Predictive heat transfer models in fibrous insulation at high temperatures
dc.contributor.advisor | Ramírez Franco, José Herney | |
dc.contributor.advisor | Daryabeigi, Kamran | |
dc.contributor.author | Carvajal Perdomo, Sergio Andrés | |
dc.contributor.cvlac | Carvajal, Sergio A [0001352125] | spa |
dc.contributor.orcid | Carvajal, Sergio A [0000-0003-0101-3711] | spa |
dc.contributor.scopus | Carvajal, Sergio A [57204546700] | spa |
dc.date.accessioned | 2024-01-22T16:48:07Z | |
dc.date.available | 2024-01-22T16:48:07Z | |
dc.date.issued | 2024-01 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El modelamiento de la transferencia de calor en materiales fibrosos es importante para el diseño y mejoramiento de los sistemas de aislamiento térmico. A altas temperaturas y bajas densidades, se espera que la radiación térmica sea el principal mecanismo de transferencia de calor. Actualmente los modelos más exitosos para modelar la transferencia de calor en aislantes a altas temperaturas requieren el uso de métodos semi-empíricos. La principal limitación de este enfoque es que los parámetros del modelo deben ser determinados a partir de mediciones calorimétricas para cada posible material y determinados nuevamente si la estructura morfológica es modificada, incluso para el mismo material. Esta investigación presenta un modelo predictivo para la transferencia de calor por radiación basada exclusivamente en propiedades físicas y morfológicas. El modelo fue validado usando mediciones previamente realizadas de la conductividad térmica efectiva en un aislante de baja densidad basado en alúmina. Para distinguir los diferentes mecanismos de transferencia de calor, se analizaron mediciones en vacío y temperaturas criogénicas. El modelo muestra una buena concordancia con las mediciones; sus predicciones son consistentes con las incertidumbres estimadas para las mediciones y el modelo y son comparables con las estimaciones obtenidas a través de métodos semi-empiricos para temperaturas entre 300 K y 1700 K (Texto tomado de la fuente) | spa |
dc.description.abstract | The modeling of heat transfer in fibrous materials is important for designing and improving thermal insulation systems. At high temperatures and low sample density, thermal radiation is expected to be the primary mode of heat transfer in fibrous insulation. Currently, the most common and successful models for modelling heat transfer in insulation at high temperatures require the use of semi-empirical methods. The main limitation of this approach is that the model parameters need to be determined from thermal measurements for each possible material and re-determined if the morphological structure is modified, even for the same material. This research presents a predictive model for radiation heat transfer based solely on physical and morphological properties. The model was validated using previously measured effective thermal conductivity of a low-density alumina-based insulation. In order to distinguish the different modes of heat transfer, prior measurements at vacuum and cryogenic temperatures were analyzed. The model demonstrates good agreement with experimental measurements, and its predictions are within the estimated uncertainties of both measurements and model, and is comparable to those obtained by semi-empirical methods for temperatures between 300 K and 1700 K | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.format.extent | xxii, 139 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85393 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Alifanov, O. M. (2017). Inverse problems in identification and modeling of thermal processes: Russian contributions. International Journal of Numerical Methods for Heat & Fluid Flow, 27(3), 711–728. https://doi.org/10.1108/HFF-03-2016-0099 | spa |
dc.relation.references | Alifanov, O. M., Nenarokomov, A. V, & Gonzalez, V. M. (2009). Study of multilayer thermal insulation by inverse problems method. Acta Astronautica, 65(9–10), 1284–1291. https://doi.org/10.1016/j.actaastro.2009.03.053 | spa |
dc.relation.references | Alifanov, O. M., Salosina, M. O., Budnik, S. A., & Nenarokomov, A. V. (2023). Design of Aerospace Vehicles’ Thermal Protection Based on Heat-Insulating Materials with Optimal Structure. Aerospace, 10(7), 629. https://doi.org/10.3390/ aerospace10070629 | spa |
dc.relation.references | Al-Jothery, H. K. M., Albarody, T. M. B., Yusoff, P. S. M., Abdullah, M. A., & Hussein, A. R. (2020). A review of ultra-high temperature materials for thermal protection system. IOP Conference Series: Materials Science and Engineering, 863(1), 012003. https://doi.org/10.1088/1757-899X/863/1/012003 | spa |
dc.relation.references | Arambakam, R. (2013). Modeling Effect of Microstructure on the Performance of Fibrous Heat [PhD Thesis]. Virginia Commonwealth University. | spa |
dc.relation.references | Arambakam, R., Tafreshi, H. V., & Pourdeyhimi, B. (2013). Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations. International Journal of Heat and Mass Transfer, 64, 1109–1117. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.05.047 | spa |
dc.relation.references | Arambakam, R., Tafreshi, H. V., & Pourdeyhimi, B. (2014). Modeling performance of multi-component fibrous insulations against conductive and radiative heat transfer. International Journal of Heat and Mass Transfer, 71, 341–348. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.031 | spa |
dc.relation.references | Asllanaj, F., Brige, X., & Jeandel, G. (2007). Transient combined radiation and conduction in a one-dimensional non-gray participating medium with anisotropic optical properties subjected to radiative flux at the boundaries. Journal of Quantitative Spectroscopy and Radiative Transfer, 107(1), 17–29. https://doi.org/10.1016/j.jqsrt.2007.01.060 | spa |
dc.relation.references | Asllanaj, F., Jeandel, G. E., Roche, J. R., & Lacroix, D. (2004). Transient combined radiation and conduction heat transfer in fibrous media with temperature and flux boundary conditions. International Journal of Thermal Sciences, 43(10), 939–950. https://doi.org/10.1016/j.ijthermalsci.2004.02.007 | spa |
dc.relation.references | Asllanaj, F., Jeandel, G., & Roche, J. R. (2001). Numerical solution of radiative transfer equation coupled with nonlinear heat conduction equation. International Journal of Numerical Methods for Heat & Fluid Flow, 11(5), 449–473. https://doi.org/10.1108/EUM0000000005528 | spa |
dc.relation.references | Asllanaj, F., Milandri, A., Jeandel, G., & Roche, J. R. (2002). A finite difference solution of non-linear systems of radiative-conductive heat transfer equations. International Journal for Numerical Methods in Engineering, 54(11), 1649–1668. https://doi.org/10.1002/nme.490 | spa |
dc.relation.references | ASTM C168-22. (2022). Standard Terminology Relating to Thermal Insulation. ASTM International, West Conshohocken, PA, 2022. | spa |
dc.relation.references | ASTM E1269-11. (2011). Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM International, West Conshohocken, PA, 2018. | spa |
dc.relation.references | ASTM E1461-13. (2022). Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International, West Conshohocken, PA, 2022. | spa |
dc.relation.references | Baillis, D., & Sacadura, J. F. (2000). Thermal radiation properties of dispersed media: Theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy and Radiative Transfer, 67(5), 327–363. https://doi.org/10.1016/S0022-4073(99)00234-4 | spa |
dc.relation.references | Banas, R., & Cunnington, G. (1974). Determination of effective thermal conductivity for the Space Shuttle Orbiter’s Reusable Surface Insulation/RSI. AIAA Paper 74-730, 730. https://doi.org/10.2514/6.1974-730 | spa |
dc.relation.references | Bankvall, C. G. (1974). Mechanisms of heat transfer in permeable insulation and their investigation in a special guarded hot plate. In R. P. Tye (Ed.), Heat Transmission Measurements in Thermal Insulations. ASTM International. | spa |
dc.relation.references | Barker, A. S. (1963). Infrared lattice vibrations and dielectric dispersion in corundum. Physical Review, 132(4), 1474–1481. https://doi.org/10.1103/PhysRev.132.1474 | spa |
dc.relation.references | Berger, M., & Bunsell, A. (1999). Fine Ceramic Fibers. Taylor & Francis. | spa |
dc.relation.references | Bhattacharyya, R. (1980). Heat-Transfer Model for Fibrous Insulations. In D. McElroy & R. Tye (Eds.), Thermal Insulation Performance (pp. 272–286). ASTM International. https://doi.org/10.1520/STP29279S | spa |
dc.relation.references | Billard, D., Gervais, F., & Piriou, B. (1976). Analysis of Multiphonon Absorption in Corundum. Physica Status Solidi (b), 75(1), 117–126. https://doi.org/10.1002/PSSB.2220750111 | spa |
dc.relation.references | Billard, D., & Piriou, B. (1974). Absorption infrarouge du corindon de 77 a 2075 K. Materials Research Bulletin, 9(7), 943–950. https://doi.org/10.1016/0025-5408(74)90174-3 | spa |
dc.relation.references | BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, & OIML. (2008a). Evaluation of measurement data - Guide to the expression of uncertainty in measurement: GUM 1995 with minor corrections, JCGM 100:2008. | spa |
dc.relation.references | BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, & OIML. (2008b). Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology, JCGM 101: 2008. | spa |
dc.relation.references | Bittle, R. R., & Taylor, R. E. (1984). Step‐Heating Technique for Thermal Diffusivity Measurements of Large‐Grained Heterogeneous Materials. Journal of the American Ceramic Society, 67(3), 186–194. https://doi.org/10.1111/j.1151-2916.1984.tb19739.x | spa |
dc.relation.references | Bohren, C. F., & Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. John Wiley & Sons. | spa |
dc.relation.references | Boulet, P., Jeandel, G., & Morlot, G. (1993). Model of radiative transfer in fibrous media—matrix method. International Journal of Heat and Mass Transfer, 36(18), 4287–4297. https://doi.org/10.1016/0017-9310(93)90113-K | spa |
dc.relation.references | Bunsell. A. (2006). Oxide Fibers. In N. Bansal (Ed.), Handbook of Ceramic Composites (1st ed.). Springer US. | spa |
dc.relation.references | Caps, R., Trunzer, A., Büttner, D., Fricke, J., & Reiss, H. (1984). Spectral transmission and reflection properties of high temperature insulation materials. International Journal of Heat and Mass Transfer, 27(10), 1865–1872. https://doi.org/10.1016/0017-9310(84)90168-6 | spa |
dc.relation.references | Caria, M. (2000). Measurement Analysis: An Introduction To The Statistical Analysis Of Laboratory Data In Physics, Chemistry And The Life Sciences. World Scientific Publishing Company. | spa |
dc.relation.references | Carvajal, S. A., Garboczi, E. J., & Zarr, R. R. (2019). Comparison of models for heat transfer in high-density fibrous insulation. Journal of Research of the National Institute of Standards and Technology, 124(124010), 1–21. https://doi.org/10.6028/jres.124.010 | spa |
dc.relation.references | Cherepanov, V. V, & Alifanov, O. M. (2017). Modeling of spectral properties and the scattering phase function for lightweight heat protection spacecraft materials. Journal of Heat Transfer, 139(3), 032701. https://doi.org/10.1115/1.4034814 | spa |
dc.relation.references | Cherepanov, V. V, Alifanov, O. M., Morzhukhina, A. V, & Cherepanov, A. V. (2016). Interaction of radiation with orthogonal representative elements of highly porous materials. Applied Mathematical Modelling, 40(5–6), 3459–3474. https://doi.org/10.1016/j.apm.2015.03.040 | spa |
dc.relation.references | Cohen, L. D., Haracz, R. D., Cohen, A., & Acquista, C. (1983). Scattering of light from arbitrarily oriented finite cylinders. Applied Optics, 22(5), 742. https://doi.org/10.1364/ao.22.000742 | spa |
dc.relation.references | Cordero, R. R., Seckmeyer, G., Pissulla, D., & Labbe, F. (2007). Uncertainty of experimental integrals: application to the UV index calculation. Metrologia, 45(1). https://doi.org/10.1088/0026-1394/45/1/001 | spa |
dc.relation.references | Crouzier, L., Delvallée, A., Allard, A., Devoille, L., Ducourtieux, S., & Feltin, N. (2019). Methodology to evaluate the uncertainty associated with nanoparticle dimensional measurements by SEM. Measurement Science and Technology, 30(8), 085004. https://doi.org/10.1088/1361-6501/AB1495 | spa |
dc.relation.references | Cunnington, G. R., & Lee, S. C. (1996). Radiative properties of fibrous insulations: Theory versus experiment. Journal of Thermophysics and Heat Transfer, 10(3), 460–466. https://doi.org/10.2514/3.811 | spa |
dc.relation.references | Cunnington, G. R., Lee, S. C., & White, S. M. (1997). Radiation heat transfer in fiber-filled silica aerogel: Comparison of theory with experiment. National Heat Transfer Conference, 1997. https://doi.org/10.2514/6.1997-3884 | spa |
dc.relation.references | Cunnington, G. R., Lee, S. C., & White, S. M. (1998). Radiative Properties of Fiber-Reinforced Aerogel: Theory Versus Experiment. Journal of Thermophysics and Heat Transfer, 12(1), 17–22. https://doi.org/10.2514/2.6318 | spa |
dc.relation.references | Curran, D., & Porter, J. M. (2020). A tomography-based effective thermal conductivity model for ceramic fiber insulation. International Journal of Heat and Mass Transfer, 160, 120224. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120224 | spa |
dc.relation.references | Daoût, C., Rozenbaum, O., Meneses, D. D. S., & Rochais, D. (2023). Identification of the spectral complex refractive index of pure silica micrometric fibers versus temperature. International Journal of Heat and Mass Transfer, 204, 123869. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123869 | spa |
dc.relation.references | Daryabeigi, K. (1999a). Effective thermal conductivity of high temperature insulations for reusable launch vehicles. NASA/TM-1999-208972. | spa |
dc.relation.references | Daryabeigi, K. (1999b). Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles. AIAA 99-1044. 37th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1999-1044 | spa |
dc.relation.references | Daryabeigi, K. (2001). Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating, AIAA 2001-2834. 35th AIAA Thermophysics Conference. https://doi.org/10.2514/6.2001-2834 | spa |
dc.relation.references | Daryabeigi, K. (2002). Heat Transfer in High-Temperature Fibrous Insulation. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. https://doi.org/10.2514/6.2002-3332 | spa |
dc.relation.references | Daryabeigi, K. (2003). Heat Transfer in High-Temperature Fibrous Insulation. Journal of Thermophysics and Heat Transfer, 17(1), 10–20. https://doi.org/10.2514/2.6746 | spa |
dc.relation.references | Daryabeigi, K. (2010). Heat transfer modeling and validation for optically thick alumina fibrous insulation. In Gaal D & Gaal P (Eds.), Proceedings of the Joint Conferences International Thermal Conductivity Conference 30 and Thermal Expansion 18 (pp. 120–132). Destech Publications. | spa |
dc.relation.references | Daryabeigi, K., Cunnington, G., & Knutson, J. R. (2013). Heat transfer modeling for rigid high-temperature fibrous insulation. Journal of Thermophysics and Heat Transfer, 27(3), 414–421. https://doi.org/10.2514/1.T3998 | spa |
dc.relation.references | Daryabeigi, K., Cunnington, G. R., & Knutson, J. R. (2008). Measurement of heat transfer in unbonded silica fibrous insulation and comparison with theory. Proceedings of the 29th International Thermal Conductivity Conference, ITCC29 and the Proceedings of the 17th International Thermal Expansion Symposium, ITES17, 292–301. | spa |
dc.relation.references | Daryabeigi, K., Cunnington, G. R., Miller, S. D., & Knutson, J. R. (2010). Combined Heat Transfer in High Porosity High Temperature Fibrous Insulations: Theory and Experimental Validation. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 1–15. https://doi.org/10.2514/6.2010-4660 | spa |
dc.relation.references | Daryabeigi, K., Miller, S. D., & Cunnington, G. R. (2007). Heat Transfer in High Temperature Multilayer Insulation. 5th European Workshop on Thermal Protection Systems and Hot Structures. | spa |
dc.relation.references | Deirmendjian, D. (1969). Electromagnetic Scattering on Spherical. Elsevier. | spa |
dc.relation.references | Deutsch, T. F. (1973). Absorption coefficient of infrared laser window materials. Journal of Physics and Chemistry of Solids, 34(12), 2091–2104. https://doi.org/10.1016/S0022-3697(73)80057-5 | spa |
dc.relation.references | Dobrovinskaya, E. R., Lytvynov, L. A., & Pishchik, V. (2009). Properties of Sapphire. In Sapphire (pp. 55–176). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85695-7_2 | spa |
dc.relation.references | Dombrovskii, L. A. (1996). Approximate methods for calculating radiation heat transfer in dispersed systems. Thermal Engineering, 43(3), 235–243. | spa |
dc.relation.references | Dombrovsky, L. A. (1996). Quartz-fiber thermal insulation: Infrared radiative properties and calculation of radiative-conductive heat transfer. J. Heat Transfer, 118(2), 408–414. https://doi.org/10.1115/1.2825859 | spa |
dc.relation.references | Domoto, G. A., & Wang, W. C. (1974). Radiative transfer in homogeneous nongray gases with nonisotropic particle scattering. Journal of Heat Transfer, 96(3), 385–390. https://doi.org/10.1115/1.3450210 | spa |
dc.relation.references | Doremus, R. H. (2008). Alumina. In J. F. Shackelford & R. H. Doremus (Eds.), Ceramic and Glass Materials: Structure, Properties and Processing (pp. 1–26). Springer US. https://doi.org/10.1007/978-0-387-73362-3_1 | spa |
dc.relation.references | Du, N., Fan, J., Wu, H., & Sun, W. (2009). Optimal porosity distribution of fibrous insulation. International Journal of Heat and Mass Transfer, 52(19–20), 4350–4357. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.067 | spa |
dc.relation.references | Fletcher, A. (1993). Zirconia (3rd ed.). Elsevier. | spa |
dc.relation.references | Fu, J., Croarkin, M. C., & Vorburger, T. V. (1994). The measurement and uncertainty of a calibration standard for the scanning electron microscope. Journal of Research-National Institute of Standards and Technology, 99, 191. | spa |
dc.relation.references | Gembarovic, J., Freeman, J., & Taylor, D. (2010). Thermophysical Properties of Two Materials, TPRL-Report 4443. | spa |
dc.relation.references | Gembarovic, J., & Taylor, R. E. (2007). A method for thermal diffusivity determination of thermal insulators. International Journal of Thermophysics, 28(6), 2164–2175. https://doi.org/10.1007/s10765-007-0279-7 | spa |
dc.relation.references | Gervais, F., & Piriou, B. (1974). Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. Journal of Physics C: Solid State Physics, 7(13), 2374. https://doi.org/10.1088/0022-3719/7/13/017 | spa |
dc.relation.references | Ghosh, G. (1994). Temperature dispersion of refractive indexes in some silicate fiber glasses. IEEE Photonics Technology Letters, 6(3), 431–433. https://doi.org/10.1109/68.275509 | spa |
dc.relation.references | Ghosh, G. (1997). Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Applied Optics, 36(7), 1540–1546. https://doi.org/10.1364/AO.36.001540 | spa |
dc.relation.references | Ghosh, G., Endo, M., & Iwasaki, T. (1994). Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. Journal of Lightwave Technology, 12(8), 1338–1342. https://doi.org/10.1109/50.317500 | spa |
dc.relation.references | Gryvnak, D. A., & Burch, D. E. (1965). Optical and infrared properties of Al2O3 at elevated temperatures. JOSA, 55(6), 625–629. https://doi.org/10.1364/JOSA.55.000625 | spa |
dc.relation.references | Hager, N. E., & Steere, R. C. (1967). Radiant heat transfer in fibrous thermal insulation. Journal of Applied Physics, 38(12), 4663–4668. https://doi.org/10.1063/1.1709200 | spa |
dc.relation.references | Hottel, H. C., Sarofim, A. F., Vasalos, I. A., & Dalzell, W. H. (1970). Multiple scatter: comparison of theory with experiment. J. Heat Transfer, 92(2), 285–291. https://doi.org/10.1115/1.3449662 | spa |
dc.relation.references | Houston, R. L. (1980). Combined radiation and conduction in a nongray participating Medium that absorbs, emits, and anisotropically scatters [PhD Thesis]. The Ohio State University. | spa |
dc.relation.references | Houston, R. L., & Korpela, S. A. (1982). Heat Transfer Through Fiberglass Insulation. International Heat Transfer Conference 7, 499–504. https://doi.org/10.1615/IHTC7.4040 | spa |
dc.relation.references | Howell, J. R., Mengüç, M. P., Daun, K., & Siegel, R. (2020). Thermal Radiation Heat Transfer (7th ed.). CRC Press. | spa |
dc.relation.references | Hsieh, C. K., & Su, K. C. (1979). Thermal radiative properties of glass from 0.32 to 206 μm. Solar Energy, 22(1), 37–43. https://doi.org/10.1016/0038-092X(79)90057-4 | spa |
dc.relation.references | Hudson, L. K., Misra, C., Perrotta, A. J., Wefers, K., & Williams, F. S. (2000). Aluminum oxide. Ullmann’s Encyclopedia of Industrial Chemistry. | spa |
dc.relation.references | Hussain, M., & Tao, W.-Q. (2018). Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method. Numerical Heat Transfer, Part A: Applications, 74(6), 1285–1300. https://doi.org/10.1080/10407782.2018.1523599 | spa |
dc.relation.references | Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2006). Introduction to Heat Transfer. Wiley. | spa |
dc.relation.references | International Organization for Standardization (ISO). (2007). Thermal insulation — Vocabulary. (ISO 9229). | spa |
dc.relation.references | International Organization for Standardization (ISO). (2015). Statistical methods for use in proficiency testing by interlaboratory comparison. (ISO 13528). | spa |
dc.relation.references | Jeandel, G., Boulet, P., & Morlot, G. (1993). Radiative transfer through a medium of silica fibres oriented in parallel planes. International Journal of Heat and Mass Transfer, 36(2), 531–536. https://doi.org/10.1016/0017-9310(93)80027-R | spa |
dc.relation.references | Ji, R., Zhang, Z., Liu, L., & Wang, X. (2014). Numerical modeling and experimental study of heat transfer in ceramic fiberboard. Textile Research Journal, 84(4), 411–421. https://doi.org/10.1177/0040517513485630 | spa |
dc.relation.references | Kamdem, H. T. T., & Baillis, D. D. (2005). Radiative heat transfer using isotropic scaling approximation: Application to fibrous medium. J. Heat Transfer, 127(10), 1115–1123. https://doi.org/10.1115/1.2035108 | spa |
dc.relation.references | Kamdem, H. T. T., & Baillis, D. D. (2010). Reduced models for radiative heat transfer analysis through anisotropic fibrous medium. J. Heat Transfer, 132(7), 0727031–0727038. https://doi.org/10.1115/1.4000994 | spa |
dc.relation.references | Kamiuto, K. (1991). Two-parameter formula for the total effective thermal conductivities of ceramic-fiber insulations. Energy, 16(4), 701–706. https://doi.org/10.1016/0360-5442(91)90018-H | spa |
dc.relation.references | Kamiuto, K., Kinoshita, I., Miyoshi, Y., & Hasegawa, S. (1982). Experimental study of simultaneous conductive and radiative heat transfer in ceramic fiber insulation. Journal of Nuclear Science and Technology, 19(6), 460–468. https://doi.org/10.1080/18811248.1982.9734169 | spa |
dc.relation.references | Kaptein, M., & van den Heuvel, E. (2022). Statistics for Data Scientists: An Introduction to Probability, Statistics, and Data Analysis. Springer International Publishing. | spa |
dc.relation.references | Kaviany, M. (1995). Principles of Heat Transfer in Porous Media (2th ed.). Springer New York. | spa |
dc.relation.references | Kerker, M. (1969). The Scattering of Light and Other Electromagnetic Radiation. Academic Press. | spa |
dc.relation.references | Kim, K. S., & Lines, M. E. (1993). Temperature dependence of chromatic dispersion in dispersion‐shifted fibers: Experiment and analysis. Journal of Applied Physics, 73(5), 2069–2074. https://doi.org/10.1063/1.353152 | spa |
dc.relation.references | Kita, J., Engelbrecht, A., Schubert, F., Groß, A., Rettig, F., & Moos, R. (2015). Some practical points to consider with respect to thermal conductivity and electrical resistivity of ceramic substrates for high-temperature gas sensors. Sensors and Actuators B: Chemical, 213, 541–546. https://doi.org/10.1016/j.snb.2015.01.041 | spa |
dc.relation.references | Kostikov, V., Makhova, V., Trefilov S, & Trefilov V. (1995). Ceramic fibers. In V. Kostikov (Ed.), Fiber Science and Technology. Springer Science + Business Media. | spa |
dc.relation.references | Koval’chyuk, N. M., Listovnichaya, S. P., & Pilipovskii, Y. L. (1991). Heat insulating materials based on the fibers of refractory oxides: A review. Refractories, 32(11), 621–624. https://doi.org/10.1007/BF01280860 | spa |
dc.relation.references | Kurosaki, Y., & Yamada, J. (1991). Radiation Transport in Porous or Fibrous Media. In S. Kakaç, B. Kilkiş, F. Kulacki, & F. Arinç (Eds.), Convective Heat and Mass Transfer in Porous Media (pp. 347–390). Springer. | spa |
dc.relation.references | Larkin, B. K., & Churchill, S. W. (1959a). Heat transfer by radiation through porous insulations. AIChE Journal, 5(4), 467–474. https://doi.org/10.1002/aic.690050413 | spa |
dc.relation.references | Larkin, B. K., & Churchill, S. W. (1959b). Scattering and Absorption of Electromagnetic Radiation by Infinite Cylinders. JOSA, Vol. 49, Issue 2, Pp. 188-190, 49(2), 188–190. https://doi.org/10.1364/JOSA.49.000188 | spa |
dc.relation.references | Le, V. T., San Ha, N., & Goo, N. S. (2021). Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Composites Part B: Engineering, 226, 109301. https://doi.org/10.1016/j.compositesb.2021.109301 | spa |
dc.relation.references | Lee, S. C. (1986). Radiative transfer through a fibrous medium: Allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 36(3), 253–263. https://doi.org/10.1016/0022-4073(86)90073-7 | spa |
dc.relation.references | Lee, S. C. (1989). Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer, 32(2), 311–319. https://doi.org/10.1016/0017-9310(89)90178-6 | spa |
dc.relation.references | Lee, S. C. (1990). Scattering phase function for fibrous media. International Journal of Heat and Mass Transfer, 33(10), 2183–2190. https://doi.org/10.1016/0017-9310(90)90119-F | spa |
dc.relation.references | Lee, S. C. (1992). Dependent scattering by parallel fibers-Effects of multiple scattering and wave interference. Journal of Thermophysics and Heat Transfer, 6(4), 589–595. https://doi.org/10.2514/3.11538 | spa |
dc.relation.references | Lee, S. C. (1994). Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer, 8(4), 641–646. https://doi.org/10.2514/3.593 | spa |
dc.relation.references | Lee, S. C., & Cunnington, G. R. (1998a). Fiber orientation effect on radiative heat transfer through fiber composites. 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. https://doi.org/10.2514/6.1998-2840 | spa |
dc.relation.references | Lee, S. C., & Cunnington, G. R. (1998b). Heat transfer in fibrous insulations: comparison of theory and experiment. Journal of Thermophysics and Heat Transfer, 12(3), 297–303. https://doi.org/10.2514/2.6356 | spa |
dc.relation.references | Lee, S. C., & Cunnington, G. R. (1998c). Theoretical Models for Radiative Transfer in Fibrous Media. Annual Review of Heat Transfer, 9(9), 159–218. https://doi.org/10.1615/AnnualRevHeatTransfer.v9.50 | spa |
dc.relation.references | Lee, S. C., & Cunnington, G. R. (2000). Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation. Journal of Thermophysics and Heat Transfer, 14(2), 121–136. https://doi.org/10.2514/2.6508 | spa |
dc.relation.references | Leviton, D. B., & Frey, B. J. (2006). Temperature-dependent absolute refractive index measurements of synthetic fused silica. Proc. SPIE 6273, Optomechanical Technologies for Astronomy, 62732K, 6273, 800–810. https://doi.org/10.1117/12.672853 | spa |
dc.relation.references | Li, Y., Chen, H.-W., Wang, F.-Q., Xia, X.-L., & Tan, H.-P. (2021). A development to determine spectral radiative properties of semitransparent struts of open-cell ceramic foams: From macro-scale measurement to pore-scale simulation. Infrared Physics & Technology, 113, 103646. https://doi.org/10.1016/j.infrared.2021.103646 | spa |
dc.relation.references | Lind, A. C., & Greenberg, J. M. (1966). Electromagnetic scattering by obliquely oriented cylinders. Journal of Applied Physics, 37(8), 3195–3203. https://doi.org/10.1063/1.1703184 | spa |
dc.relation.references | Lumley, N. P. G., Ford, E., Minford, E., & Porter, J. M. (2015). A simplified model for effective thermal conductivity of highly porous ceramic fiber insulation. Journal of Thermal Science and Engineering Applications, 7(4), 041022. https://doi.org/10.1117/12.672853 | spa |
dc.relation.references | Malitson, I. H., Murphy, F. v., & Rodney, W. S. (1958). Refractive Index of Synthetic Sapphire. JOSA, Vol. 48, Issue 1, Pp. 72-73, 48(1), 72–73. https://doi.org/10.1364/JOSA.48.000072 | spa |
dc.relation.references | Marschall, J., Maddren, J., & Parks, J. (2001). Internal radiation transport and effective thermal conductivity of fibrous ceramic insulations. 35th AIAA Thermophysics Conference, 2822. | spa |
dc.relation.references | Marschall, J., & Milos, F. S. (1997). The calculation of anisotropic extinction coefficients for radiation diffusion in rigid fibrous ceramic insulations. International Journal of Heat and Mass Transfer, 40(3), 627–634. https://doi.org/10.1016/0017-9310(96)00109-3 | spa |
dc.relation.references | Mathes, R., Blumenberg, J., & Keller, K. (1990). Radiative heat transfer in insulations with random fibre orientation. International Journal of Heat and Mass Transfer, 33(4), 767–770. https://doi.org/10.1016/0017-9310(90)90174-S | spa |
dc.relation.references | Matsuoka, J., Kitamura, N., Fujinaga, S., Kitaoka, T., & Yamashita, H. (1991). Temperature dependence of refractive index of SiO2 glass. Journal of Non-Crystalline Solids, 135(1), 86–89. https://doi.org/10.1016/0022-3093(91)90447-E | spa |
dc.relation.references | Matthews, L. K., Viskanta, R., & Incropera, F. P. (1984). Development of inverse methods for determining thermophysical and radiative properties of high-temperature fibrous materials. International Journal of Heat and Mass Transfer, 27(4), 487–495. | spa |
dc.relation.references | McKay, N. L., Timusk, T., & Farnworth, B. (1984). Determination of optical properties of fibrous thermal insulation. Journal of Applied Physics, 55(11), 4064–4071. https://doi.org/10.1063/1.332996 | spa |
dc.relation.references | Milandri, A., Asllanaj, F., & Jeandel, G. (2002). Determination of radiative properties of fibrous media by an inverse method—comparison with the Mie theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 74(5), 637–653. https://doi.org/10.1016/S0022-4073(01)00276-X | spa |
dc.relation.references | Mironov, R. A., Gaidenko, V. O., Zabezhailov, M. O., Tomchani, O. V, Cherepanov, V. V, & Alifanov, O. M. (2021). Radiative-Optical and Thermophysical Characteristics of Fibrous Silica-Based Heat Insulation. Journal of Engineering Physics and Thermophysics, 94, 1600–1608. https://doi.org/10.1007/s10891-021-02441-3 | spa |
dc.relation.references | Mironov, R. A., Tomchani, O. V., Guydenko, V. O., & Zabezhailov, M. O. (2021). Numerical and experimental determination of optical properties and thermal conductivity of ceramic composites based on fumed silica and silica fiber. International Journal of Heat and Mass Transfer, 181, 122022. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.122022 | spa |
dc.relation.references | Mishchenko, M. I. (2018). “Independent” and “dependent” scattering by particles in a multi-particle group. OSA Continuum, 1(1), 243–260. https://doi.org/10.1364/OSAC.1.000243 | spa |
dc.relation.references | Mishra, S. C., Krishna, C. H., & Kim, M. Y. (2011). Analysis of Conduction and Radiation Heat Transfer in a 2-D Cylindrical Medium Using the Modified Discrete Ordinate Method and the Lattice Boltzmann Method. Numerical Heat Transfer, Part A: Applications, 60(3), 254–287. https://doi.org/10.1080/10407782.2011.588581 | spa |
dc.relation.references | Modest, M. F., & Mazumder, S. (2021). Radiative Heat Transfer (4th ed.). Elsevier. | spa |
dc.relation.references | Moura, L. M. (2011). Inverse Thermal Radiation Problems: Estimation of Radiative Properties of Dispersed Media. In A. Ghajar (Ed.), Thermal Measurements and Inverse Techniques (pp. 723–752). CRC Press. | spa |
dc.relation.references | Nenarokomov, A. V, Alifanov, O. M., Krainova, I. V, Titov, D. M., & Morzhukhina, A. V. (2019). Estimation of environmental influence on spacecraft materials radiative properties by inverse problems technique. Acta Astronautica, 160, 323–330. https://doi.org/10.1016/j.actaastro.2019.04.014 | spa |
dc.relation.references | Nicolau, V. de P., Raynaud, M., & Sacadura, J. F. (1994). Spectral radiative properties identification of fiber insulating materials. International Journal of Heat and Mass Transfer, 37, 311–324. https://doi.org/10.1016/0017-9310(94)90032-9 | spa |
dc.relation.references | Okokpujie, I. P., Essien, V., Ikumapayi, O. M., Nnochiri, E. S., Okokpujie, K., & Akinlabi, E. (2022). An Overview of Thermal Insulation Material for Sustainable Engineering Building Application. International Journal of Design & Nature and Ecodynamics, 17(6), 831–841. https://doi.org/10.18280/ijdne.170603 | spa |
dc.relation.references | Palik, E. D. (1998). Handbook of Optical Constants of Solids (Issue v. 2). Elsevier Science. | spa |
dc.relation.references | Papadopoulos, A. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1), 77–86. https://doi.org/10.1016/J.ENBUILD.2004.05.006 | spa |
dc.relation.references | Pelanne, C. M. (1977). Heat Flow Principles in Thermal Insulations. Journal of Thermal Insulation, 1(1), 48–80. https://doi.org/10.1177/109719637700100104 | spa |
dc.relation.references | Petrov, V. A. (1997). Combined radiation and conduction heat transfer in high temperature fiber thermal insulation. International Journal of Heat and Mass Transfer, 40(9), 2241–2247. https://doi.org/10.1016/S0017-9310(96)00242-6 | spa |
dc.relation.references | Querry, M. R. (1985). Optical constants. Report CRDC-CR-85034 (Contractor Report CRDC-CR-85034 1985). | spa |
dc.relation.references | Randrianalisoa, J., Haussener, S., Baillis, D., & Lipiński, W. (2017). Radiative characterization of random fibrous media with long cylindrical fibers: Comparison of single- and multi-RTE approaches. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 220–232. https://doi.org/10.1016/J.JQSRT.2017.08.002 | spa |
dc.relation.references | Rauch, H., Sutton, W., & McCreight, L. (1968). Ceramic Fibers and Fibrous Composite Materials. Academic Press. | spa |
dc.relation.references | Reiss, H., Schmaderer, F., Wahl, G., Ziegenbein, B., & Caps, R. (1987). Experimental investigation of extinction properties and thermal conductivity of metal-coated dielectric fibers in vacuum. International Journal of Thermophysics 1987 8:2, 8(2), 263–280. https://doi.org/10.1007/BF00515209 | spa |
dc.relation.references | Rodney, W. S., & Spindler, R. J. (1953). Refractive index of cesium bromide for ultraviolet, visible and infrared wavelengths. J. Res. Natl. Bur. Stand, 3, 123. | spa |
dc.relation.references | Rodriguez, A., & Snapp, C. (2010). Orbiter Thermal Protection System. In N. W. Hale, K. Lulla, H. W. Lane, & G. Chapline (Eds.), Wings in Orbit: Sientific and Engineering Legacies of the Space Shuttle. NASA. | spa |
dc.relation.references | Rolt, S. (2020). Optical Engineering Science. Wiley. | spa |
dc.relation.references | Sacadura, J. F. (2011). Thermal radiative properties of complex media: theoretical prediction versus experimental identification. Heat Transfer Engineering, 32(9), 754–770. https://doi.org/10.1080/01457632.2011.525140 | spa |
dc.relation.references | Sacadura, J. F., & Baillis, D. (2002). Experimental characterization of thermal radiation properties of dispersed media. International Journal of Thermal Sciences, 41(7), 699–707. https://doi.org/10.1016/S1290-0729(02)01365-0 | spa |
dc.relation.references | Schäfer, J. (2011). Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe [PhD Thesis]. Univerität Ulm. | spa |
dc.relation.references | Schäfer, J., Lee, S. C., & Kienle, A. (2012). Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(16), 2113–2123. https://doi.org/10.1016/J.JQSRT.2012.05.019 | spa |
dc.relation.references | Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 | spa |
dc.relation.references | Seydibeyoglu, M. O., Mohanty, A. K., & Misra, M. (2017). Fiber Technology for Fiber-Reinforced Composites. Elsevier Science. | spa |
dc.relation.references | Song, W. F., & Yu, W. D. (2012). Heat transfer through fibrous assemblies by fractal method. Journal of Thermal Analysis and Calorimetry, 110(2), 897–905. https://doi.org/10.1007/s10973-011-1792-2 | spa |
dc.relation.references | Stamnes, K., Thomas, G. E., & Stamnes, J. J. (2017). Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press. | spa |
dc.relation.references | Stark, C., & Fricke, J. (1993). Improved heat-transfer models for fibrous insulations. International Journal of Heat and Mass Transfer, 36(3), 617–625. https://doi.org/10.1016/0017-9310(93)80037-U | spa |
dc.relation.references | Tan, C. Z., & Arndt, J. (2001). The refractive index of silica glass and its dependence on pressure, temperature, and the wavelength of the incident light. In Silicon-Based Material and Devices (pp. 51–91). Elsevier. | spa |
dc.relation.references | Thomas, M. E. (1991). Temperature Dependence of the Complex Index of Refraction. In E. D. Palik (Ed.), Handbook of optical constants of solids (pp. 177–199). Academic Press. | spa |
dc.relation.references | Thomas, M. E. (2006). Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water. Oxford University Press. | spa |
dc.relation.references | Thomas, M. E., Andersson, S. K., Sova, R. M., & Joseph, R. I. (1998). Frequency and temperature dependence of the refractive index of sapphire. Infrared Physics & Technology, 39(4), 235–249. https://doi.org/10.1016/S1350-4495(98)00010-3 | spa |
dc.relation.references | Thomas, M. E., & Joseph, R. I. (1988). A comprehensive model for the intrinsic transmission properties of optical windows. Proc. SPIE 0929, Infrared Optical Materials IV, 929, 87–93. https://doi.org/10.1117/12.945855 | spa |
dc.relation.references | Thomas, M. E., Joseph, R. I., & Tropf, W. J. (1988). Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency. Applied Optics, Vol. 27, Issue 2, Pp. 239-245, 27(2), 239–245. https://doi.org/10.1364/AO.27.000239 | spa |
dc.relation.references | Tilioua, A., Libessart, L., & Lassue, S. (2018). Characterization of the thermal properties of fibrous insulation materials made from recycled textile fibers for building applications: Theoretical and experimental analyses. Applied Thermal Engineering, 142, 56–67. https://doi.org/10.1016/j.applthermaleng.2018.06.071 | spa |
dc.relation.references | Tong, T. W., McElroy, D. L., & Yarbrough, D. W. (1985). Transient conduction and radiation heat transfer in porous thermal insulations. Journal of Thermal Insulation, 9(1), 13–29. https://doi.org/10.1177/109719638500900103 | spa |
dc.relation.references | Tong, T. W., Swathi, P. S., & Cunnington, G. R. (1987). Examination of the Radiative Properties of Coated Silica Fibers: Journal of Thermal Insulation, 11(1), 7–31. https://doi.org/10.1177/109719638701100103 | spa |
dc.relation.references | Tong, T. W., & Tien, C. L. (1980). Analytical models for thermal radiation in fibrous insulations. Journal of Building Physics, 4(1), 27–44. https://doi.org/10.1177/109719638000400102 | spa |
dc.relation.references | Tong, T. W., & Tien, C. L. (1983). Radiative Heat Transfer in Fibrous Insulations—Part I: Analytical Study. Journal of Heat Transfer, 105(1), 70–75. https://doi.org/10.1115/1.3245561 | spa |
dc.relation.references | Tong, T. W., Yang, Q. S., & Tien, C. L. (1983). Radiative Heat Transfer in Fibrous Insulations—Part II: Experimental Study. Journal of Heat Transfer, 105(1), 76–81. https://doi.org/10.1115/1.3245562 | spa |
dc.relation.references | Touloukian, Y. S., Powell, R. W., Ho, C. Y., & Klemens, P. G. (1971). Thermal Conductivity-Nonmetallic Solids. Thermophysical Properties of Matter - The TPRC Data Series (Vol. 2). IFI/Plenum. | spa |
dc.relation.references | Tritt, T. M. (2006). Thermal Conductivity: Theory, Properties, and Applications. Springer US. | spa |
dc.relation.references | Tychanicz-Kwiecień, M., Wilk, J., & Gil, P. (2019). Review of High-Temperature Thermal Insulation Materials. Journal of Thermophysics and Heat Transfer, 33(1), 271–284. https://doi.org/10.2514/1.T5420 | spa |
dc.relation.references | Uyanna, O., & Najafi, H. (2020). Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronautica, 176, 341–356. https://doi.org/10.1016/j.actaastro.2020.06.047 | spa |
dc.relation.references | van de Hulst, H. C. (1981). Light Scattering by Small Particles. Dover Publications. | spa |
dc.relation.references | Vanmol, D., & Anderson, J. (1992). Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects. 27th Thermophysics Conference. https://doi.org/10.2514/6.1992-2920 | spa |
dc.relation.references | Veiseh, S., & Hakkaki-Fard, A. (2009). Numerical modeling of combined radiation and conduction heat transfer in mineral wool insulations. Heat Transfer Engineering, 30(6), 477–486. https://doi.org/10.1080/01457630802529065 | spa |
dc.relation.references | Veiseh, S., Khodabandeh, N., & Hakkaki-Fard, A. (2009). Mathematical models for thermal conductivitydensity relationship in fibrous thermal insulations for practical applications. Asian Journal of Civil Engineering, 10(2), 201–214. | spa |
dc.relation.references | Verschoor, J. D., Greebler, P., & Manville, N. J. (1952). Heat transfer by gas conduction and radiation in fibrous insulation. Transactions of The American Society Of Mechanical Engineersf Mechanical Engineers, 961–968. https://doi.org/10.1115/1.4015979 | spa |
dc.relation.references | Vozár, L., & Srámková, T. (1997). Step heating method for thermal diffusivity measurement. Proceedings of the XIV IMEKO World Congress, 179–184. | spa |
dc.relation.references | Wang, K. Y., & Tien, C. L. (1983). Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer, 30(3), 213–223. https://doi.org/10.1016/0022-4073(83)90059-6 | spa |
dc.relation.references | Williams, S. D., & Curry, D. M. (1977). An analytical and experimental study for surface heat flux determination. Journal of Spacecraft and Rockets, 14(10), 632–637. https://doi.org/10.2514/3.27987 | spa |
dc.relation.references | Williams, S. D., & Curry, D. M. (1992). Thermal protection materials: Thermophysical property data - NASA Reference Publication 1289. | spa |
dc.relation.references | Williams, S. D., & Curry, D. M. (1993). Prediction of rigid silica based insulation conductivity, NASA TP- 3276. | spa |
dc.relation.references | Wilson, D. (2018). Continuous oxide fibers. In A. Bunsell (Ed.), Handbook of Properties of Textile and Technical Fibres (2nd ed.). Elsevier. | spa |
dc.relation.references | Wood, D. L., & Nassau, K. (1982). Refractive index of cubic zirconia stabilized with yttria. Applied Optics, 21(16), 2978–2981. | spa |
dc.relation.references | Worrell, C. A. (1986). Infrared optical constants for CO2 laser waveguide materials. Journal of Materials Science 1986 21:3, 21(3), 781–787. https://doi.org/10.1007/BF01117354 | spa |
dc.relation.references | Wray, J. H., & Neu, J. T. (1969). Refractive index of several glasses as a function of wavelength and temperature. JOSA, 59(6), 774–776. https://doi.org/10.1364/JOSA.59.000774 | spa |
dc.relation.references | Xiao, B., Wang, W. E. I., Fan, J., Chen, H., Hu, X., Zhao, D., Zhang, X., & Ren, W. E. N. (2017). Optimization of the fractal-like architecture of porous fibrous materials related to permeability, diffusivity and thermal conductivity. Fractals, 25(03), 1750030. https://doi.org/10.1142/S0218348X1750030X | spa |
dc.relation.references | Xie, Z., Xue, W., Chen, H., & Huang, Y. (2011). Mechanical and thermal properties of 99% and 92% alumina at cryogenic temperatures. Ceramics International, 37(7), 2165–2168. https://doi.org/10.1016/j.ceramint.2011.03.066 | spa |
dc.relation.references | Yang, J., Wu, H., Wang, M., He, S., & Huang, H. (2016). Prediction and optimization of radiative thermal properties of ultrafine fibrous insulations. Applied Thermal Engineering, 104(5), 394–402. https://doi.org/10.1016/j.applthermaleng.2016.05.062 | spa |
dc.relation.references | Yang, J., Wu, H., Wang, M., & Liang, Y. (2018). Prediction and optimization of radiative thermal properties of nano TiO2 assembled fibrous insulations. International Journal of Heat and Mass Transfer, 117, 729–739. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.069 | spa |
dc.relation.references | Yeh, Hy., & Roux, J. A. (1988). Spectral radiative properties of fiberglass insulation. Journal of Thermophysics and Heat Transfer, 2(1), 75–81. https://doi.org/10.2514/3.56218 | spa |
dc.relation.references | Yuen, W., Takara, E., & Cunnington G. (2003, March 16). Combined conductive/radiative heat transfer in high porosity fibrous insulation materials: theory and experiment. The 6th ASME-JSME Thermal Engineering Joint Conference. | spa |
dc.relation.references | Yuen, W. W., & Cunnington, G. (2007). Radiative heat transfer analysis of fibrous insulation materials using the zonal-GEF method. Journal of Thermophysics and Heat Transfer, 21(1), 105–113. https://doi.org/10.2514/1.22412 | spa |
dc.relation.references | Zarr, R. R. (1997). Standard Reference Materials: Glass Fiberboard, SRM 1450c, for Thermal Resistance from 280 K to 340 K. NIST Special Publication, 260, 130. https://doi.org/10.6028/NIST.SP.260-130 | spa |
dc.relation.references | Zarr, R. R. (2001). A history of testing heat insulators at the national institute of standards and technology. Ashrae Transactions, 107(Pt.2), 661–672. | spa |
dc.relation.references | Zhang, B., Zhao, S., & He, X. (2008). Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(7), 1309–1324. https://doi.org/10.1016/j.jqsrt.2007.10.008 | spa |
dc.relation.references | Zhang, B., Zhao, S., He, X., & Du, S. (2007). High temperature thermal physical properties of high-alumina fibrous insulation. Journal of Materials Science & Technology, 23(6), 860. | spa |
dc.relation.references | Zhao, S., Zhang, B., Du, S., & He, X. (2009). Inverse identification of thermal properties of fibrous insulation from transient temperature measurements. International Journal of Thermophysics, 30, 2021–2035. | spa |
dc.relation.references | Zhao, S., Zhang, B., & He, X. (2009). Temperature and pressure dependent effective thermal conductivity of fibrous insulation. International Journal of Thermal Sciences, 48(2), 440–448. https://doi.org/10.1016/j.ijthermalsci.2008.05.003 | spa |
dc.relation.references | Zhao, S.-Y., Zhang, B.-M., & Du, S.-Y. (2009). An inverse analysis to determine conductive and radiative properties of a fibrous medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(13), 1111–1123. | spa |
dc.relation.references | ZIRCAR Ceramics, Inc. (2020). Alumina Paper Type APA. https://www.zircarceramics.com/product/apa/ | spa |
dc.relation.references | Zuev, A. V., & Prosuntsov, P. V. (2014). Model of the Structure of Fibrous Heat-Insulating Materials for Analyzing Combined Heat Transfer Processes. Journal of Engineering Physics and Thermophysics, 87(6), 1374–1385. https://doi.org/10.1007/s10891-014-1140-z | spa |
dc.relation.references | Zverev, V. G., Gol’din, V. D., & Nazarenko, V. A. (2008). Radiation-conduction heat transfer in fibrous heat-resistant insulation under thermal effect. High Temperature, 46, 108–114. https://doi.org/10.1134/s10740-008-1015-0 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.ddc | 530 - Física::535 - Luz y radiación relacionada | spa |
dc.subject.lemb | Transferencia de calor | spa |
dc.subject.lemb | Heat - Transmission | eng |
dc.subject.lemb | Medios de termo transferencia | spa |
dc.subject.lemb | Heat-transfer media | eng |
dc.subject.lemb | Aisladores | spa |
dc.subject.lemb | Insulating materials | eng |
dc.subject.proposal | Fibrous insulation | eng |
dc.subject.proposal | Heat transfer modeling | eng |
dc.subject.proposal | High temperature | eng |
dc.subject.proposal | Radiation heat transfer | eng |
dc.subject.proposal | Radiative transfer equations (RTE) | eng |
dc.subject.proposal | Thermal conductivity | eng |
dc.subject.proposal | Radiative properties | eng |
dc.title | Predictive heat transfer models in fibrous insulation at high temperatures | eng |
dc.title.translated | Modelos predictivos de transferencia de calor en aislantes fibroso a altas temperaturas | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | PREDICTIVE MODELS FOR HIGH TEMPERATURE FIBROUS INSULATION | spa |
oaire.fundername | Air Force Office of Scientific Research (AFOSR) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022323961.2024.pdf
- Tamaño:
- 3.51 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: