Metodología de estimación de parámetros en dispositivos eléctricos con procesos iterativos de simulación usando algoritmos genéticos

dc.contributor.advisorUstariz Farfán, Armando Jaime
dc.contributor.advisorGuerrero Guerrero, Andrés Felipe
dc.contributor.authorCastiblanco Pasuy, Johan Lisandro
dc.contributor.researchgroupGrupo de Investigación en Calidad de la Energía y Electrónica de Potenciaspa
dc.date.accessioned2021-07-02T21:27:34Z
dc.date.available2021-07-02T21:27:34Z
dc.date.issued2021
dc.descriptionfiguras, tablasspa
dc.description.abstractLa tesis se presenta como una metodología para realizar estimación de parámetros de dispositivos eléctricos por medio de simuladores electrónicos. Se aborda una alternativa a los problemas de manipulación de parámetros precisamente en la estimación de parámetros de modelo circuital de cargas eléctricas. De esa forma se propone una metodología que utiliza técnicas de inteligencia artificial como los algoritmos genéticos para validar modelos propuestos de softwares de simulación eléctrica. Así se encuentra una alternativa a la típica estimación de parámetros basada en funciones objetivo realizada sobre ecuaciones matemáticas de todo el sistema. Se realiza una contextualización respecto a la temática de estimación y el funcionamiento de las herramientas de simulación temporal de dispositivos eléctricos. Se presentan la elección de software, selección de herramientas, estructura de la metodología, su funcionamiento y el trabajo conjunto de estas para llevar a cabo la estimación. El software de simulación base es LTspice con uso del motor Spice para manipular parámetros eléctricos por medio de arreglo Netlist matricial. Se utiliza algoritmos genéticos y se presenta la función objetivo general para realizar la estimación en distintos escenarios. Se expone una manera de adquisición de señales para agrupar las señales por medio del dispositivo Analog Discovery 2 y se ejecuta todo el código principal de la metodología haciendo uso del lenguaje de programación Python. Finalmente, se valida la herramienta con 3 escenarios de estimación de dispositivos del área de ingeniería eléctrica haciendo estimación de parámetros de un transformador, un módulo fotovoltaico y una lampara fluorescente (CFL). La metodología agilizará el proceso involucrado para llevar estimación de parámetros a partir de datos adquiridos. Adicionalmente, brinda un método versátil para que los ingenieros, haciendo uso de conocimiento de simulación, realicen caracterización de los dispositivos eléctricos que necesiten de manera rápida sin modelamientos matemáticos- analíticos extensos y complejos (Texto tomado de la fuente).spa
dc.description.abstractThe Thesis is presented as a methodology to do parameter estimation of electric devices using electronic simulators. It approaches an alternative to problem of manipulation parameters in the parameter estimation of circuital models of electric loads. Is proposed a methodology that use artificial intelligent techniques like genetic algorithm to validate model proposed of electrical simulation software’s. In that way is founded and alternative to the typic techniques of parameter estimation bases of objective functions made it over mathematical equations of all the system. Is realized a contextualization about estimation topics, and the operation of simulation software tools focus on electrical devices in time analysis. Is presented the software choices, tools selection, structure of the methodology, its functioning, and the work in group of them to carry out the estimation. The base software for simulation is LTspice using the Spice motor to manipulate electrical parameters via Netlist matrixial configuration. Is used genetic algorithms and is presented the general objective function to make signals comparison to realize the estimation. Is exposed way to do signal acquisition to a group the signals via Analog Discovery device and it is executed all the principal code of methodology making use of Python programming language. Finally, is validated the tool with 3 scenarios of devices estimation in the electrical engineer area doing estimation of parameters of a transformer, photovoltaic module, and compact fluorescent lamp. The methodology shall agile the involved process to do parameter estimation bases on acquired data. Give a versatile method for engineers, that making use of simulation knowledge, they should realize electrical device characterization that can need in a fast way without making complex and large mathematical-analytic models.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Ingeniería Eléctricaspa
dc.description.methodsSe desarrolla un nuevo enfoque para realizar estimación de parámetros de dispositivos eléctricos basado en simulaciones iterativas. De esa manera se expone una metodología que realiza todo el proceso de estimación de parámetros basado en el rendimiento de simuladores eléctricos, en contraste con el estado del arte que evidencia estimación basada en modelos matemáticos o que usan optimización por medio de simuladores con objetivo de un solo elemento en particular . La metodología interconecta técnicas de estimación en un lenguaje de programación (Python) con un programa de simulación (LTspice). La estimación se basa en simulaciones iterativas que se comparan con una entrada o medidas hasta hallar los parámetros de salida.spa
dc.description.researchareaModelado y Simulación de Electrónica de Potenciaspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79762
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1]F. M. Posada, “La Politica de Importación Tecnológica en Colombia,” vol. 3, no. 4, pp. 539–570, 1979.spa
dc.relation.references[2]“Información estadística importaciones: Importaciones en Colombia subieron 3,9% según informe del Dane | Centro Virtual de Negocios - CVN.” [Online]. Available: https://www.cvn.com.co/informacion-estadistica-importaciones-colombia/. [Accessed: 28-Oct-2020].spa
dc.relation.references[3]B. De Sucesos and Y. Estadísticas, “INFORME SECTORIAL SOBRE LA EVOLUCIÓN DE LA DISTRIBUCIÓN Y COMERCIALIZACIÓN DE ENERGÍA ELÉCTRICA EN COLOMBIA Ministerio de Minas y Energía República de Colombia,” 1998.spa
dc.relation.references[4]“Invierta y Gane con Energía Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014.”spa
dc.relation.references[5]“Energías alternativas se toman Colombia.” [Online]. Available: https://sostenibilidad.semana.com/medio-ambiente/articulo/energias-alternativas-se-toman-colombia/37756. [Accessed: 28-Oct-2020].spa
dc.relation.references[6]J. C. Spall, Introduction to stochastic search and optimization: estimation, simulation, and control, vol. 65. John Wiley & Sons, 2005.spa
dc.relation.references[7]S. Andradottir, “Review of simulation optimization techniques,” in Winter Simulation Conference Proceedings, 1998, vol. 1, pp. 151–158, doi: 10.1109/wsc.1998.744910.spa
dc.relation.references[8]“A quick look at Julia, R and Python - knn Example | Towards Data Science.” [Online]. Available: https://towardsdatascience.com/julia-r-and-python-7cd50c2b0fe4. [Accessed: 28-Oct-2020].spa
dc.relation.references[9]J. Blank and K. Deb, “Pymoo: Multi-Objective Optimization in Python,” IEEE Access, vol. 8, pp. 89497–89509, 2020, doi: 10.1109/ACCESS.2020.2990567.spa
dc.relation.references[10]M. Fathi and H. Bevrani, Optimization in Electrical Engineering. Springer International Publishing, 2019.spa
dc.relation.references[11]J. Roberts, K. Demarest, and G. Prescott, “What is electrical engineering today and what is it likely to become?,” in Proceedings - Frontiers in Education Conference, FIE, 2008, doi: 10.1109/FIE.2008.4720588.spa
dc.relation.references[12]A. F. Guerrero-Guerrero, J. L. Castiblanco-Pasuy, A. J. Ustariz-Farfan, and E. A. Cano-Plata, “Characterization of Parameters of a Non-dissipative Snubber Network Using a Genetic Algorithm,” in 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings, 2019, doi: 10.1109/PEPQA.2019.8851548.spa
dc.relation.references[13]H. A. Toliyat, E. Levi, and M. Raina, “A Review of RFO Induction Motor Parameter Estimation Techniques,” IEEE Power Eng. Rev., vol. 22, no. 7, p. 52, 2002, doi: 10.1109/MPER.2002.4312369.spa
dc.relation.references[14]J. Sun, J. M. Garibaldi, and C. Hodgman, “Parameter estimation using metaheuristics in systems biology: A comprehensive review,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 9, no. 1, pp. 185–202, 2012, doi: 10.1109/TCBB.2011.63.spa
dc.relation.references[15]A. R. Jordehi, “Parameter estimation of solar photovoltaic (PV) cells: A review,” Renew. Sustain. Energy Rev., vol. 61, pp. 354–371, 2016, doi: 10.1016/j.rser.2016.03.049.spa
dc.relation.references[16]C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical pathways: A comparison of global optimization methods,” Genome Research, vol. 13, no. 11. Genome Res, pp. 2467–2474, Nov-2003, doi: 10.1101/gr.1262503.spa
dc.relation.references[17]D. Matajira-Rueda, J. Cruz Duarte, J. Aviña Cervantes, and C. Correa Cely, “Global optimization algorithms applied in a parameter estimation strategy,” Rev. UIS Ing., vol. 13, no. 1, pp. 233–242, 2018, doi: 10.18273/revuin.v17n1-2018023.spa
dc.relation.references[18]M. V. Liashov, N. N. Prokopenko, A. A. Ignashin, O. V. Dvornikov, and A. A. Zhuk, “Parametric optimization subsystem in ltspice environment of analog microcircuits for operation at low temperatures,” in 2019 IEEE East-West Design and Test Symposium, EWDTS 2019, 2019, doi: 10.1109/EWDTS.2019.8884446.spa
dc.relation.references[19] N. N. Prokopenko, M. V. Liashov, A. V. Bugakova, and A. A. Zhuk, “The Multi-Criteria Optimization in the LTspice Simulation Software of a JFet class AB Buffer Amplifier for Operation at Low Temperatures,” in Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2019, 2019, pp. 21–24, doi: 10.1109/EExPolytech.2019.8906871.spa
dc.relation.references[20]D. Shleifman, R. H. Griffin, A. Dadvand, and T. Y. Chu, “Generic Parameter Extraction of Inkjet-Printed OTFTs via Optimisation Using LTspice and MATLAB,” 2018 Int. Flex. Electron. Technol. Conf. IFETC 2018, pp. 1–3, 2018, doi: 10.1109/IFETC.2018.8583889.spa
dc.relation.references[21]J. L. Castiblanco-Pasuy, “johanv26/python_ltspice_GA_estimation: Working repository of estimation tool for electrical devices based on GA.” [Online]. Available: https://github.com/johanv26/python_ltspice_GA_estimation. [Accessed: 03-Feb-2021].spa
dc.relation.references[22]J. V. Beck and K. J. Arnold, Parameter estimation in engineering and science. James Beck, 1977.spa
dc.relation.references[23]D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, vol. 116. New York, NY: Springer US, 2008.spa
dc.relation.references[24]“Linear Programming and Network Flows - Mokhtar S. Bazaraa, John J. Jarvis, Hanif D. Sherali - Google Libros.” [Online]. Available: https://books.google.com.co/books/about/Linear_Programming_and_Network_Flows.html?id=2DKKHvV_xVwC&redir_esc=y. [Accessed: 29-Oct-2020].spa
dc.relation.references[25]D. P. Bertsekas, “Nonlinear Programming,” J. Oper. Res. Soc., vol. 48, no. 3, pp. 334–334, Mar. 1997, doi: 10.1057/palgrave.jors.2600425.spa
dc.relation.references[26]H. Salkin, Foundations of integer programming. New York: North-Holland, 1989.spa
dc.relation.references[27]“Integer Programming | Wiley.” [Online]. Available: https://www.wiley.com/en-us/Integer+Programming-p-9780471283669. [Accessed: 28-Oct-2020].spa
dc.relation.references[28]S. Boyd and L. Vandenberghe, Convex Optimization. .spa
dc.relation.references[29]E. L. Peterson, “Geometric Programming,” in Advances in Geometric Programming, Springer US, 1980, pp. 31–94.spa
dc.relation.references[30]A. I. Galushkin, Neural network theory. Springer Berlin Heidelberg, 2007.spa
dc.relation.references[31]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.spa
dc.relation.references[32]F. Rothlauf, “Representations for Genetic and Evolutionary Algorithms,” in Representations for Genetic and Evolutionary Algorithms, Springer Berlin Heidelberg, 2006, pp. 9–32.spa
dc.relation.references[33]M. Bakr, NONLINEAR OPTIMIZATION IN ELECTRICAL ENGINEERING WITH APPLICATIONS IN MATLAB®. .spa
dc.relation.references[34]J. A. Taylor, Convex Optimization of Power Systems. Cambridge University Press, 2015.spa
dc.relation.references[35]S. L. Sabat, K. S. Kumar, and S. K. Udgata, “Differential evolution and swarm intelligence techniques for analog circuit synthesis,” in 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 2009, pp. 469–474, doi: 10.1109/NABIC.2009.5393356.spa
dc.relation.references[36]G. Alpaydin, S. Balkir, and G. Dündar, “An evolutionary approach to automatic synthesis of high-performance analog integrated circuits,” IEEE Trans. Evol. Comput., vol. 7, no. 3, pp. 240–252, Jun. 2003, doi: 10.1109/TEVC.2003.808914.spa
dc.relation.references[37]“Fundamentals of optimization techniques in analog IC sizing,” in Studies in Computational Intelligence, vol. 501, Springer Verlag, 2014, pp. 19–40.spa
dc.relation.references[38]D. Dvorak, T. Bauml, A. Holzinger, and H. Popp, “A Comprehensive Algorithm for Estimating Lithium-Ion Battery Parameters from Measurements,” IEEE Trans. Sustain. Energy, vol. 9, no. 2, pp. 771–779, 2018, doi: 10.1109/TSTE.2017.2761406.spa
dc.relation.references[39]J. C. Gelvez and A. Ramirez, “Measurement-based characterization of residential lighting devices: CFL and LED,” 2017 North Am. Power Symp. NAPS 2017, 2017, doi: 10.1109/NAPS.2017.8107190.spa
dc.relation.references[40]M. W. Cohen, M. Aga, and T. Weinberg, “Genetic algorithm software system for analog circuit design,” in Procedia CIRP, 2015, vol. 36, pp. 17–22, doi: 10.1016/j.procir.2015.01.033.spa
dc.relation.references[41]E. Tlelo-Cuautle et al., “Applications of evolutionary algorithms in the design automation of analog integrated circuits,” J. Appl. Sci., vol. 10, no. 17, pp. 1859–1872, 2010, doi: 10.3923/jas.2010.1859.1872.spa
dc.relation.references[42]“Parameter Estimation - an overview | ScienceDirect Topics.” [Online]. Available: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/parameter-estimation. [Accessed: 29-Oct-2020].spa
dc.relation.references[43]M. S. Rafaq and J. W. Jung, “A Comprehensive Review of State-of-the-Art Parameter Estimation Techniques for Permanent Magnet Synchronous Motors in Wide Speed Range,” IEEE Trans. Ind. Informatics, vol. 16, no. 7, pp. 4747–4758, 2020, doi: 10.1109/TII.2019.2944413.spa
dc.relation.references[44]W. MohamedAly, “Analog Electric Circuits Synthesis using a Genetic Algorithm Approach,” Int. J. Comput. Appl., vol. 121, no. 4, pp. 28–32, Jul. 2015, doi: 10.5120/21530-4523.spa
dc.relation.references[45]D. B. Fogel, “The Advantages of Evolutionary Computation.,” in BCEC, 1997, pp. 1–11.spa
dc.relation.references[46]P. Ponce Cruz, Inteligencia artificial con aplicaciones a la ingeniería. Alfaomega, 2011.spa
dc.relation.references[47]“Analog Discovery 2 [Digilent Documentation].” [Online]. Available: https://reference.digilentinc.com/reference/instrumentation/analog-discovery-2/start. [Accessed: 02-Feb-2021].spa
dc.relation.references[48]A. V Oppenheim, R. W. Schafer, and J. R. Buck, “Tratamiento de señales en tiempo discreto,” 2011.spa
dc.relation.references[49]R. P. Areny, Adquisición y distribución de señales. Marcombo, 1993.spa
dc.relation.references[50]J. G. Proakis and D. G. Manolakis, “Digital signal processing,” PHI Publ. New Delhi, India, 2004.spa
dc.relation.references[51]“LTspice | Design Center | Analog Devices.” [Online]. Available: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#. [Accessed: 02-Feb-2021].spa
dc.relation.references[52]M. L. González, LTspice. Editorial de la Universidad Nacional de La Plata (EDULP), 2020.spa
dc.relation.references[53]M. Engelhardt, “SPICE Differentiation,” LT J. Analog Innov., no. January, pp. 10–16, 2015.spa
dc.relation.references[54]A. Vladimirescu, The SPICE book. Wiley New York, 1994.spa
dc.relation.references[55]H. W. Dommel, “Techniques for analyzing electromagnetic transients,” IEEE Comput. Appl. Power, vol. 10, no. 3, pp. 18–21, Jul. 1997, doi: 10.1109/67.595285.spa
dc.relation.references[56]Q. I. Rahman and G. Schmeisser, “Characterization of the speed of convergence of the trapezoidal rule,” Numer. Math., vol. 57, no. 1, pp. 123–138, 1990.spa
dc.relation.references[57]C. W. Gear, “Initial value problems: practical theoretical developments,” Mar. 1979.spa
dc.relation.references[58]C. A. Thompson, “A STUDY OF NUMERICAL INTEGRATION TECHNIQUES FOR USE IN THE COMPANION CIRCUlT METHOD OF TRANSIENT CIRCUIT ANALYSIS.”spa
dc.relation.references[59]T. P. Santamaría, Electrónica digital. Prensas Universitarias de Zaragoza, 1994.spa
dc.relation.references[60]“History and License — Python 3.9.1 documentation.” [Online]. Available: https://docs.python.org/3/license.html. [Accessed: 02-Feb-2021].spa
dc.relation.references[61]W. McKinney, “pandas: a foundational Python library for data analysis and statistics,” Python High Perform. Sci. Comput., vol. 14, no. 9, 2011.spa
dc.relation.references[62]“ltspice · PyPI.” [Online]. Available: https://pypi.org/project/ltspice/. [Accessed: 31-Oct-2020].spa
dc.relation.references[63]I. L. Spigariol, “Fundamentos teóricos de los Paradigmas de Programación Buenos Aires-Abril 2005.”spa
dc.relation.references[64]“Measuring API Usability | Dr Dobb’s.” [Online]. Available: https://www.drdobbs.com/windows/measuring-api-usability/184405654. [Accessed: 02-Feb-2021].spa
dc.relation.references[65]M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic, “Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation,” Renew. Sustain. Energy Rev., vol. 56, pp. 246–260, 2016, doi: 10.1016/j.rser.2015.11.058.spa
dc.relation.references[66]D. / Oe and / Iser, “Large Power Transformers and the U.S. Electric Grid FOR FURTHER INFORMATION,” 2014.spa
dc.relation.references[67]C. E. Lin, J. M. Ling, and C. L. Huang, “An expert system for transformer fault diagnosis using dissolved gas analysis,” IEEE Trans. Power Deliv., vol. 8, no. 1, pp. 231–238, 1993, doi: 10.1109/61.180341.spa
dc.relation.references[68]L. Niemeyer, “A Generalized Approach to Partial Discharge Modeling,” IEEE Trans. Dielectr. Electr. Insul., vol. 2, no. 4, pp. 510–528, 1995, doi: 10.1109/94.407017.spa
dc.relation.references[69]Z. Zhang, N. Kang, and M. J. Mousavi, “Real-time transformer parameter estimation using terminal measurements,” IEEE Power Energy Soc. Gen. Meet., vol. 2015-Septe, pp. 1–5, 2015, doi: 10.1109/PESGM.2015.7285958.spa
dc.relation.references[70]A. McEvoy, L. Castaner, and T. Markvart, Solar cells: materials, manufacture and operation. Academic Press, 2012.spa
dc.relation.references[71]Z.-S. Li, G.-Q. Zhang, D.-M. Li, J. Zhou, L.-J. Li, and L.-X. Li, “Application and development of solar energy in building industry and its prospects in China,” Energy Policy, vol. 35, no. 8, pp. 4121–4127, 2007.spa
dc.relation.references[72]P. M. Cuce and E. Cuce, “A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment,” Int. J. Low-Carbon Technol., vol. 7, no. 2, pp. 159–165, 2012, doi: 10.1093/ijlct/ctr034.spa
dc.relation.references[73]F. F. Muhammad, A. W. Karim Sangawi, S. Hashim, S. K. Ghoshal, I. K. Abdullah, and S. S. Hameed, “Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique,” PLoS One, vol. 14, no. 5, May 2019, doi: 10.1371/journal.pone.0216201.spa
dc.relation.references[74]S. A. Afghan, H. Almusawi, and H. Geza, “Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model,” MATEC Web Conf., vol. 126, pp. 1–6, 2017, doi: 10.1051/matecconf/201712603002.spa
dc.relation.references[75]Z. Wei, N. R. Watson, and L. P. Frater, “Modelling of compact fluorescent lamps,” in ICHQP 2008: 13th International Conference on Harmonics and Quality of Power, 2008, doi: 10.1109/ICHQP.2008.4668833.spa
dc.relation.references[76]R. A. Jabbar, M. al-Dabbagh, A. Muhammad, R. H. Khawaja, M. Akmal, and M. Arif, “Impact of compact fluorescent lamp on power quality,” undefined, 2008.spa
dc.relation.references[77]Z. Wei and B. E. Hons, “Compact Fluorescent Lamps phase dependency modelling and harmonic assessment of their widespread use in distribution systems,” 2009.spa
dc.relation.references[78]“IEC 61000-3-2:2018 - Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤16 A per phase),” 1997. [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/3b48ae97-3d70-455f-8ab5-40510a42744f/iec-61000-3-2-2018. [Accessed: 31-Oct-2020].spa
dc.relation.references[79]J. Molina and L. Sainz, “Model of electronic ballast compact fluorescent lamps,” IEEE Trans. Power Deliv., vol. 29, no. 3, pp. 1363–1371, 2014, doi: 10.1109/TPWRD.2013.2284095.spa
dc.relation.references[80]“Comparativa: software de simulación electrónica | Blog personal: César Sánchez Meléndez.” [Online]. Available: https://blog.uclm.es/cesarsanchez/2017/10/29/software-de-simulacion-electronica/. [Accessed: 31-Oct-2020].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lcshGenetic algorithms
dc.subject.lcshParameter estimation
dc.subject.lembAlgoritmos genéticos
dc.subject.lembEstimación de parámetros
dc.subject.proposalEstimaciónspa
dc.subject.proposaloptimizaciónspa
dc.subject.proposalNetlisteng
dc.subject.proposalalgoritmo genéticospa
dc.subject.proposalCFLeng
dc.subject.proposalPVeng
dc.subject.proposalEstimationeng
dc.subject.proposaloptimizationeng
dc.subject.proposalLtspiceeng
dc.subject.proposalgenetic algorithmeng
dc.subject.proposalparameter estimationeng
dc.titleMetodología de estimación de parámetros en dispositivos eléctricos con procesos iterativos de simulación usando algoritmos genéticosspa
dc.title.translatedParameter estimation methodology in electrical devices with iterative simulation processes using genetic algorithmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053847115.2021.pdf
Tamaño:
2.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: