dc.relation.referencesQ. Yuan, H. Shen, T. Li, Z. Li, S. Li, Y. Jiang, H. Xu, W. Tan, Q. Yang, J. Wang, J. Gao, and L. Zhang, “Deep learning in environmental remote sensing: Achievements and challenges,” Remote Sensing of Environment, vol. 241, p. 111716, may 2020.spa
dc.relation.referencesM. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land Use Classification in Remote Sensing Images by Convolutional Neural Networks,” aug 2015. [Online]. Available: http://arxiv.org/abs/1508.00092spa
dc.relation.referencesKaren Simonyan, Andrew Zisserman, “Very Deep Convolutional Networks for large- scale image recognition,” American Journal of Health-System Pharmacy, vol. 75, no. 6, pp. 398–406, 2018.spa
dc.relation.referencesDANE, “Guía para la anonimización de bases de datos en el Sistema Estadístico Nacional,” Bogotá, D.C., p. 72, 2018.spa
dc.relation.referencesG. Chander, B. L. Markham, and D. L. Helder, “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,” Remote Sensing of Environment, vol. 113, no. 5, pp. 893–903, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425709000169spa
dc.relation.referencesA. H. Bagour, “Probability Proportional to sise Sampling,” Ph.D. dissertation, Oklaho- ma State University, 2004.spa
dc.relation.referencesC. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0spa
dc.relation.referencesE. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Plat- form: A Comprehensive Guide for Beginners, 2019.spa
dc.relation.referencesK. Jordahl, J. V. den Bossche, M. Fleischmann, J. Wasserman, J. McBride, J. Gerard, J. Tratner, M. Perry, A. G. Badaracco, C. Farmer, G. A. Hjelle, A. D. Snow, M. Cochran, S. Gillies, L. Culbertson, M. Bartos, N. Eubank, Maxalbert, A. Bilogur, S. Rey, C. Ren, D. Arribas-Bel, L. Wasser, L. J. Wolf, M. Journois, J. Wilson, A. Greenhall, C. Holdgraf, Filipe, and F. Leblanc, “geopandas/geopandas: v0.8.1,” 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3946761spa
dc.relation.referencesT. Pandas development team, “pandas-dev/pandas: Pandas,” 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3509134spa
dc.relation.referencesQGIS Development Team, QGIS Geographic Information System, Open Source Geospatial Foundation, 2009. [Online]. Available: http://qgis.orgspa
dc.relation.referencesM. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man ́e, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi ́egas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/spa
dc.relation.referencesF. Chollet and Others. (2015) Keras. [Online]. Available: https://github.com/fchollet/ kerasspa
dc.relation.referencesJ. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & En- gineering, vol. 9, no. 3, pp. 90–95, 2007.spa
dc.rightsDerechos reservados al autorspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembRedes neuronalesspa
dc.subject.lembNeural networkseng
dc.subject.proposalMalla de Poblaciónspa
dc.subject.proposalSensores Remotosspa
dc.subject.proposalAprendizaje Profundospa
dc.subject.proposalRedes Neuronales Convolucionalesspa
dc.subject.proposalPopulation grideng
dc.subject.proposalRemote Sensingeng
dc.subject.proposalDeep Learningeng
dc.subject.proposalConvolutional Neural Networkseng
dc.subject.unescoProyección demográficaspa
dc.subject.unescoPopulation projectionseng
dc.titleAplicación de una red neuronal convolucional para la predicción de mallas de población en el área metropolitana de Bogotáspa
dc.title.translatedPredicting a population grid in the Bogotá metropolitan area, based on convolutional neural networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80832404.2021.pdf
Tamaño:
13.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: