Predictive heat transfer models in fibrous insulation at high temperatures

dc.contributor.advisorRamírez Franco, José Herney
dc.contributor.advisorDaryabeigi, Kamran
dc.contributor.authorCarvajal Perdomo, Sergio Andrés
dc.contributor.cvlacCarvajal, Sergio A [0001352125]spa
dc.contributor.orcidCarvajal, Sergio A [0000-0003-0101-3711]spa
dc.contributor.scopusCarvajal, Sergio A [57204546700]spa
dc.date.accessioned2024-01-22T16:48:07Z
dc.date.available2024-01-22T16:48:07Z
dc.date.issued2024-01
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl modelamiento de la transferencia de calor en materiales fibrosos es importante para el diseño y mejoramiento de los sistemas de aislamiento térmico. A altas temperaturas y bajas densidades, se espera que la radiación térmica sea el principal mecanismo de transferencia de calor. Actualmente los modelos más exitosos para modelar la transferencia de calor en aislantes a altas temperaturas requieren el uso de métodos semi-empíricos. La principal limitación de este enfoque es que los parámetros del modelo deben ser determinados a partir de mediciones calorimétricas para cada posible material y determinados nuevamente si la estructura morfológica es modificada, incluso para el mismo material. Esta investigación presenta un modelo predictivo para la transferencia de calor por radiación basada exclusivamente en propiedades físicas y morfológicas. El modelo fue validado usando mediciones previamente realizadas de la conductividad térmica efectiva en un aislante de baja densidad basado en alúmina. Para distinguir los diferentes mecanismos de transferencia de calor, se analizaron mediciones en vacío y temperaturas criogénicas. El modelo muestra una buena concordancia con las mediciones; sus predicciones son consistentes con las incertidumbres estimadas para las mediciones y el modelo y son comparables con las estimaciones obtenidas a través de métodos semi-empiricos para temperaturas entre 300 K y 1700 K (Texto tomado de la fuente)spa
dc.description.abstractThe modeling of heat transfer in fibrous materials is important for designing and improving thermal insulation systems. At high temperatures and low sample density, thermal radiation is expected to be the primary mode of heat transfer in fibrous insulation. Currently, the most common and successful models for modelling heat transfer in insulation at high temperatures require the use of semi-empirical methods. The main limitation of this approach is that the model parameters need to be determined from thermal measurements for each possible material and re-determined if the morphological structure is modified, even for the same material. This research presents a predictive model for radiation heat transfer based solely on physical and morphological properties. The model was validated using previously measured effective thermal conductivity of a low-density alumina-based insulation. In order to distinguish the different modes of heat transfer, prior measurements at vacuum and cryogenic temperatures were analyzed. The model demonstrates good agreement with experimental measurements, and its predictions are within the estimated uncertainties of both measurements and model, and is comparable to those obtained by semi-empirical methods for temperatures between 300 K and 1700 Keng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extentxxii, 139 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85393
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAlifanov, O. M. (2017). Inverse problems in identification and modeling of thermal processes: Russian contributions. International Journal of Numerical Methods for Heat & Fluid Flow, 27(3), 711–728. https://doi.org/10.1108/HFF-03-2016-0099spa
dc.relation.referencesAlifanov, O. M., Nenarokomov, A. V, & Gonzalez, V. M. (2009). Study of multilayer thermal insulation by inverse problems method. Acta Astronautica, 65(9–10), 1284–1291. https://doi.org/10.1016/j.actaastro.2009.03.053spa
dc.relation.referencesAlifanov, O. M., Salosina, M. O., Budnik, S. A., & Nenarokomov, A. V. (2023). Design of Aerospace Vehicles’ Thermal Protection Based on Heat-Insulating Materials with Optimal Structure. Aerospace, 10(7), 629. https://doi.org/10.3390/ aerospace10070629spa
dc.relation.referencesAl-Jothery, H. K. M., Albarody, T. M. B., Yusoff, P. S. M., Abdullah, M. A., & Hussein, A. R. (2020). A review of ultra-high temperature materials for thermal protection system. IOP Conference Series: Materials Science and Engineering, 863(1), 012003. https://doi.org/10.1088/1757-899X/863/1/012003spa
dc.relation.referencesArambakam, R. (2013). Modeling Effect of Microstructure on the Performance of Fibrous Heat [PhD Thesis]. Virginia Commonwealth University.spa
dc.relation.referencesArambakam, R., Tafreshi, H. V., & Pourdeyhimi, B. (2013). Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations. International Journal of Heat and Mass Transfer, 64, 1109–1117. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.05.047spa
dc.relation.referencesArambakam, R., Tafreshi, H. V., & Pourdeyhimi, B. (2014). Modeling performance of multi-component fibrous insulations against conductive and radiative heat transfer. International Journal of Heat and Mass Transfer, 71, 341–348. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.031spa
dc.relation.referencesAsllanaj, F., Brige, X., & Jeandel, G. (2007). Transient combined radiation and conduction in a one-dimensional non-gray participating medium with anisotropic optical properties subjected to radiative flux at the boundaries. Journal of Quantitative Spectroscopy and Radiative Transfer, 107(1), 17–29. https://doi.org/10.1016/j.jqsrt.2007.01.060spa
dc.relation.referencesAsllanaj, F., Jeandel, G. E., Roche, J. R., & Lacroix, D. (2004). Transient combined radiation and conduction heat transfer in fibrous media with temperature and flux boundary conditions. International Journal of Thermal Sciences, 43(10), 939–950. https://doi.org/10.1016/j.ijthermalsci.2004.02.007spa
dc.relation.referencesAsllanaj, F., Jeandel, G., & Roche, J. R. (2001). Numerical solution of radiative transfer equation coupled with nonlinear heat conduction equation. International Journal of Numerical Methods for Heat & Fluid Flow, 11(5), 449–473. https://doi.org/10.1108/EUM0000000005528spa
dc.relation.referencesAsllanaj, F., Milandri, A., Jeandel, G., & Roche, J. R. (2002). A finite difference solution of non-linear systems of radiative-conductive heat transfer equations. International Journal for Numerical Methods in Engineering, 54(11), 1649–1668. https://doi.org/10.1002/nme.490spa
dc.relation.referencesASTM C168-22. (2022). Standard Terminology Relating to Thermal Insulation. ASTM International, West Conshohocken, PA, 2022.spa
dc.relation.referencesASTM E1269-11. (2011). Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM International, West Conshohocken, PA, 2018.spa
dc.relation.referencesASTM E1461-13. (2022). Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International, West Conshohocken, PA, 2022.spa
dc.relation.referencesBaillis, D., & Sacadura, J. F. (2000). Thermal radiation properties of dispersed media: Theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy and Radiative Transfer, 67(5), 327–363. https://doi.org/10.1016/S0022-4073(99)00234-4spa
dc.relation.referencesBanas, R., & Cunnington, G. (1974). Determination of effective thermal conductivity for the Space Shuttle Orbiter’s Reusable Surface Insulation/RSI. AIAA Paper 74-730, 730. https://doi.org/10.2514/6.1974-730spa
dc.relation.referencesBankvall, C. G. (1974). Mechanisms of heat transfer in permeable insulation and their investigation in a special guarded hot plate. In R. P. Tye (Ed.), Heat Transmission Measurements in Thermal Insulations. ASTM International.spa
dc.relation.referencesBarker, A. S. (1963). Infrared lattice vibrations and dielectric dispersion in corundum. Physical Review, 132(4), 1474–1481. https://doi.org/10.1103/PhysRev.132.1474spa
dc.relation.referencesBerger, M., & Bunsell, A. (1999). Fine Ceramic Fibers. Taylor & Francis.spa
dc.relation.referencesBhattacharyya, R. (1980). Heat-Transfer Model for Fibrous Insulations. In D. McElroy & R. Tye (Eds.), Thermal Insulation Performance (pp. 272–286). ASTM International. https://doi.org/10.1520/STP29279Sspa
dc.relation.referencesBillard, D., Gervais, F., & Piriou, B. (1976). Analysis of Multiphonon Absorption in Corundum. Physica Status Solidi (b), 75(1), 117–126. https://doi.org/10.1002/PSSB.2220750111spa
dc.relation.referencesBillard, D., & Piriou, B. (1974). Absorption infrarouge du corindon de 77 a 2075 K. Materials Research Bulletin, 9(7), 943–950. https://doi.org/10.1016/0025-5408(74)90174-3spa
dc.relation.referencesBIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, & OIML. (2008a). Evaluation of measurement data - Guide to the expression of uncertainty in measurement: GUM 1995 with minor corrections, JCGM 100:2008.spa
dc.relation.referencesBIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, & OIML. (2008b). Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology, JCGM 101: 2008.spa
dc.relation.referencesBittle, R. R., & Taylor, R. E. (1984). Step‐Heating Technique for Thermal Diffusivity Measurements of Large‐Grained Heterogeneous Materials. Journal of the American Ceramic Society, 67(3), 186–194. https://doi.org/10.1111/j.1151-2916.1984.tb19739.xspa
dc.relation.referencesBohren, C. F., & Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. John Wiley & Sons.spa
dc.relation.referencesBoulet, P., Jeandel, G., & Morlot, G. (1993). Model of radiative transfer in fibrous media—matrix method. International Journal of Heat and Mass Transfer, 36(18), 4287–4297. https://doi.org/10.1016/0017-9310(93)90113-Kspa
dc.relation.referencesBunsell. A. (2006). Oxide Fibers. In N. Bansal (Ed.), Handbook of Ceramic Composites (1st ed.). Springer US.spa
dc.relation.referencesCaps, R., Trunzer, A., Büttner, D., Fricke, J., & Reiss, H. (1984). Spectral transmission and reflection properties of high temperature insulation materials. International Journal of Heat and Mass Transfer, 27(10), 1865–1872. https://doi.org/10.1016/0017-9310(84)90168-6spa
dc.relation.referencesCaria, M. (2000). Measurement Analysis: An Introduction To The Statistical Analysis Of Laboratory Data In Physics, Chemistry And The Life Sciences. World Scientific Publishing Company.spa
dc.relation.referencesCarvajal, S. A., Garboczi, E. J., & Zarr, R. R. (2019). Comparison of models for heat transfer in high-density fibrous insulation. Journal of Research of the National Institute of Standards and Technology, 124(124010), 1–21. https://doi.org/10.6028/jres.124.010spa
dc.relation.referencesCherepanov, V. V, & Alifanov, O. M. (2017). Modeling of spectral properties and the scattering phase function for lightweight heat protection spacecraft materials. Journal of Heat Transfer, 139(3), 032701. https://doi.org/10.1115/1.4034814spa
dc.relation.referencesCherepanov, V. V, Alifanov, O. M., Morzhukhina, A. V, & Cherepanov, A. V. (2016). Interaction of radiation with orthogonal representative elements of highly porous materials. Applied Mathematical Modelling, 40(5–6), 3459–3474. https://doi.org/10.1016/j.apm.2015.03.040spa
dc.relation.referencesCohen, L. D., Haracz, R. D., Cohen, A., & Acquista, C. (1983). Scattering of light from arbitrarily oriented finite cylinders. Applied Optics, 22(5), 742. https://doi.org/10.1364/ao.22.000742spa
dc.relation.referencesCordero, R. R., Seckmeyer, G., Pissulla, D., & Labbe, F. (2007). Uncertainty of experimental integrals: application to the UV index calculation. Metrologia, 45(1). https://doi.org/10.1088/0026-1394/45/1/001spa
dc.relation.referencesCrouzier, L., Delvallée, A., Allard, A., Devoille, L., Ducourtieux, S., & Feltin, N. (2019). Methodology to evaluate the uncertainty associated with nanoparticle dimensional measurements by SEM. Measurement Science and Technology, 30(8), 085004. https://doi.org/10.1088/1361-6501/AB1495spa
dc.relation.referencesCunnington, G. R., & Lee, S. C. (1996). Radiative properties of fibrous insulations: Theory versus experiment. Journal of Thermophysics and Heat Transfer, 10(3), 460–466. https://doi.org/10.2514/3.811spa
dc.relation.referencesCunnington, G. R., Lee, S. C., & White, S. M. (1997). Radiation heat transfer in fiber-filled silica aerogel: Comparison of theory with experiment. National Heat Transfer Conference, 1997. https://doi.org/10.2514/6.1997-3884spa
dc.relation.referencesCunnington, G. R., Lee, S. C., & White, S. M. (1998). Radiative Properties of Fiber-Reinforced Aerogel: Theory Versus Experiment. Journal of Thermophysics and Heat Transfer, 12(1), 17–22. https://doi.org/10.2514/2.6318spa
dc.relation.referencesCurran, D., & Porter, J. M. (2020). A tomography-based effective thermal conductivity model for ceramic fiber insulation. International Journal of Heat and Mass Transfer, 160, 120224. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120224spa
dc.relation.referencesDaoût, C., Rozenbaum, O., Meneses, D. D. S., & Rochais, D. (2023). Identification of the spectral complex refractive index of pure silica micrometric fibers versus temperature. International Journal of Heat and Mass Transfer, 204, 123869. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123869spa
dc.relation.referencesDaryabeigi, K. (1999a). Effective thermal conductivity of high temperature insulations for reusable launch vehicles. NASA/TM-1999-208972.spa
dc.relation.referencesDaryabeigi, K. (1999b). Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles. AIAA 99-1044. 37th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1999-1044spa
dc.relation.referencesDaryabeigi, K. (2001). Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating, AIAA 2001-2834. 35th AIAA Thermophysics Conference. https://doi.org/10.2514/6.2001-2834spa
dc.relation.referencesDaryabeigi, K. (2002). Heat Transfer in High-Temperature Fibrous Insulation. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. https://doi.org/10.2514/6.2002-3332spa
dc.relation.referencesDaryabeigi, K. (2003). Heat Transfer in High-Temperature Fibrous Insulation. Journal of Thermophysics and Heat Transfer, 17(1), 10–20. https://doi.org/10.2514/2.6746spa
dc.relation.referencesDaryabeigi, K. (2010). Heat transfer modeling and validation for optically thick alumina fibrous insulation. In Gaal D & Gaal P (Eds.), Proceedings of the Joint Conferences International Thermal Conductivity Conference 30 and Thermal Expansion 18 (pp. 120–132). Destech Publications.spa
dc.relation.referencesDaryabeigi, K., Cunnington, G., & Knutson, J. R. (2013). Heat transfer modeling for rigid high-temperature fibrous insulation. Journal of Thermophysics and Heat Transfer, 27(3), 414–421. https://doi.org/10.2514/1.T3998spa
dc.relation.referencesDaryabeigi, K., Cunnington, G. R., & Knutson, J. R. (2008). Measurement of heat transfer in unbonded silica fibrous insulation and comparison with theory. Proceedings of the 29th International Thermal Conductivity Conference, ITCC29 and the Proceedings of the 17th International Thermal Expansion Symposium, ITES17, 292–301.spa
dc.relation.referencesDaryabeigi, K., Cunnington, G. R., Miller, S. D., & Knutson, J. R. (2010). Combined Heat Transfer in High Porosity High Temperature Fibrous Insulations: Theory and Experimental Validation. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 1–15. https://doi.org/10.2514/6.2010-4660spa
dc.relation.referencesDaryabeigi, K., Miller, S. D., & Cunnington, G. R. (2007). Heat Transfer in High Temperature Multilayer Insulation. 5th European Workshop on Thermal Protection Systems and Hot Structures.spa
dc.relation.referencesDeirmendjian, D. (1969). Electromagnetic Scattering on Spherical. Elsevier.spa
dc.relation.referencesDeutsch, T. F. (1973). Absorption coefficient of infrared laser window materials. Journal of Physics and Chemistry of Solids, 34(12), 2091–2104. https://doi.org/10.1016/S0022-3697(73)80057-5spa
dc.relation.referencesDobrovinskaya, E. R., Lytvynov, L. A., & Pishchik, V. (2009). Properties of Sapphire. In Sapphire (pp. 55–176). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85695-7_2spa
dc.relation.referencesDombrovskii, L. A. (1996). Approximate methods for calculating radiation heat transfer in dispersed systems. Thermal Engineering, 43(3), 235–243.spa
dc.relation.referencesDombrovsky, L. A. (1996). Quartz-fiber thermal insulation: Infrared radiative properties and calculation of radiative-conductive heat transfer. J. Heat Transfer, 118(2), 408–414. https://doi.org/10.1115/1.2825859spa
dc.relation.referencesDomoto, G. A., & Wang, W. C. (1974). Radiative transfer in homogeneous nongray gases with nonisotropic particle scattering. Journal of Heat Transfer, 96(3), 385–390. https://doi.org/10.1115/1.3450210spa
dc.relation.referencesDoremus, R. H. (2008). Alumina. In J. F. Shackelford & R. H. Doremus (Eds.), Ceramic and Glass Materials: Structure, Properties and Processing (pp. 1–26). Springer US. https://doi.org/10.1007/978-0-387-73362-3_1spa
dc.relation.referencesDu, N., Fan, J., Wu, H., & Sun, W. (2009). Optimal porosity distribution of fibrous insulation. International Journal of Heat and Mass Transfer, 52(19–20), 4350–4357. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.067spa
dc.relation.referencesFletcher, A. (1993). Zirconia (3rd ed.). Elsevier.spa
dc.relation.referencesFu, J., Croarkin, M. C., & Vorburger, T. V. (1994). The measurement and uncertainty of a calibration standard for the scanning electron microscope. Journal of Research-National Institute of Standards and Technology, 99, 191.spa
dc.relation.referencesGembarovic, J., Freeman, J., & Taylor, D. (2010). Thermophysical Properties of Two Materials, TPRL-Report 4443.spa
dc.relation.referencesGembarovic, J., & Taylor, R. E. (2007). A method for thermal diffusivity determination of thermal insulators. International Journal of Thermophysics, 28(6), 2164–2175. https://doi.org/10.1007/s10765-007-0279-7spa
dc.relation.referencesGervais, F., & Piriou, B. (1974). Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. Journal of Physics C: Solid State Physics, 7(13), 2374. https://doi.org/10.1088/0022-3719/7/13/017spa
dc.relation.referencesGhosh, G. (1994). Temperature dispersion of refractive indexes in some silicate fiber glasses. IEEE Photonics Technology Letters, 6(3), 431–433. https://doi.org/10.1109/68.275509spa
dc.relation.referencesGhosh, G. (1997). Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Applied Optics, 36(7), 1540–1546. https://doi.org/10.1364/AO.36.001540spa
dc.relation.referencesGhosh, G., Endo, M., & Iwasaki, T. (1994). Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. Journal of Lightwave Technology, 12(8), 1338–1342. https://doi.org/10.1109/50.317500spa
dc.relation.referencesGryvnak, D. A., & Burch, D. E. (1965). Optical and infrared properties of Al2O3 at elevated temperatures. JOSA, 55(6), 625–629. https://doi.org/10.1364/JOSA.55.000625spa
dc.relation.referencesHager, N. E., & Steere, R. C. (1967). Radiant heat transfer in fibrous thermal insulation. Journal of Applied Physics, 38(12), 4663–4668. https://doi.org/10.1063/1.1709200spa
dc.relation.referencesHottel, H. C., Sarofim, A. F., Vasalos, I. A., & Dalzell, W. H. (1970). Multiple scatter: comparison of theory with experiment. J. Heat Transfer, 92(2), 285–291. https://doi.org/10.1115/1.3449662spa
dc.relation.referencesHouston, R. L. (1980). Combined radiation and conduction in a nongray participating Medium that absorbs, emits, and anisotropically scatters [PhD Thesis]. The Ohio State University.spa
dc.relation.referencesHouston, R. L., & Korpela, S. A. (1982). Heat Transfer Through Fiberglass Insulation. International Heat Transfer Conference 7, 499–504. https://doi.org/10.1615/IHTC7.4040spa
dc.relation.referencesHowell, J. R., Mengüç, M. P., Daun, K., & Siegel, R. (2020). Thermal Radiation Heat Transfer (7th ed.). CRC Press.spa
dc.relation.referencesHsieh, C. K., & Su, K. C. (1979). Thermal radiative properties of glass from 0.32 to 206 μm. Solar Energy, 22(1), 37–43. https://doi.org/10.1016/0038-092X(79)90057-4spa
dc.relation.referencesHudson, L. K., Misra, C., Perrotta, A. J., Wefers, K., & Williams, F. S. (2000). Aluminum oxide. Ullmann’s Encyclopedia of Industrial Chemistry.spa
dc.relation.referencesHussain, M., & Tao, W.-Q. (2018). Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method. Numerical Heat Transfer, Part A: Applications, 74(6), 1285–1300. https://doi.org/10.1080/10407782.2018.1523599spa
dc.relation.referencesIncropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2006). Introduction to Heat Transfer. Wiley.spa
dc.relation.referencesInternational Organization for Standardization (ISO). (2007). Thermal insulation — Vocabulary. (ISO 9229).spa
dc.relation.referencesInternational Organization for Standardization (ISO). (2015). Statistical methods for use in proficiency testing by interlaboratory comparison. (ISO 13528).spa
dc.relation.referencesJeandel, G., Boulet, P., & Morlot, G. (1993). Radiative transfer through a medium of silica fibres oriented in parallel planes. International Journal of Heat and Mass Transfer, 36(2), 531–536. https://doi.org/10.1016/0017-9310(93)80027-Rspa
dc.relation.referencesJi, R., Zhang, Z., Liu, L., & Wang, X. (2014). Numerical modeling and experimental study of heat transfer in ceramic fiberboard. Textile Research Journal, 84(4), 411–421. https://doi.org/10.1177/0040517513485630spa
dc.relation.referencesKamdem, H. T. T., & Baillis, D. D. (2005). Radiative heat transfer using isotropic scaling approximation: Application to fibrous medium. J. Heat Transfer, 127(10), 1115–1123. https://doi.org/10.1115/1.2035108spa
dc.relation.referencesKamdem, H. T. T., & Baillis, D. D. (2010). Reduced models for radiative heat transfer analysis through anisotropic fibrous medium. J. Heat Transfer, 132(7), 0727031–0727038. https://doi.org/10.1115/1.4000994spa
dc.relation.referencesKamiuto, K. (1991). Two-parameter formula for the total effective thermal conductivities of ceramic-fiber insulations. Energy, 16(4), 701–706. https://doi.org/10.1016/0360-5442(91)90018-Hspa
dc.relation.referencesKamiuto, K., Kinoshita, I., Miyoshi, Y., & Hasegawa, S. (1982). Experimental study of simultaneous conductive and radiative heat transfer in ceramic fiber insulation. Journal of Nuclear Science and Technology, 19(6), 460–468. https://doi.org/10.1080/18811248.1982.9734169spa
dc.relation.referencesKaptein, M., & van den Heuvel, E. (2022). Statistics for Data Scientists: An Introduction to Probability, Statistics, and Data Analysis. Springer International Publishing.spa
dc.relation.referencesKaviany, M. (1995). Principles of Heat Transfer in Porous Media (2th ed.). Springer New York.spa
dc.relation.referencesKerker, M. (1969). The Scattering of Light and Other Electromagnetic Radiation. Academic Press.spa
dc.relation.referencesKim, K. S., & Lines, M. E. (1993). Temperature dependence of chromatic dispersion in dispersion‐shifted fibers: Experiment and analysis. Journal of Applied Physics, 73(5), 2069–2074. https://doi.org/10.1063/1.353152spa
dc.relation.referencesKita, J., Engelbrecht, A., Schubert, F., Groß, A., Rettig, F., & Moos, R. (2015). Some practical points to consider with respect to thermal conductivity and electrical resistivity of ceramic substrates for high-temperature gas sensors. Sensors and Actuators B: Chemical, 213, 541–546. https://doi.org/10.1016/j.snb.2015.01.041spa
dc.relation.referencesKostikov, V., Makhova, V., Trefilov S, & Trefilov V. (1995). Ceramic fibers. In V. Kostikov (Ed.), Fiber Science and Technology. Springer Science + Business Media.spa
dc.relation.referencesKoval’chyuk, N. M., Listovnichaya, S. P., & Pilipovskii, Y. L. (1991). Heat insulating materials based on the fibers of refractory oxides: A review. Refractories, 32(11), 621–624. https://doi.org/10.1007/BF01280860spa
dc.relation.referencesKurosaki, Y., & Yamada, J. (1991). Radiation Transport in Porous or Fibrous Media. In S. Kakaç, B. Kilkiş, F. Kulacki, & F. Arinç (Eds.), Convective Heat and Mass Transfer in Porous Media (pp. 347–390). Springer.spa
dc.relation.referencesLarkin, B. K., & Churchill, S. W. (1959a). Heat transfer by radiation through porous insulations. AIChE Journal, 5(4), 467–474. https://doi.org/10.1002/aic.690050413spa
dc.relation.referencesLarkin, B. K., & Churchill, S. W. (1959b). Scattering and Absorption of Electromagnetic Radiation by Infinite Cylinders. JOSA, Vol. 49, Issue 2, Pp. 188-190, 49(2), 188–190. https://doi.org/10.1364/JOSA.49.000188spa
dc.relation.referencesLe, V. T., San Ha, N., & Goo, N. S. (2021). Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Composites Part B: Engineering, 226, 109301. https://doi.org/10.1016/j.compositesb.2021.109301spa
dc.relation.referencesLee, S. C. (1986). Radiative transfer through a fibrous medium: Allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 36(3), 253–263. https://doi.org/10.1016/0022-4073(86)90073-7spa
dc.relation.referencesLee, S. C. (1989). Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer, 32(2), 311–319. https://doi.org/10.1016/0017-9310(89)90178-6spa
dc.relation.referencesLee, S. C. (1990). Scattering phase function for fibrous media. International Journal of Heat and Mass Transfer, 33(10), 2183–2190. https://doi.org/10.1016/0017-9310(90)90119-Fspa
dc.relation.referencesLee, S. C. (1992). Dependent scattering by parallel fibers-Effects of multiple scattering and wave interference. Journal of Thermophysics and Heat Transfer, 6(4), 589–595. https://doi.org/10.2514/3.11538spa
dc.relation.referencesLee, S. C. (1994). Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer, 8(4), 641–646. https://doi.org/10.2514/3.593spa
dc.relation.referencesLee, S. C., & Cunnington, G. R. (1998a). Fiber orientation effect on radiative heat transfer through fiber composites. 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. https://doi.org/10.2514/6.1998-2840spa
dc.relation.referencesLee, S. C., & Cunnington, G. R. (1998b). Heat transfer in fibrous insulations: comparison of theory and experiment. Journal of Thermophysics and Heat Transfer, 12(3), 297–303. https://doi.org/10.2514/2.6356spa
dc.relation.referencesLee, S. C., & Cunnington, G. R. (1998c). Theoretical Models for Radiative Transfer in Fibrous Media. Annual Review of Heat Transfer, 9(9), 159–218. https://doi.org/10.1615/AnnualRevHeatTransfer.v9.50spa
dc.relation.referencesLee, S. C., & Cunnington, G. R. (2000). Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation. Journal of Thermophysics and Heat Transfer, 14(2), 121–136. https://doi.org/10.2514/2.6508spa
dc.relation.referencesLeviton, D. B., & Frey, B. J. (2006). Temperature-dependent absolute refractive index measurements of synthetic fused silica. Proc. SPIE 6273, Optomechanical Technologies for Astronomy, 62732K, 6273, 800–810. https://doi.org/10.1117/12.672853spa
dc.relation.referencesLi, Y., Chen, H.-W., Wang, F.-Q., Xia, X.-L., & Tan, H.-P. (2021). A development to determine spectral radiative properties of semitransparent struts of open-cell ceramic foams: From macro-scale measurement to pore-scale simulation. Infrared Physics & Technology, 113, 103646. https://doi.org/10.1016/j.infrared.2021.103646spa
dc.relation.referencesLind, A. C., & Greenberg, J. M. (1966). Electromagnetic scattering by obliquely oriented cylinders. Journal of Applied Physics, 37(8), 3195–3203. https://doi.org/10.1063/1.1703184spa
dc.relation.referencesLumley, N. P. G., Ford, E., Minford, E., & Porter, J. M. (2015). A simplified model for effective thermal conductivity of highly porous ceramic fiber insulation. Journal of Thermal Science and Engineering Applications, 7(4), 041022. https://doi.org/10.1117/12.672853spa
dc.relation.referencesMalitson, I. H., Murphy, F. v., & Rodney, W. S. (1958). Refractive Index of Synthetic Sapphire. JOSA, Vol. 48, Issue 1, Pp. 72-73, 48(1), 72–73. https://doi.org/10.1364/JOSA.48.000072spa
dc.relation.referencesMarschall, J., Maddren, J., & Parks, J. (2001). Internal radiation transport and effective thermal conductivity of fibrous ceramic insulations. 35th AIAA Thermophysics Conference, 2822.spa
dc.relation.referencesMarschall, J., & Milos, F. S. (1997). The calculation of anisotropic extinction coefficients for radiation diffusion in rigid fibrous ceramic insulations. International Journal of Heat and Mass Transfer, 40(3), 627–634. https://doi.org/10.1016/0017-9310(96)00109-3spa
dc.relation.referencesMathes, R., Blumenberg, J., & Keller, K. (1990). Radiative heat transfer in insulations with random fibre orientation. International Journal of Heat and Mass Transfer, 33(4), 767–770. https://doi.org/10.1016/0017-9310(90)90174-Sspa
dc.relation.referencesMatsuoka, J., Kitamura, N., Fujinaga, S., Kitaoka, T., & Yamashita, H. (1991). Temperature dependence of refractive index of SiO2 glass. Journal of Non-Crystalline Solids, 135(1), 86–89. https://doi.org/10.1016/0022-3093(91)90447-Espa
dc.relation.referencesMatthews, L. K., Viskanta, R., & Incropera, F. P. (1984). Development of inverse methods for determining thermophysical and radiative properties of high-temperature fibrous materials. International Journal of Heat and Mass Transfer, 27(4), 487–495.spa
dc.relation.referencesMcKay, N. L., Timusk, T., & Farnworth, B. (1984). Determination of optical properties of fibrous thermal insulation. Journal of Applied Physics, 55(11), 4064–4071. https://doi.org/10.1063/1.332996spa
dc.relation.referencesMilandri, A., Asllanaj, F., & Jeandel, G. (2002). Determination of radiative properties of fibrous media by an inverse method—comparison with the Mie theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 74(5), 637–653. https://doi.org/10.1016/S0022-4073(01)00276-Xspa
dc.relation.referencesMironov, R. A., Gaidenko, V. O., Zabezhailov, M. O., Tomchani, O. V, Cherepanov, V. V, & Alifanov, O. M. (2021). Radiative-Optical and Thermophysical Characteristics of Fibrous Silica-Based Heat Insulation. Journal of Engineering Physics and Thermophysics, 94, 1600–1608. https://doi.org/10.1007/s10891-021-02441-3spa
dc.relation.referencesMironov, R. A., Tomchani, O. V., Guydenko, V. O., & Zabezhailov, M. O. (2021). Numerical and experimental determination of optical properties and thermal conductivity of ceramic composites based on fumed silica and silica fiber. International Journal of Heat and Mass Transfer, 181, 122022. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.122022spa
dc.relation.referencesMishchenko, M. I. (2018). “Independent” and “dependent” scattering by particles in a multi-particle group. OSA Continuum, 1(1), 243–260. https://doi.org/10.1364/OSAC.1.000243spa
dc.relation.referencesMishra, S. C., Krishna, C. H., & Kim, M. Y. (2011). Analysis of Conduction and Radiation Heat Transfer in a 2-D Cylindrical Medium Using the Modified Discrete Ordinate Method and the Lattice Boltzmann Method. Numerical Heat Transfer, Part A: Applications, 60(3), 254–287. https://doi.org/10.1080/10407782.2011.588581spa
dc.relation.referencesModest, M. F., & Mazumder, S. (2021). Radiative Heat Transfer (4th ed.). Elsevier.spa
dc.relation.referencesMoura, L. M. (2011). Inverse Thermal Radiation Problems: Estimation of Radiative Properties of Dispersed Media. In A. Ghajar (Ed.), Thermal Measurements and Inverse Techniques (pp. 723–752). CRC Press.spa
dc.relation.referencesNenarokomov, A. V, Alifanov, O. M., Krainova, I. V, Titov, D. M., & Morzhukhina, A. V. (2019). Estimation of environmental influence on spacecraft materials radiative properties by inverse problems technique. Acta Astronautica, 160, 323–330. https://doi.org/10.1016/j.actaastro.2019.04.014spa
dc.relation.referencesNicolau, V. de P., Raynaud, M., & Sacadura, J. F. (1994). Spectral radiative properties identification of fiber insulating materials. International Journal of Heat and Mass Transfer, 37, 311–324. https://doi.org/10.1016/0017-9310(94)90032-9spa
dc.relation.referencesOkokpujie, I. P., Essien, V., Ikumapayi, O. M., Nnochiri, E. S., Okokpujie, K., & Akinlabi, E. (2022). An Overview of Thermal Insulation Material for Sustainable Engineering Building Application. International Journal of Design & Nature and Ecodynamics, 17(6), 831–841. https://doi.org/10.18280/ijdne.170603spa
dc.relation.referencesPalik, E. D. (1998). Handbook of Optical Constants of Solids (Issue v. 2). Elsevier Science.spa
dc.relation.referencesPapadopoulos, A. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1), 77–86. https://doi.org/10.1016/J.ENBUILD.2004.05.006spa
dc.relation.referencesPelanne, C. M. (1977). Heat Flow Principles in Thermal Insulations. Journal of Thermal Insulation, 1(1), 48–80. https://doi.org/10.1177/109719637700100104spa
dc.relation.referencesPetrov, V. A. (1997). Combined radiation and conduction heat transfer in high temperature fiber thermal insulation. International Journal of Heat and Mass Transfer, 40(9), 2241–2247. https://doi.org/10.1016/S0017-9310(96)00242-6spa
dc.relation.referencesQuerry, M. R. (1985). Optical constants. Report CRDC-CR-85034 (Contractor Report CRDC-CR-85034 1985).spa
dc.relation.referencesRandrianalisoa, J., Haussener, S., Baillis, D., & Lipiński, W. (2017). Radiative characterization of random fibrous media with long cylindrical fibers: Comparison of single- and multi-RTE approaches. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 220–232. https://doi.org/10.1016/J.JQSRT.2017.08.002spa
dc.relation.referencesRauch, H., Sutton, W., & McCreight, L. (1968). Ceramic Fibers and Fibrous Composite Materials. Academic Press.spa
dc.relation.referencesReiss, H., Schmaderer, F., Wahl, G., Ziegenbein, B., & Caps, R. (1987). Experimental investigation of extinction properties and thermal conductivity of metal-coated dielectric fibers in vacuum. International Journal of Thermophysics 1987 8:2, 8(2), 263–280. https://doi.org/10.1007/BF00515209spa
dc.relation.referencesRodney, W. S., & Spindler, R. J. (1953). Refractive index of cesium bromide for ultraviolet, visible and infrared wavelengths. J. Res. Natl. Bur. Stand, 3, 123.spa
dc.relation.referencesRodriguez, A., & Snapp, C. (2010). Orbiter Thermal Protection System. In N. W. Hale, K. Lulla, H. W. Lane, & G. Chapline (Eds.), Wings in Orbit: Sientific and Engineering Legacies of the Space Shuttle. NASA.spa
dc.relation.referencesRolt, S. (2020). Optical Engineering Science. Wiley.spa
dc.relation.referencesSacadura, J. F. (2011). Thermal radiative properties of complex media: theoretical prediction versus experimental identification. Heat Transfer Engineering, 32(9), 754–770. https://doi.org/10.1080/01457632.2011.525140spa
dc.relation.referencesSacadura, J. F., & Baillis, D. (2002). Experimental characterization of thermal radiation properties of dispersed media. International Journal of Thermal Sciences, 41(7), 699–707. https://doi.org/10.1016/S1290-0729(02)01365-0spa
dc.relation.referencesSchäfer, J. (2011). Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe [PhD Thesis]. Univerität Ulm.spa
dc.relation.referencesSchäfer, J., Lee, S. C., & Kienle, A. (2012). Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(16), 2113–2123. https://doi.org/10.1016/J.JQSRT.2012.05.019spa
dc.relation.referencesSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089spa
dc.relation.referencesSeydibeyoglu, M. O., Mohanty, A. K., & Misra, M. (2017). Fiber Technology for Fiber-Reinforced Composites. Elsevier Science.spa
dc.relation.referencesSong, W. F., & Yu, W. D. (2012). Heat transfer through fibrous assemblies by fractal method. Journal of Thermal Analysis and Calorimetry, 110(2), 897–905. https://doi.org/10.1007/s10973-011-1792-2spa
dc.relation.referencesStamnes, K., Thomas, G. E., & Stamnes, J. J. (2017). Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press.spa
dc.relation.referencesStark, C., & Fricke, J. (1993). Improved heat-transfer models for fibrous insulations. International Journal of Heat and Mass Transfer, 36(3), 617–625. https://doi.org/10.1016/0017-9310(93)80037-Uspa
dc.relation.referencesTan, C. Z., & Arndt, J. (2001). The refractive index of silica glass and its dependence on pressure, temperature, and the wavelength of the incident light. In Silicon-Based Material and Devices (pp. 51–91). Elsevier.spa
dc.relation.referencesThomas, M. E. (1991). Temperature Dependence of the Complex Index of Refraction. In E. D. Palik (Ed.), Handbook of optical constants of solids (pp. 177–199). Academic Press.spa
dc.relation.referencesThomas, M. E. (2006). Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water. Oxford University Press.spa
dc.relation.referencesThomas, M. E., Andersson, S. K., Sova, R. M., & Joseph, R. I. (1998). Frequency and temperature dependence of the refractive index of sapphire. Infrared Physics & Technology, 39(4), 235–249. https://doi.org/10.1016/S1350-4495(98)00010-3spa
dc.relation.referencesThomas, M. E., & Joseph, R. I. (1988). A comprehensive model for the intrinsic transmission properties of optical windows. Proc. SPIE 0929, Infrared Optical Materials IV, 929, 87–93. https://doi.org/10.1117/12.945855spa
dc.relation.referencesThomas, M. E., Joseph, R. I., & Tropf, W. J. (1988). Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency. Applied Optics, Vol. 27, Issue 2, Pp. 239-245, 27(2), 239–245. https://doi.org/10.1364/AO.27.000239spa
dc.relation.referencesTilioua, A., Libessart, L., & Lassue, S. (2018). Characterization of the thermal properties of fibrous insulation materials made from recycled textile fibers for building applications: Theoretical and experimental analyses. Applied Thermal Engineering, 142, 56–67. https://doi.org/10.1016/j.applthermaleng.2018.06.071spa
dc.relation.referencesTong, T. W., McElroy, D. L., & Yarbrough, D. W. (1985). Transient conduction and radiation heat transfer in porous thermal insulations. Journal of Thermal Insulation, 9(1), 13–29. https://doi.org/10.1177/109719638500900103spa
dc.relation.referencesTong, T. W., Swathi, P. S., & Cunnington, G. R. (1987). Examination of the Radiative Properties of Coated Silica Fibers: Journal of Thermal Insulation, 11(1), 7–31. https://doi.org/10.1177/109719638701100103spa
dc.relation.referencesTong, T. W., & Tien, C. L. (1980). Analytical models for thermal radiation in fibrous insulations. Journal of Building Physics, 4(1), 27–44. https://doi.org/10.1177/109719638000400102spa
dc.relation.referencesTong, T. W., & Tien, C. L. (1983). Radiative Heat Transfer in Fibrous Insulations—Part I: Analytical Study. Journal of Heat Transfer, 105(1), 70–75. https://doi.org/10.1115/1.3245561spa
dc.relation.referencesTong, T. W., Yang, Q. S., & Tien, C. L. (1983). Radiative Heat Transfer in Fibrous Insulations—Part II: Experimental Study. Journal of Heat Transfer, 105(1), 76–81. https://doi.org/10.1115/1.3245562spa
dc.relation.referencesTouloukian, Y. S., Powell, R. W., Ho, C. Y., & Klemens, P. G. (1971). Thermal Conductivity-Nonmetallic Solids. Thermophysical Properties of Matter - The TPRC Data Series (Vol. 2). IFI/Plenum.spa
dc.relation.referencesTritt, T. M. (2006). Thermal Conductivity: Theory, Properties, and Applications. Springer US.spa
dc.relation.referencesTychanicz-Kwiecień, M., Wilk, J., & Gil, P. (2019). Review of High-Temperature Thermal Insulation Materials. Journal of Thermophysics and Heat Transfer, 33(1), 271–284. https://doi.org/10.2514/1.T5420spa
dc.relation.referencesUyanna, O., & Najafi, H. (2020). Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronautica, 176, 341–356. https://doi.org/10.1016/j.actaastro.2020.06.047spa
dc.relation.referencesvan de Hulst, H. C. (1981). Light Scattering by Small Particles. Dover Publications.spa
dc.relation.referencesVanmol, D., & Anderson, J. (1992). Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects. 27th Thermophysics Conference. https://doi.org/10.2514/6.1992-2920spa
dc.relation.referencesVeiseh, S., & Hakkaki-Fard, A. (2009). Numerical modeling of combined radiation and conduction heat transfer in mineral wool insulations. Heat Transfer Engineering, 30(6), 477–486. https://doi.org/10.1080/01457630802529065spa
dc.relation.referencesVeiseh, S., Khodabandeh, N., & Hakkaki-Fard, A. (2009). Mathematical models for thermal conductivitydensity relationship in fibrous thermal insulations for practical applications. Asian Journal of Civil Engineering, 10(2), 201–214.spa
dc.relation.referencesVerschoor, J. D., Greebler, P., & Manville, N. J. (1952). Heat transfer by gas conduction and radiation in fibrous insulation. Transactions of The American Society Of Mechanical Engineersf Mechanical Engineers, 961–968. https://doi.org/10.1115/1.4015979spa
dc.relation.referencesVozár, L., & Srámková, T. (1997). Step heating method for thermal diffusivity measurement. Proceedings of the XIV IMEKO World Congress, 179–184.spa
dc.relation.referencesWang, K. Y., & Tien, C. L. (1983). Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer, 30(3), 213–223. https://doi.org/10.1016/0022-4073(83)90059-6spa
dc.relation.referencesWilliams, S. D., & Curry, D. M. (1977). An analytical and experimental study for surface heat flux determination. Journal of Spacecraft and Rockets, 14(10), 632–637. https://doi.org/10.2514/3.27987spa
dc.relation.referencesWilliams, S. D., & Curry, D. M. (1992). Thermal protection materials: Thermophysical property data - NASA Reference Publication 1289.spa
dc.relation.referencesWilliams, S. D., & Curry, D. M. (1993). Prediction of rigid silica based insulation conductivity, NASA TP- 3276.spa
dc.relation.referencesWilson, D. (2018). Continuous oxide fibers. In A. Bunsell (Ed.), Handbook of Properties of Textile and Technical Fibres (2nd ed.). Elsevier.spa
dc.relation.referencesWood, D. L., & Nassau, K. (1982). Refractive index of cubic zirconia stabilized with yttria. Applied Optics, 21(16), 2978–2981.spa
dc.relation.referencesWorrell, C. A. (1986). Infrared optical constants for CO2 laser waveguide materials. Journal of Materials Science 1986 21:3, 21(3), 781–787. https://doi.org/10.1007/BF01117354spa
dc.relation.referencesWray, J. H., & Neu, J. T. (1969). Refractive index of several glasses as a function of wavelength and temperature. JOSA, 59(6), 774–776. https://doi.org/10.1364/JOSA.59.000774spa
dc.relation.referencesXiao, B., Wang, W. E. I., Fan, J., Chen, H., Hu, X., Zhao, D., Zhang, X., & Ren, W. E. N. (2017). Optimization of the fractal-like architecture of porous fibrous materials related to permeability, diffusivity and thermal conductivity. Fractals, 25(03), 1750030. https://doi.org/10.1142/S0218348X1750030Xspa
dc.relation.referencesXie, Z., Xue, W., Chen, H., & Huang, Y. (2011). Mechanical and thermal properties of 99% and 92% alumina at cryogenic temperatures. Ceramics International, 37(7), 2165–2168. https://doi.org/10.1016/j.ceramint.2011.03.066spa
dc.relation.referencesYang, J., Wu, H., Wang, M., He, S., & Huang, H. (2016). Prediction and optimization of radiative thermal properties of ultrafine fibrous insulations. Applied Thermal Engineering, 104(5), 394–402. https://doi.org/10.1016/j.applthermaleng.2016.05.062spa
dc.relation.referencesYang, J., Wu, H., Wang, M., & Liang, Y. (2018). Prediction and optimization of radiative thermal properties of nano TiO2 assembled fibrous insulations. International Journal of Heat and Mass Transfer, 117, 729–739. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.069spa
dc.relation.referencesYeh, Hy., & Roux, J. A. (1988). Spectral radiative properties of fiberglass insulation. Journal of Thermophysics and Heat Transfer, 2(1), 75–81. https://doi.org/10.2514/3.56218spa
dc.relation.referencesYuen, W., Takara, E., & Cunnington G. (2003, March 16). Combined conductive/radiative heat transfer in high porosity fibrous insulation materials: theory and experiment. The 6th ASME-JSME  Thermal Engineering Joint Conference.spa
dc.relation.referencesYuen, W. W., & Cunnington, G. (2007). Radiative heat transfer analysis of fibrous insulation materials using the zonal-GEF method. Journal of Thermophysics and Heat Transfer, 21(1), 105–113. https://doi.org/10.2514/1.22412spa
dc.relation.referencesZarr, R. R. (1997). Standard Reference Materials: Glass Fiberboard, SRM 1450c, for Thermal Resistance from 280 K to 340 K. NIST Special Publication, 260, 130. https://doi.org/10.6028/NIST.SP.260-130spa
dc.relation.referencesZarr, R. R. (2001). A history of testing heat insulators at the national institute of standards and technology. Ashrae Transactions, 107(Pt.2), 661–672.spa
dc.relation.referencesZhang, B., Zhao, S., & He, X. (2008). Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(7), 1309–1324. https://doi.org/10.1016/j.jqsrt.2007.10.008spa
dc.relation.referencesZhang, B., Zhao, S., He, X., & Du, S. (2007). High temperature thermal physical properties of high-alumina fibrous insulation. Journal of Materials Science & Technology, 23(6), 860.spa
dc.relation.referencesZhao, S., Zhang, B., Du, S., & He, X. (2009). Inverse identification of thermal properties of fibrous insulation from transient temperature measurements. International Journal of Thermophysics, 30, 2021–2035.spa
dc.relation.referencesZhao, S., Zhang, B., & He, X. (2009). Temperature and pressure dependent effective thermal conductivity of fibrous insulation. International Journal of Thermal Sciences, 48(2), 440–448. https://doi.org/10.1016/j.ijthermalsci.2008.05.003spa
dc.relation.referencesZhao, S.-Y., Zhang, B.-M., & Du, S.-Y. (2009). An inverse analysis to determine conductive and radiative properties of a fibrous medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(13), 1111–1123.spa
dc.relation.referencesZIRCAR Ceramics, Inc. (2020). Alumina Paper Type APA. https://www.zircarceramics.com/product/apa/spa
dc.relation.referencesZuev, A. V., & Prosuntsov, P. V. (2014). Model of the Structure of Fibrous Heat-Insulating Materials for Analyzing Combined Heat Transfer Processes. Journal of Engineering Physics and Thermophysics, 87(6), 1374–1385. https://doi.org/10.1007/s10891-014-1140-zspa
dc.relation.referencesZverev, V. G., Gol’din, V. D., & Nazarenko, V. A. (2008). Radiation-conduction heat transfer in fibrous heat-resistant insulation under thermal effect. High Temperature, 46, 108–114. https://doi.org/10.1134/s10740-008-1015-0spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.lembTransferencia de calorspa
dc.subject.lembHeat - Transmissioneng
dc.subject.lembMedios de termo transferenciaspa
dc.subject.lembHeat-transfer mediaeng
dc.subject.lembAisladoresspa
dc.subject.lembInsulating materialseng
dc.subject.proposalFibrous insulationeng
dc.subject.proposalHeat transfer modelingeng
dc.subject.proposalHigh temperatureeng
dc.subject.proposalRadiation heat transfereng
dc.subject.proposalRadiative transfer equations (RTE)eng
dc.subject.proposalThermal conductivityeng
dc.subject.proposalRadiative propertieseng
dc.titlePredictive heat transfer models in fibrous insulation at high temperatureseng
dc.title.translatedModelos predictivos de transferencia de calor en aislantes fibroso a altas temperaturasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePREDICTIVE MODELS FOR HIGH TEMPERATURE FIBROUS INSULATIONspa
oaire.fundernameAir Force Office of Scientific Research (AFOSR)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022323961.2024.pdf
Tamaño:
3.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: