Evaluación de la actividad adsorbente de un material inteligente y su operabilidad para la remoción de contaminantes orgánicos en aguas de producción

dc.contributor.advisorMerchán Arenas, Diego Rolandospa
dc.contributor.advisorVargas Sáenz, Julio Césarspa
dc.contributor.authorFlórez Varón, Juan Sebastiánspa
dc.date.accessioned2024-05-24T18:43:11Z
dc.date.available2024-05-24T18:43:11Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn Colombia, diariamente se producen cerca de 1,5 millones de metros cúbicos de agua de producción en diversos campos petroleros. El objetivo de eliminar los vertimientos desafía el desarrollo de tecnologías que impulsen esta estrategia, asegurando la sostenibilidad y la preservación del medio ambiente sin comprometer la producción de crudo. A lo largo de este trabajo, se estudia el procedimiento para la producción y caracterización de una membrana dotada con un material inteligente en su matriz. En primera instancia, esta membrana es de naturaleza oleofílica y permite la eliminación de los contaminantes orgánicos presentes en el agua de producción. No obstante, al exponer la membrana a una irradiación con luz UV durante 10 minutos, su afinidad al aceite se invierte, transformándose en oleofóbica. Esto posibilita la remoción de los contaminantes de la matriz de la membrana y la regeneración de su capacidad de remoción. Esta membrana logró retirar hasta el 90,6% de los contaminantes asociados a grasas y aceites de una muestra de agua de producción sintética con concentraciones entre 90 mg/L y 250 mg/L. Además, se confirmó la inversión de la afinidad al aceite al exponerse a un estímulo de luz UV, lo que permitió recuperar la capacidad de retención de contaminantes de la membrana. La membrana también se sometió a estudios de análisis termogravimétrico y microscopia electrónica de barrido, que facilitaron la caracterización de su naturaleza. (Texto tomado de la fuente).spa
dc.description.abstractIn Colombia, approximately 1.5 million cubic meters of production water are generated daily in several oil fields. The goal of eliminating discharges challenges the development of technologies that drive this strategy, ensuring sustainability and environmental preservation without compromising crude oil production. Throughout this work, the procedure for producing and characterizing a membrane equipped with a smart material in its matrix is evaluated. Initially, this membrane is oleophilic and allows the removal of organic contaminants in production water. However, when the membrane is exposed to UV radiation for 10 minutes, its affinity for oil is reversed, transforming it into an oleophobic state; this enables the removal of contaminants from the membrane matrix and the regeneration of its removal capacity. This membrane successfully removed up to 90.6% of pollutants associated with fats and oils from a synthetic production water sample with concentrations between 90 mg/L and 250 mg/L. Additionally, the reversal of oil affinity was confirmed when exposed to UV radiation stimulus, allowing the recovery of the membrane's contaminant retention capacity. The membrane was also subjected to thermogravimetric analysis and scanning electron microscopy studies, facilitating the characterization of its nature.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaProcesos catalíticosspa
dc.format.extentxviii, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86156
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbu Hassan, M. A., Ariffin, M., Pei Lin, T., & Zainon Noor, Z. (2009). Coagulation and Flocculation Treatment of Wastewater in Textile Industry Using Chitosan. Journal of Chemical and Natural Resources Engineering, Vol. 4: 43-53.spa
dc.relation.referencesAlvarado Prieto, P. R. (2014). Mechanical properties characterization of advanced composite materials, a review. Bogotá: Science and air power collection.spa
dc.relation.referencesBelguidoum, K., Amira-Guebailia, H., Boulmokh, Y., & Houache, O. (2014). HPLC coupled to UV–vis detection for quantitative determination of phenolic compounds and caffeine in different brands of coffee in the Algerian market. Journal of the Taiwan Institute of Chemical Engineers, 1314-1320.spa
dc.relation.referencesBengisu, M., & Ferrara, M. (2018). Materials that move: Smart materials, intelligent design. Milan: SPRINGER.spa
dc.relation.referencesChemical Book. (28 de 12 de 2023). Chemical Book. Obtenido de 4-PHENYLAZOPHENOL(1689-82-3) IR1: https://www.chemicalbook.com/SpectrumEN_1689-82-3_IR1.htmspa
dc.relation.referencesChildress, A., & Brandt, J. (2000). Characterization of the Hydrophobicity of Polymeric Reverse Osmosis and Nanofiltration Membranes: Implications to Membrane Fouling. Desalination and Water Purification Research and Development Program Report.spa
dc.relation.referencesCobzaru, C., & Inglezakis, V. (2015). Ion Exchange: Progress in filtration and separation. Academic Press.spa
dc.relation.referencesComité Autónomo de la Regla Fiscal. (2022). Plan Financiero del Gobierno de 2023. Bogotá.spa
dc.relation.referencesDardor, D., Al-Maas, M., Minier-Matar, J., Janson, A., Sharma, R., Hassan, M. K., Adham, S. (2021). Protocol for Preparing Synthetic Solutions Mimicking Produced Water from Oil and Gas Operations. American Chemical Society, 6881-6892.spa
dc.relation.referencesECOPETROL. (2021). Gestión integral del agua. Bogotá: ECOPETROL .spa
dc.relation.referencesEkins, P., Vanner, R., & Firebrace, J. (2007). Zero emissions of oil in water from offshore oil and gas installations: economic and environmental implications. Journal of Cleaner Production, 1302-1315.spa
dc.relation.referencesEl-Mahalawy, A., Almotiri, R., Alkhamisi, M. M., & Wassel, A. (2022). On the Optoelectronic Performance of Solution-Processable N-(4-Methoxy-2-Nitrophenyl) Acetamide Microrods Thin Films for Efficient Light Detection Applications. Surfaces and Interfaces.spa
dc.relation.referencesEmo, B., Verma, S., Amritphale, S. S., & Das, S. (2017). Development of non-toxic self-healing X-ray radiation shielding bandages using smart gel. Cellulose, 24(7), 2939-2951.spa
dc.relation.referencesFaksness, L. G., Grinir, P. G., & Daling, P. S. (2004). Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water. Marine Pollution Bulletin, 731-742.spa
dc.relation.referencesFaraji, A., Cuccarese, M., Masi, S., Mancini, I. M., & Caniani, D. (2021). Use of carbon materials for produced water treatment: a review on adsorption process and performance. International Journal of Environmental Science and Technology, 1-16.spa
dc.relation.referencesGabbott, P. (2008). Principles and applications of thermal analysis. Oxford: Blackwell publishing.spa
dc.relation.referencesGallego, J. (2020). Calidad del agua en Colombia: Análisis del contexto actual con visión territorial. Bogotá: DATAREPUBLICA.spa
dc.relation.referencesGlass, S., Mantel, T., Appold, M., Sen, S., Usman, M., Ernst, M., & Fliz, V. (2021). Amine-Terminated PAN Membranes as Anion-Adsorber Materials. Chemie Ingeniur Technik, 1396-1400.spa
dc.relation.referencesGlobal Industry Analysts. (2021). Global Produced Water Treatment Industry. Obtenido de ReportLinker: https://www.reportlinker.com/p06032674/Global-Produced-Water-Treatment-Industry.html?utm_source=GNWspa
dc.relation.referencesGreen, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature photonics, 506-514.spa
dc.relation.referencesGutiérrez Rico, A. ( 2018). La industria petrolera y el recurso hídrico: la conjunción de una industria ambientalmente sostenible. International Bar Association, Energy, Environment, Natural Resources and Infrastructure Law.spa
dc.relation.referencesHuang, S., Ras, R. H., & Tian, X. (2018). S. Huang, R.H.A. Ras, X. Tian, Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling, Current Opinion in Colloid & Interface Science 36 (2018) 90–109. . Current Opinion in Colloid & Interface Science , 90-109.spa
dc.relation.referencesHuerta Quiñones, V. (2015). Caracterización termodinámica de un reservorio a alta presión y temperatura: caso estudio lote 64. Fuentes: El reventón energético, Vol. 13, No. 1.spa
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua. Bogotá: Ministerio de Ambiente y Desarrollo Sostenible.spa
dc.relation.referencesIDEAM. (2022). Riesgos en la hidrología colombiana. Bogotá: IDEAM.spa
dc.relation.referencesImam, N. G., Aquilanti, G., Azab, A. A., & Ali, S. E. (2021). Correlation between structural asymmetry and magnetization in Bi-doped LaFeO3 perovskite: a combined XRD and synchrotron radiation XAS study. J Mater Sci: Mater Electron, 3361–3376.spa
dc.relation.referencesJiménez, S. M. (2017). State of the art of produced water treatment. Chemosphere, 186-208.spa
dc.relation.referencesLee, K., & Neff, J. (2011). Produced water: Enviromental risks and advances in mitigation technologies. Nueva York: Springer.spa
dc.relation.referencesLeng, Y. (2013). Materials characterization: Introduction to Microscopic and Spectroscopic Methods. Weinheim: Wiley - VCH.spa
dc.relation.referencesLiu, W., Bian, S., Li, L., Samuelson, L., Kumar, J., & Tripathy, S. (2000). Enzymatic Synthesis of Photoactive Poly(4-phenylazophenol). Chemistry of materials, 12(6), 1577–1584.spa
dc.relation.referencesLopez, S. F. (2005). Simulación numérica y correlación experimental de las propiedades mecánicas en las aleaciones con memoria de forma . Barcelona: Universidad Politécnica de Cataluña.spa
dc.relation.referencesLuo, C., Ji, X., Hou, S., Eidson, N., Fan, X., Liang, Y., Wang, C. (2018). Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Advanced materials, 30, 1706498.spa
dc.relation.referencesNelson, W. G. (2010). Piezoelectric Materials: Structure, Properties and Applications. New York: Nova Science Publishers.spa
dc.relation.referencesONU. (2019). Informe de los Objetivos de Desarrollo Sostenible. Nueva York: ONU.spa
dc.relation.referencesONU. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. Paris: UN Water.spa
dc.relation.referencesPan, M., Zhou, Q., Liu, J., He, Q., & Gong, C. (2022). Electrochromic materials containing pyridinium salt and benzoate moieties with dual-colored and long-life performance. Solar Energy Materials and Solar Cells , 11712.spa
dc.relation.referencesPlatt, J. R. (1961). Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. The Journal of Chemical Physics, 862.spa
dc.relation.referencesQu, X., Alvarez, P., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water research, 3931-3946.spa
dc.relation.referencesRiazi, M. R. (2005). Characterization and Properties of Petroleum Fractions. West Conshohocken, PA: AMERICAN SOCIETY FOR TESTING AND MATERIALS.spa
dc.relation.referencesSalahi, A., Noshadi, I., Badrnezhad, r., & Kanjilal, B. (2013). Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology. Journal of Environmental Chemical Engineering, 218-228.spa
dc.relation.referencesSaththasivam, J., Loganathan, K., & Sarp, S. (2016). An overview of oil–water separation using gas flotation systems. Chemosphere, 671-680.spa
dc.relation.referencesSenjiang, Y., Long, M., Jingwen, Z., Linghui, H., & N., Y. (2019). Localization of wrinkle patterns by crack-tip induced plasticity: Experiments and simulations. International Journal of Solids and Structures, 108-119.spa
dc.relation.referencesSigma Aldrich. (27 de 01 de 2024). Tabla y gráfico de espectros infrarrojos. Obtenido de TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA: https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-tablespa
dc.relation.referencesStewart, M., & Arnold, K. E. (2011). Produced water treatment field manual. Oxford: Elsevier.spa
dc.relation.referencesTamunokuro, K., Ramirez-Canon, A., Molinari, M., & Angelis-Dimakis, A. (2020). Review of oilfield produced water treatment technologies. Chemosphere.spa
dc.relation.referencesToupin, M., & Bélanger, D. (2007). Thermal Stability Study of Aryl Modified Carbon Black by in Situ Generated Diazonium Salt. The Journal of Physical Chemistry C, 111 (14) , 5394-5401.spa
dc.relation.referencesTummons, E. N., Tarabara, V. V., Wei Chew, J., & Fane, A. G. (2016). Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. Journal of Membrane Science, 211-224.spa
dc.relation.referencesWang, H., Liu, Z., Hui, L., Ma, L., Wang, X., & Zhang, B. (2020). Utilization of Xylan-rich Steam Explosion Liquid from Processing of Poplar for Hydrogel Synthesis. Bioresources, 2525-2539.spa
dc.relation.referencesWang, Z., Lin, B., Sha, G., Zhang, Y., Yu, J., & Li, L. (2011). A Combination of Biodegradation and Microfiltration for Removal of Oil and Suspended Solids from Polymer-Containing Produced Water. SPE Americas E&P Health, Safety, Security, and Environmental Conference.spa
dc.relation.referencesWorld Health Organization. (2019). Water, sanitation, hygiene and health. Suiza: A PRIMER FOR HEALTH PROFESSIONALS.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.proposalAgua de producciónspa
dc.subject.proposalMaterial inteligentespa
dc.subject.proposalProducción de membranasspa
dc.subject.proposalProceso de filtración-adsorciónspa
dc.subject.proposalRemoción de grasas y aceitesspa
dc.subject.proposalProduction watereng
dc.subject.proposalSmart materialeng
dc.subject.proposalMembrane productioneng
dc.subject.proposalFiltrationadsorption processeng
dc.subject.proposalOil and grease removaleng
dc.subject.unescoContaminación petroleraspa
dc.subject.unescoOil pollutioneng
dc.subject.unescoTecnología químicaspa
dc.subject.unescoChemical technologyeng
dc.subject.unescoTratamiento del aguaspa
dc.subject.unescoWater treatmenteng
dc.titleEvaluación de la actividad adsorbente de un material inteligente y su operabilidad para la remoción de contaminantes orgánicos en aguas de producciónspa
dc.title.translatedEvaluation of the adsorbent activity of a smart material and its operability for the removal of organic contaminants in produced waterseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo final de maestría - JSFV_VersionFinal.pdf
Tamaño:
2.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: