Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC

dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.advisorLizarazo Salcedo, Iván Alberto
dc.contributor.authorDíaz Guadarrama, Sergio
dc.date.accessioned2022-04-07T13:01:57Z
dc.date.available2022-04-07T13:01:57Z
dc.date.issued2021-05
dc.descriptionilustraciones, fotografías, graficas, mapasspa
dc.description.abstractLas bases de datos espaciales de suelos son una herramienta que ayuda en el modelamiento de diversos fenómenos en los que los suelos son determinantes, tales como el calentamiento global o la seguridad alimentaria. Sin embargo, existen problemas que dificultan su procesamiento, tales como la calidad de los datos y su alta dimensionalidad. El objetivo de esta investigación consistió en definir e implementar validaciones automatizadas para la depuración de los datos y mejorar la representación de los perfiles de suelo en función de la profundidad para así, mejorar la estimación de la variabilidad espacial del Carbono Orgánico del Suelo, COS. La zona de estudio comprendió la región sureste del departamento del Valle del Cauca, Colombia. Los datos utilizados fueron obtenidos del Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC. La metodología implementada consistió en: (i) depurar los datos de errores e inconsistencias, (ii) armonizar el conjunto de datos utilizando por una parte, la función de segmentación de la librería Algorithms for Quantitative Pedology y por otra, una función de segmentación adaptada que mejora la representación de los valores de COS mediante una función spline de áreas equivalentes y (iii) comprobar si con esta última, se mejora la estimación de la variabilidad vertical y horizontal del COS en la zona de estudio. Las profundidades de mapeo fueron las establecidas por el GlobalSoilMap para los primeros 30 cm de profundidad. Los resultados mostraron que al depurar los datos y mejorar la representación de los perfiles utilizando la función de segmentación adaptada se mejoran las estimaciones de la variabilidad espacial hasta en un 15% con respecto a los datos originales a información de referencia del proyecto soilgrids, las mejoras ocurren principalmente en las zonas más superficiales. Los procesos de validación y mejoras en la segmentación permitieron generar información de la distribución espacial del COS más representativa de la realidad al considerar el cambio gradual de esta propiedad en función de la profundidad. La metodología generada es reproducible y puede adaptarse para analizar otras propiedades continuas del suelo. (Texto tomado de la fuente)spa
dc.description.abstractSoil spatial databases are tools that can help in the modeling of various phenomenon in which soils are determinants, such as global warming or food security. However, there are two problems that make processing difficult: the quality of the data and the high dimensionality. The objective of this research was to define and implement automated validations for data validation and improve the representation of soil profile as a function of depth in order to improve the estimation of the spatial variability of Soil Organic Carbon, SOC. The study area comprised the southeast region of the Valle del Cauca department, Colombia. The data used were obtained from the Soil Information System for Latin America and The Caribbean, SISLAC. The methodology implemented consisted of: (i) debugging the data for errors and inconsistencies; (ii) harmonize the data set using, on the one hand ; the segmentation function, Algorithms for Quantitative Pedology library, AQP; and on the other, an the adapted segmentation function that improves the representation of SOC values by a spline function of equal areas; (iii) check if this last function improves the estimation of the spatial variability of the SOC in the study area. The mapping depths were those established by the GlobalSoilMap project for the first 30 cm of depth. The results showed that by refining the data and improving the representation of the profiles using the adapted segmentation function, the estimates of spatial variability are improved by up to 15%, mainly in the most superficial areas. The validation processes and improvements in segmentation made it possible to generate information on the spatial distribution of the COS that is more representative of reality when considering the gradual change of this property as a function of depth. The generated methodology is reproducible and can be adapted to analyze other continuous soil properties.eng
dc.description.curricularareaCiencias Agronómicas
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaTecnologías Geoespacialesspa
dc.format.extentxviii, 144 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81445
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAmirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021spa
dc.relation.referencesAngelini, M. (2018). Structural equation modelling for digital soil mapping. Wageningen University.spa
dc.relation.referencesAngelini, M., Heuvelink, G. B. M., Kempen, B., & Morrás, H. J. M. (2016). Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma, 281, 102–118. https://doi.org/10.1016/j.geoderma.2016.06.031spa
dc.relation.referencesAraujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. CATENA, 196, 104940. https://doi.org/https://doi.org/10.1016/j.catena.2020.104940spa
dc.relation.referencesArmas, D., Guevara, M., Alcaraz-Segura, D., Vargas, R., Soriano-Luna, Á., Durante, P., & Oyonarte, C. (2017). Digital map of the organic carbon profile in the soils of Andalusia, Spain. Ecosistemas, 26(3), 80–88. https://doi.org/10.7818/ecos.2017.26-3.10spa
dc.relation.referencesArrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., … Zhang, G.-L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0spa
dc.relation.referencesArrouays, D., Leenaars, J. G. B., Richer-de-forges, A. C., Adhikari, K., Ballabio, C., Greve, M., … Rodriguez, D. (2017). Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 14, 1–19. https://doi.org/10.1016/j.grj.2017.06.001spa
dc.relation.referencesBarbosa, D. R., Pinheiro, H. S., & Soares, F. (2019). Seasonal Variability of Trace Elements by Soil Depth in a Protected Area. Floresta e Ambiente, 26(1), 1–8.spa
dc.relation.referencesBaritz, R., Erdogan, H., Fujji, K., Takata, Y., Nocita, M., Bussian, B., … Vargas, R. (2014). Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources. In Global Soil Partnership (p. 18).spa
dc.relation.referencesBatjes, N. (1995). World inventory of soil emission potentials -WISE 2.1. Wageningen.spa
dc.relation.referencesBatjes, N., Ribeiro, E., & Van Oostrum, A. (2020). Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth System Science Data, 12(1), 299–320. https://doi.org/10.5194/essd-12-299-2020spa
dc.relation.referencesBeaudette, D., & O’Geen, A. T. (2009). Soil-Web: An online soil survey for California, Arizona, and Nevada. Computers and Geosciences, 35(10), 2119–2128. https://doi.org/10.1016/j.cageo.2008.10.016spa
dc.relation.referencesBeaudette, D., & O’Geen, A. T. (2016). Topographic and Geologic Controls on Soil Variability in California’s Sierra Nevada Foothill Region. Soil Science Society of America Journal, (July 2015), 341–354. https://doi.org/10.2136/sssaj2015.07.0251spa
dc.relation.referencesBeaudette, D., Roudier, P., & Brown, A. (2019). Package “AQP”, Users manual. https://doi.org/10.1016/j.cageo.2012.10.020>.spa
dc.relation.referencesBeaudette, D., Roudier, P., & Geen, A. T. O. (2013). Algorithms for quantitative pedology : A toolkit for soil scientists. Computers and Geosciences, 52, 258–268. https://doi.org/10.1016/j.cageo.2012.10.020spa
dc.relation.referencesBenning, R., Petzold, R., Danigel, J., Gemballa, R., & Andreae, H. (2016). Generating characteristic soil profiles for the plots of the National Forest Inventory in Saxony and Thuringia. Forest Ecology, Landscape Research and Nature Conservation, 16(November), 35–42.spa
dc.relation.referencesBhunia, G. S., Shit, P. K., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. https://doi.org/10.1016/j.jssas.2016.02.001spa
dc.relation.referencesBini, D., Santos, C. A. dos, Carmo, K. B. do, Kishino, N., Andrade, G., Zangaro, W., & Nogueira, M. A. (2013). Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 55, 117–123. https://doi.org/10.1016/j.ejsobi.2012.12.010spa
dc.relation.referencesBishop, T. F. A., Mcbratney, A., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1), 27–45. https://doi.org/https://doi.org/10.1016/S0016-7061(99)00003-8spa
dc.relation.referencesBoubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. Catena, 190(August 2019), 104539. https://doi.org/10.1016/j.catena.2020.104539spa
dc.relation.referencesBrady, N. C., & Weil, R. R. (1999). The Nature and Properties of Soils. Prentice Hall. Retrieved from https://books.google.com.co/books?id=8IdFAQAAIAAJspa
dc.relation.referencesDharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques - A case study in semi-arid tropics of South India. Geoderma Regional, 10(April), 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005spa
dc.relation.referencesDorji, T., Odeh, I., Field, D. J., & Baillie, I. C. (2014). Forest Ecology and Management Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems , Eastern Himalayas. Forest Ecology and Management, 318(2014), 91–102. https://doi.org/10.1016/j.foreco.2014.01.003spa
dc.relation.referencesDuan, L., Li, Z., Xie, H., Li, Z., Zhang, L., & Zhou, Q. (2020). Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena, 188(November 2019), 104350. https://doi.org/10.1016/j.catena.2019.104350spa
dc.relation.referencesFAO. (2017a). Carbono orgánico del suelo: el potencial oculto. Roma, Italia.spa
dc.relation.referencesFAO. (2017b). FAO y los Objetivos de Desarrollo Sostenible. Roma.spa
dc.relation.referencesFAO. (2017c). Soil Organic Carbon, the hidden potential. (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.). Roma, Italia: FAO.spa
dc.relation.referencesFAO. (2018). TALLER REGIONAL: “El uso de datos de suelos para la toma de decisiones y la planificación en Latinoamérica: presentación del sistema de información de suelos SISLAC.” Bogotá.spa
dc.relation.referencesFAO, & IIASA. (2009). Harmonized world soil database. Food and Agriculture Organization, 43. https://doi.org/3123spa
dc.relation.referencesFAO, & ITPS. (2018a). Global Soil Organic Carbon Map (GSOCmap) Technical Report. Retrieved from http://esdac.jrc.ec.europa.eu/content/global-soil-organic-carbon-estimatesspa
dc.relation.referencesFAO, & ITPS. (2018b). Mapa de carbono orgánico del suelo - GSOCmap. Rome.spa
dc.relation.referencesGarbanzo-Leon, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geográficas. UNAM, 93, 22.spa
dc.relation.referencesGarg, P. K., Garg, R. D., Shukla, G., & Srivastava, H. S. (2020). Digital Mapping of Soil Landscape Parameters. Poland: Springer International Publishing.spa
dc.relation.referencesGimond, M. (2019). Intro to GIS and Spatial Analysis. Retrieved from https://mgimond.github.io/Spatial/index.htmlspa
dc.relation.referencesGiraldo, R. (2002). Introducción a la geoestadística. Teoría y aplicación. Bogotá, Colombia: Universidad Nacional de Colombia.spa
dc.relation.referencesGlobalSoilMap. (2015). GlobalSoilMap Specifications.spa
dc.relation.referencesGöl, C., Bulut, S., & Bolat, F. (2017). Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134, 85–91. https://doi.org/10.1016/j.jafrearsci.2017.06.014spa
dc.relation.referencesGomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(January), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007spa
dc.relation.referencesGreiner, L., Keller, A., Grêt-Regamey, A., & Papritz, A. (2017). Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69(September), 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025spa
dc.relation.referencesGutierrez, J., Ordoñez, N., Bolivar, A., Bunning, S., Guevara, M., Medina, E., … Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia, 29(1), 1–10.spa
dc.relation.referencesHartemink, A. E., Mcbratney, A., & Mendonça-Santos, M. de L. (2008). Digital Soil Mapping with Limited Data. Springer Environmental Science and Engineering. https://doi.org/10.1016/0040-6031(89)85434-6spa
dc.relation.referencesHendriks, C. M. J., Stoorvogel, J., Lutz, F., & Claessens, L. (2019). When can legacy soil data be used, and when should new data be collected instead? Geoderma, 348(May), 181–188. https://doi.org/10.1016/j.geoderma.2019.04.026spa
dc.relation.referencesHengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748spa
dc.relation.referencesHengl, T., & Macmillan, R. A. (2019). Predictive Soil Mapping with R.spa
dc.relation.referencesHerrera-Peña, W. R. (2017). Distribución espacial del carbono orgánico y su relación con la fertilidad y calidad de los suelos en el Valle de Sibundoy departamento del Putumayo. Universidad Militar Nueva Granada.spa
dc.relation.referencesHillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Science.spa
dc.relation.referencesIDEAM. (2014). ZONIFICACIÓN HIDROGRÁFICA. Retrieved November 18, 2020, from http://www.ideam.gov.co/web/agua/zonificacion-hidrograficaspa
dc.relation.referencesIPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National GReenhouse Gas Inventories. (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, … S. Federici, Eds.), Agriculture, Forestryand Other Land Use (Vol. 4). Switzerland: Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.htmlspa
dc.relation.referencesISO. (2013). Geographic Information – Quality Principles; first edition (ISO 19157:2013). Geneva, Switzerland.: International Organization for Standardization.spa
dc.relation.referencesKeskin, H., Grunwald, S., & Harris, W. G. (2019). Digital mapping of soil carbon fractions with machine learning. Geoderma, 339(November 2017), 40–58. https://doi.org/10.1016/j.geoderma.2018.12.037spa
dc.relation.referencesKrige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical Metallurgical and Mining Society of South Africa, 52(6), 21.spa
dc.relation.referencesKrol, B. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data. In A. E. Hartemink, A. B. Mcbratney, & M. de L. Mendonça-Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 137–149). Springer International Publishing. https://doi.org/10.1007/978-1-4020-8592-5_11spa
dc.relation.referencesLamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031spa
dc.relation.referencesLeenaars, J. G. B. (2013). Africa Soil Profiles Database, Version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. ISRIC Report 2013/03 (Vol. 03). Wangeningen, the Netherlands. https://doi.org/10.1201/b16500-13spa
dc.relation.referencesLi, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Canberra, Australia: Geoscience Australia.spa
dc.relation.referencesMalone, B., Mcbratney, A., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007spa
dc.relation.referencesMalone, B., Minasny, B., & Mcbratney, A. (2017). Progress in Soil Science, Using R for Digital Soil Mapping. (A. E. Hartemink & A. B. Mcbratney, Eds.) (Springer). Retrieved from http://www.springer.com/series/8746spa
dc.relation.referencesMassawe, B. H. J., Winowiecki, L., Meliyo, J. L., Mbogoni, J. D. J., Msanya, B. M., Kimaro, D., … Jelinski, N. A. (2017). Assessing drivers of soil properties and classi fi cation in the West Usambara mountains , Tanzania. Geoderma Regional, 11(October), 141–154. https://doi.org/10.1016/j.geodrs.2017.10.002spa
dc.relation.referencesMatheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246spa
dc.relation.referencesMaynard, J. J., & Johnson, M. G. (2016). Uncoupling the complexity of forest soil variation: Influence of terrain indices, spectral indices, and spatial variability. Forest Ecology and Management, 369, 89–101. https://doi.org/10.1016/j.foreco.2016.03.018spa
dc.relation.referencesMcbratney, A., Gruijter, J. De, & Bryce, A. (2019). Pedometrics timeline. Geoderma, 338(November 2018), 568–575. https://doi.org/10.1016/j.geoderma.2018.11.048spa
dc.relation.referencesMinasny, B., Malone, B., Stockmann, U., Odgers, N., & Mcbratney, A. (2014). Pedometrics. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.09163-6spa
dc.relation.referencesMinasny, B., Mcbratney, A., Malone, B., & Wheeler, I. (2013). Digital Mapping of Soil Carbon. Advances in Agronomy (Vol. 118). Elsevier. https://doi.org/10.1016/B978-0-12-405942-9.00001-3spa
dc.relation.referencesMorford, S. L., Houlton, B. Z., & Dahlgren, R. A. (2016). Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochemical Cycles, 333–349. https://doi.org/10.1002/2015GB005283.Receivedspa
dc.relation.referencesMurillo, D., Ortega, I., Carrillo, J. D., Pardo, A., & Rendón, J. (2012). A comparison of interpolation methods for creating noise maps in urban environments. Dialnet, 3(1), 62–68.spa
dc.relation.referencesNachtergaele, F., Velthuizen, H. van, Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., … Wiberg, D. (2010). The harmonized world soil database. verson 1.0. 19th World Congress of Soil Science, Soil Solutions for a Changing World (Vol. Version 1.). Brisbane, Australia. Retrieved from http://library.wur.nl/WebQuery/wurpubs/fulltext/154132spa
dc.relation.referencesOdgers, N., Libohova, Z., & Thompson, J. A. (2012). Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 189–190, 153–163. https://doi.org/10.1016/j.geoderma.2012.05.026spa
dc.relation.referencesOlaya, V. (2014). Sistemas de Información Geográfica. Sistemas de Información Geográfica (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesOldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 15–32.spa
dc.relation.referencesOmuto, C., Nachtergaele, F., & Vargas, R. (2013). State of the Art Report on Global and Regional Soil Information: Where are we? Where to go? Rome. Retrieved from http://typo3.fao.org/fileadmin/templates/nr/kagera/Documents/Soil_information_Report.pdfspa
dc.relation.referencesOrgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. https://doi.org/10.1111/ejss.12499spa
dc.relation.referencesOwusu, S., Yigini, Y., Olmedo, G. F., & Omuto, C. (2020). Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma, 360(October 2018).spa
dc.relation.referencesPejović, M., Bajat, B., Gospavi, Z., Saljnikov, E., Kilibarda, M., & Dragan, Č. (2017). Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure. Journal of Geochemical Exploration, 179(February 2016), 25–35. https://doi.org/10.1016/j.gexplo.2017.05.004spa
dc.relation.referencesPham, K., Kim, D., Yoon, Y., & Choi, H. (2019). Analysis of neural network based pedotransfer function for predicting soil water characteristic curve. Geoderma, 351(August 2018), 92–102. https://doi.org/10.1016/j.geoderma.2019.05.013spa
dc.relation.referencesPiccini, C., Marchetti, A., & Francaviglia, R. (2014). Estimation of soil organic matter by geostatistical methods : Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36, 301–314. https://doi.org/10.1016/j.ecolind.2013.08.009spa
dc.relation.referencesPinheiro, H. S., Chagas, C., Carvalho Junior, W., & dos Anjos, L. H. C. (2016). Ferramentas de pedometria para caracterização da composição granulométrica de perfis de solos hidromórficos. Pesquisa Agropecuaria Brasileira, 51(9), 1326–1338. https://doi.org/10.1590/S0100-204X2016000900032spa
dc.relation.referencesPinheiro, H. S., dos Anjos, L. H. C., Xavier, P. A. M., Chagas, C., & Carvalho Junior, W. (2018). Quantitative pedology to evaluate a soil profile collection from the Brazilian semi-arid region. South African Journal of Plant and Soil, 35(4), 269–279. https://doi.org/10.1080/02571862.2017.1419385spa
dc.relation.referencesR Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, . Available online at https://www.R-project.org/. Vienna, Austria.spa
dc.relation.referencesRamos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., & Martins, J. C. (2017). The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena, 158(February), 390–412. https://doi.org/10.1016/j.catena.2017.07.020spa
dc.relation.referencesRasmussen, C., Mcguire, L., Dhakal, P., & Pelletier, J. D. (2017). Coevolution of soil and topography across a semiarid cinder cone chronosequence. Catena, 156(August 2016), 338–352. https://doi.org/10.1016/j.catena.2017.04.025spa
dc.relation.referencesRial, M., Martínez Cortizas, A., & Rodríguez-Lado, L. (2017). Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Science of the Total Environment, 609, 1411–1422. https://doi.org/10.1016/j.scitotenv.2017.08.012spa
dc.relation.referencesRodríguez, F. A., Camacho, J. H., & Rubiano, Y. (2016). Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Ciencia & Tecnología Agropecuaria, 17(2), 237–254.spa
dc.relation.referencesRossiter, D. (1999). Bases De Datos Geográficos de Suelos y el Uso de Programas para su Construcción. In R. Vargas (Ed.), Notas de conferencia (p. 65). Enschede. Retrieved from http://www.css.cornell.edu/faculty/dgr2/teach/sis/SoilGeographicDataBases_E.pdfspa
dc.relation.referencesRossiter, D. (2004). Digital soil resource inventories: status and prospects. Soil Use and Management, 20(November 2014), 296–301. https://doi.org/10.1079/SUM2004258spa
dc.relation.referencesRossiter, D. (2012). A pedometric approach to valuing the soil resource. Digital Soil Assessments and Beyond - Proceedings of the Fifth Global Workshop on Digital Soil Mapping. https://doi.org/10.1201/b12728-7spa
dc.relation.referencesRossiter, D. (2018). Past, present & future of information technology in pedometrics. Geoderma, 324(March), 131–137. https://doi.org/10.1016/j.geoderma.2018.03.009spa
dc.relation.referencesRossiter, D., Zeng, R., & Zhang, G. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. https://doi.org/10.1016/j.geoderma.2017.01.012spa
dc.relation.referencesSantra, P., Kumar, M., & Panwar, N. (2017). Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 9, 56–72. https://doi.org/10.1016/j.geodrs.2017.03.003spa
dc.relation.referencesSchloeder, C., Zimmermann, N., & Jacobs, M. (2001). Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Science Society of America Journal, 65. https://doi.org/10.2136/sssaj2001.652470xspa
dc.relation.referencesSilatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367(September 2019), 13. https://doi.org/10.1016/j.geoderma.2020.114260spa
dc.relation.referencesSimon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12(November 2017), 28–38. https://doi.org/10.1016/j.geodrs.2017.11.004spa
dc.relation.referencesSISLAC. (2013). Sistema de Información de Suelos de Latinoamérica - SISLAC. Retrieved October 2, 2017, from http://www.sislac.org/#spa
dc.relation.referencesSoil Science Division Staff. (2017). Soil Survey Manual. (C. Ditzler, K. Scheffe, & H. . . Monger, Eds.), USDA Handbook 18. Government Printing Office, Washington, D.C. https://doi.org/10.1097/00010694-195112000-00022spa
dc.relation.referencesSoil Survey Staff. (2014). Kellogg Soil Survey Laboratory Methods Manual. U.S. Department of Agriculture, Natural Resources Conservation Service.spa
dc.relation.referencesSoussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., … Lal, R. (2017). Matching policy and science: Rationale for the “4 per 1000 - soils for food security and climate” initiative. Soil and Tillage Research, (June), 13. https://doi.org/10.1016/j.still.2017.12.002spa
dc.relation.referencesSulaeman, Y., Minasny, B., Mcbratney, A., Sarwani, M., & Sutandi, A. (2013). Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192(1), 77–85. https://doi.org/10.1016/j.geoderma.2012.08.005spa
dc.relation.referencesSzatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., & Pásztor, L. (2019). Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research, 195(January), 104410. https://doi.org/10.1016/j.still.2019.104410spa
dc.relation.referencesTaghizadeh-Mehrjardi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110. https://doi.org/10.1016/j.geoderma.2015.12.003spa
dc.relation.referencesUSDA. (1995). Soil Survey Geographic (SSURGO) Database. Fort Worth, Texas: Natural Soil Survey Center. Retrieved from http://soildatamart.nrcs.usda.govspa
dc.relation.referencesUSDA. (2014). Claves para la Taxonomía de Suelos. Soil Survey Staff. https://doi.org/10.1109/TIP.2005.854494spa
dc.relation.referencesWebster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Statistics in Practice. (Wiley, Ed.), Ecological Engineering (Second Edi). https://doi.org/https://doi.org/10.1016/j.ecoleng.2004.06.002spa
dc.relation.referencesWillmott, C. (1982). Some comments on the evaluation of model performance. Bulletin - American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2spa
dc.relation.referencesXin, Z., Qin, Y., & Yu, X. (2016). Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena, 137, 660–669. https://doi.org/10.1016/j.catena.2015.01.028spa
dc.relation.referencesYao, X., Yu, K., Deng, Y., Zeng, Q., Lai, Z., & Liu, J. (2019). Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena, 178(February), 189–198. https://doi.org/10.1016/j.catena.2019.03.004spa
dc.relation.referencesYigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (2018). Soil Organic Carbon Mapping Cookbook. FAO (2nd editio). Rome: FAO. https://doi.org/10.2307/j.ctt5hjqxd.7spa
dc.relation.referencesZhang, S. (2013). Comparison of statistical methods for digital soil mapping of sub-Saharan Africa.spa
dc.relation.referencesZhang, Y., Zhen, Q., Li, P., Cui, Y., Xin, J., Yuan, Y., … Zhang, X. (2020). Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 12(6), 2259. https://doi.org/10.3390/su12062259spa
dc.relation.referencesZhang, Z., Zhou, Y., & Huang, X. (2020). Applicability of GIS-based spatial interpolation and simulation for estimating the soil organic carbon storage in karst regions. Global Ecology and Conservation, 21, e00849. https://doi.org/10.1016/j.gecco.2019.e00849spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalPerfiles de suelospa
dc.subject.proposalSISLACspa
dc.subject.proposalCarbono orgánico del suelospa
dc.subject.proposalVariabilidad espacialspa
dc.subject.proposalSoil profileseng
dc.subject.proposalSoil organic carboneng
dc.subject.proposalSpatial variabilityeng
dc.subject.proposalDepuración de datosspa
dc.subject.proposalSegmentaciónspa
dc.subject.proposalSegmentation of soil profileseng
dc.subject.proposalData validationeng
dc.subject.unescoDatos geológicosspa
dc.subject.unescoGeological dataeng
dc.subject.unescoProcesamiento de datosspa
dc.subject.unescoData processingeng
dc.titleAlgoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLACspa
dc.title.translatedQuantitative pedology algorithms for the Soil Information System of Latin America and the Caribbean, SISLACeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
591583_2021.pdf
Tamaño:
5.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: