Optimización topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluido

dc.contributor.advisorMontealegre Rubio, Wilfredospa
dc.contributor.authorForonda Obando, Estebanspa
dc.contributor.researchgroupDiseño y Optimización Aplicada (DOA)spa
dc.date.accessioned2020-09-15T13:47:09Zspa
dc.date.available2020-09-15T13:47:09Zspa
dc.date.issued2020-09-11spa
dc.description.abstractThe performance of turbomachines is highly dependent on the design of the rotor and optimizing its interaction with the fluid has been an active research field in academia and industry. The Topology Optimization Method has proven successful in the design of rotors of radial flow machines, including numerical and experimental performance assessment and allowing the creation of non-intuitive optimum geometries. Usually, the optimization process is developed from the fluid perspective, for objective functions such as energy dissipation and vorticity; however, this methodology does not guarantee that the structural response satisfies the constraints on factors like stiffness, stress and temperature, requiring an iterative process to obtain a feasible design that is no longer optimum. In the present work, the two physics of this problems are coupled by considering the fluid-structure interaction. The effect of including the structural response on the optimum designs is verified, consolidating a robust methodology that can be extended to solve more complex physics such as fluid compressibility, flow transients and turbulence.spa
dc.description.abstractEl desempeño de las turbomáquinas depende fuertemente del diseño del rotor, por lo que la optimización de su interacción con el fluido ha sido un campo de investigación activo, tanto en la academia como en la industria. El Método de Optimización Topológica ha demostrado ser exitoso en el diseño de rotores de máquinas de flujo radial, incluyendo la evaluación de desempeño numérico y experimental y permitiendo la creación de geometrías no intuitivas. Comúnmente, el proceso de optimización es desarrollado desde la perspectiva del fluido, para funciones objetivo como la disipación de energía y la vorticidad; sin embargo, esta metodología no garantiza que la respuesta estructural satisface las restricciones en factores como rigidez, esfuerzos y temperaturas, requiriendo un proceso iterativo para obtener una solución factible pero que no es óptima. En este trabajo, las dos físicas de este problema son acopladas al considerar la interacción fluido-estructura. Así, se verifica el efecto de incluir la respuesta estructural en el problema de optimización, consolidando una metodología robusta que puede ser extendida a resolver físicas más complejas, como compresibilidad del fluido, flujo transitorio y turbulencia.spa
dc.description.degreelevelMaestríaspa
dc.format.extent170spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationForonda, Esteban (2020). Optimización topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluido (tesis de maestría). Universidad Nacional de Colombiaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78461
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesAkl, W. (2010). Topology optimization of fluid-loaded shells by minimizing the acoustic coupling to the fluid domain. International Journal of Computational Methods in Engineering Science and Mechanics, 11(6), 337–353. https://doi.org/10.1080/15502287.2010.516791spa
dc.relation.referencesAlnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., … Wells, G. N. (2015). The FEniCS Project Version 1.5. Archive of Numerical Software, 3(100), 9–23. https://doi.org/10.11588/ans.2015.100.20553spa
dc.relation.referencesAlonso, D. H., Sá, L. F. N., Saenz, J. S. R., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58(6), 2341–2364. https://doi.org/10.1007/s00158-018-2078-0spa
dc.relation.referencesAlonso, D. H., Sá, L. F. N., Saenz, J. S. R., & Silva, E. C. N. (2019). Topology optimization based on a two-dimensional swirl flow model of Tesla-type pump devices. Computers and Mathematics with Applications, 77(9), 2499–2533. https://doi.org/10.1016/j.camwa.2018.12.035spa
dc.relation.referencesAndreasen, C. S. (2017). Topology optimization of inertia driven dosing units. Structural and Multidisciplinary Optimization, 55(4), 1301–1309. https://doi.org/10.1007/s00158-016-1573-4spa
dc.relation.referencesAndreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., & Sigmund, O. (2011). Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1), 1–16. https://doi.org/10.1007/s00158-010-0594-7spa
dc.relation.referencesAnsys Inc. (2017). Ansys Release 17.2 [computer program].spa
dc.relation.referencesAntonios, F., Avenue, I., Nikolaos, V., & Vassilios, V. (2015). A Novel Methodology to Predict Centrifugal Pump Characteristics Through Navier-Stokes Exact Solutions. International Journal of Engineering Research & Technology IJERT, 4(02), 1110–1116.spa
dc.relation.referencesAxisa, F., & Antunes, J. (2007). Modelling of mechanical systems: Fluid-Structure Interaction. Elsevier Ltd.spa
dc.relation.referencesBaklacioglu, T., Turan, O., & Aydin, H. (2015). Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks. Energy, 86, 709–721. https://doi.org/10.1016/j.energy.2015.04.025spa
dc.relation.referencesBaloni, B. D., Pathak, Y., & Channiwala, S. A. (2015). Centrifugal blower volute optimization based on Taguchi method. Computers and Fluids, 112, 72–78. https://doi.org/10.1016/j.compfluid.2015.02.007spa
dc.relation.referencesBathe, K. J. (1996). Finite Element Procedures. New Jersey: Prentice Hall.spa
dc.relation.referencesBendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193–202. https://doi.org/10.1007/BF01650949spa
dc.relation.referencesBendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2spa
dc.relation.referencesBendsøe, M. P., & Sigmund, O. (1999). Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69(9), 635–654. https://doi.org/10.1007/s004190050248spa
dc.relation.referencesBendsøe, M. P., & Sigmund, O. (2003). Topology optimization: theory, methods and applications. In Engineering. https://doi.org/10.1007/978-3-662-05086-6spa
dc.relation.referencesBoccini, E., Meli, E., Rindi, A., Corbò, S., & Iurisci, G. (2017). Innovative structural topology optimization approach for rotordynamics components using innovative materials and new manufacturing techniques. Proceedings of ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/detc2017-67061spa
dc.relation.referencesBoccini, E., Meli, E., Rindi, A., Falomi, S., Iurisci, G., & Corb, S. (2017). Structural topology optimization of turbomachinery components using new manufacturing techniques and innovative materials. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 1–13. Charlotte, NC.spa
dc.relation.referencesBoccini, E., Meli, E., Rindi, A., Pinelli, L., Peruzzi, L., & Arnone, A. (2018). Towards structural topology optimization of rotor blisks. Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 1–10. https://doi.org/10.1115/gt2018-76482spa
dc.relation.referencesBoom, T. Van Den, & Schutter, B. De. (2007). Optimization in Systems and Control. Delft Center for Systems and Control.spa
dc.relation.referencesBorrvall, T., & Petersson, J. (2003). Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids, 41(1), 77–107. https://doi.org/10.1002/fld.426spa
dc.relation.referencesBuckney, N., Green, S., Pirrera, A., & Weaver, P. M. (2012). On the structural topology of wind turbine blades. Wind Energy, 16(4), 545–560. https://doi.org/10.1002/we.1504spa
dc.relation.referencesCampelo, F., Ram, J. A., & Igarashi, H. (2010). A survey of topology optimization in electromagnetics: considerations and current trends. Retrieved from http://www.cpdee.ufmg.br/~fcampelo/files/TR/Campelo2010-NME.pdfspa
dc.relation.referencesChandrupatla, T. R., & Belegundu, A. (2002). Introduction to Finite Elements in Engineering (3rd ed.). New Jersey: Prentice Hall.spa
dc.relation.referencesChang, J. W., & Lee, Y. S. (2008). Topology optimization of compressor bracket. Journal of Mechanical Science and Technology, 22(9), 1668–1676. https://doi.org/10.1007/s12206-008-0428-3spa
dc.relation.referencesCheah, K. W., Lee, T. S., Winoto, S. H., & Zhao, Z. M. (2007). Numerical flow simulation in a centrifugal pump at design and off-design conditions. International Journal of Rotating Machinery, 2007(Article ID 83641), 8. https://doi.org/10.1155/2007/83641spa
dc.relation.referencesChen, B. C., & Kikuchi, N. (2001). Topology optimization with design-dependent loads. Finite Elements in Analysis and Design, 37(1), 57–70. https://doi.org/10.1016/S0168-874X(00)00021-4spa
dc.relation.referencesChen, X. M., Lai, X. De, Zhang, X., & Zhou, X. (2013). Evolutionary Topology Optimization Design of Rotary Lobe of Roots Vacuum Pumps. Advanced Materials Research, 798–799, 365–368. https://doi.org/10.4028/www.scientific.net/amr.798-799.365spa
dc.relation.referencesCho, J., Choi, M., Baik, Y., Lee, G., Ra, H., Kim, B., & Kim, M. (2016). Development of the turbomachinery for the supercritical carbon dioxide power cycle. International Journal of Energy Research, 40, 587–599. https://doi.org/10.1002/er.3453spa
dc.relation.referencesCook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. W. (2002). Concept and Applications of Finite Element Analysis (4th ed.). John Wiley & Sons, Inc.spa
dc.relation.referencesDeaton, J. D., & Grandhi, R. V. (2014). A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization, 49(1), 1–38. https://doi.org/10.1007/s00158-013-0956-zspa
dc.relation.referencesDick, E. (2015). Fundamentals of Turbomachines. In Fluid Mechanics and Its Applications (Vol. 109). https://doi.org/10.1016/0300-9467(86)85009-2spa
dc.relation.referencesDixon, J. a, Verdicchio, J. a, Benito, D., Karl, A., & Tham, K. M. (2004). Recent developments in gas turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218, 241–255. https://doi.org/10.1243/0957650041200641spa
dc.relation.referencesDixon, S. L., & Hall, C. A. (2014). Fluid Mechanics and Thermodynamics of Turbomachinery (7th ed.). Elsevier Inc.spa
dc.relation.referencesDubrovskaya, A., Dongauzer, K., & Faskhutdinov, R. (2017). The design of lightweight gas turbine engine parts using topology optimization. MATEC Web of Conferences, 129. https://doi.org/10.1051/matecconf/201712901067spa
dc.relation.referencesElsevier. (2019). Scopus. Retrieved May 20, 2016, from http://www.scopus.com/spa
dc.relation.referencesEschenauer, H. A., & Olhoff, N. (2001). Topology Optimization of Continuum Structures: A review. Applied Mechanics Reviews, 54(4), 331–390. https://doi.org/10.1115/1.1388075spa
dc.relation.referencesEvgrafov, A. (2005). The Limits of Porous Materials in the Topology Optimization of Stokes Flows. Applied Mathematics & Optimization, 52(3), 263–277. https://doi.org/10.1007/s00245-005-0828-zspa
dc.relation.referencesFaskhutdinov, R. N., Dubrovskaya, A. S., Dongauzer, K. A., Maksimov, P. V, & Trufanov, N. A. (2017). Topology optimization of a gas-turbine engine part. IOP Conf. Series: Materials Science and Engineering, 177. https://doi.org/10.1088/1757-899X/177/1/012077spa
dc.relation.referencesGanesan, S., & Tobiska, L. (2017). Finite Elements: Theory and Algorithms. Cambridge University Press.spa
dc.relation.referencesGersborg-Hansen, A., Sigmund, O., & Haber, R. B. (2005). Topology optimization of channel flow problems. Structural and Multidisciplinary Optimization, 30(3), 181–192. https://doi.org/10.1007/s00158-004-0508-7spa
dc.relation.referencesGuest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254. https://doi.org/10.1002/nme.1064spa
dc.relation.referencesGülich, J. F. (2014). Centrifugal Pumps. In Springer (3rd ed.). https://doi.org/10.1007/978-3-642-40114-5spa
dc.relation.referencesHaftka, R. T., & Gürdal, Z. (1992). Elements of Structural Optimization (Vol. 11). https://doi.org/10.1002/nme.2403spa
dc.relation.referencesHahn, Y., & Cofer, J. I. (2014). Study of Parametric and Non-Parametric Optimization of a Rotor-Bearing System. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 1–7. Düsseldorf.spa
dc.relation.referencesHermann, A. N. A., Mijatovic, N., & Henriksen, M. L. (2016). Topology optimisation of PMSM rotor for pump application. Proceedings - 2016 22nd International Conference on Electrical Machines, ICEM 2016, 2119–2125. https://doi.org/10.1109/ICELMACH.2016.7732815spa
dc.relation.referencesHibbeler, R. C. (2014). Mechanics of materials (9th ed.).spa
dc.relation.referencesHinterberger, C., & Olesen, M. (2011). Industrial application of continuous adjoint flow solvers for the optimization of automotive exhaust systems. ECCOMAS Thematic Conference, (069), 1–17. Antalya, Turkey: CFD & Optimization: Methods and Applications.spa
dc.relation.referencesHutton, D. V. (2004). Fundamentals of Finite Element Analysis. McGraw-Hill.spa
dc.relation.referencesIseler, J., & Martin, T. J. (2017). Flow Topology Optimization of a Cooling Passage for a High Pressure Turbine Blade. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. https://doi.org/10.1115/gt2017-63618spa
dc.relation.referencesIshikawa, T., Mizuno, S., & Krita, N. (2017). Topology Optimization Method for Asymmetrical Rotor Using Cluster and Cleaning Procedure. IEEE Transactions on Magnetics, 53(6). https://doi.org/10.1109/TMAG.2017.2665441spa
dc.relation.referencesJafarzadeh, B., Hajari, A., Alishahi, M. M., & Akbari, M. H. (2011). The flow simulation of a low-specific-speed high-speed centrifugal pump. Applied Mathematical Modelling, 35(2011), 242–249. https://doi.org/10.1016/j.apm.2010.05.021spa
dc.relation.referencesJenkins, N., & Maute, K. (2015). Level set topology optimization of stationary fluid-structure interaction problems. Structural and Multidisciplinary Optimization, 52(1), 179–195. https://doi.org/10.1007/s00158-015-1229-9spa
dc.relation.referencesJiang, L., & Wu, C. W. (2017). Topology optimization of energy storage flywheel. Structural and Multidisciplinary Optimization, 55(5). https://doi.org/10.1007/s00158-016-1576-1spa
dc.relation.referencesKilchyk, V., Senay, E., & Abdelwahab, A. (2017). Selection of the Optimum Control Parameters for Compressor Design Optimization Algorithm. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. https://doi.org/10.1115/gt2017-63009spa
dc.relation.referencesKundu, P. K., Cohen, I. M., & Dowling, D. R. (2016). Fluid Mechanics (6th ed.). Elsevier Inc.spa
dc.relation.referencesLe, C., Norato, J., Bruns, T., Ha, C., & Tortorelli, D. (2010). Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 41(4), 605–620. https://doi.org/10.1007/s00158-009-0440-yspa
dc.relation.referencesLee, Y. S., González, J. A., Lee, J. H., Kim, Y. Il, Park, K. C., & Han, S. (2016). Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation. Renewable Energy, 85, 1214–1225. https://doi.org/10.1016/j.renene.2015.07.052spa
dc.relation.referencesLiu, J. H., & Wei, Z. Z. (2014). Optimization design of uncertainty fluid topology in the parallel connection of double pump. World Journal of Engineering, 11(3), 311–316.spa
dc.relation.referencesLiu, J., & Ma, Y. (2016). A survey of manufacturing oriented topology optimization methods. Advances in Engineering Software, 100, 161–175. https://doi.org/10.1016/j.advengsoft.2016.07.017spa
dc.relation.referencesLogan, D. L. (2012). A first course in the Finite Element Method (5th ed.). CENGAGE Learning.spa
dc.relation.referencesLundgaard, C., Alexandersen, J., Zhou, M., Andreasen, C. S., & Sigmund, O. (2018). Revisiting density-based topology optimization for fluid-structure-interaction problems. Structural and Multidisciplinary Optimization, 58(3), 969–995. https://doi.org/10.1007/s00158-018-1940-4spa
dc.relation.referencesMcClanahan, D. R., Liu, G. R., Turner, M. G., & Anantharaman, D. (2018). Topology Optimization of the Interior Structure of Blades With an Outer Surface Determined Through Aerodynamic Design. International Journal of Computational Methods, 15(3), 1–11. https://doi.org/10.1142/s0219876218400273spa
dc.relation.referencesMiyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A., & Ford, R. G. (1999). Functionally Graded Materials. Design, Processing and Applications. In Springer Science + Business Media (1st ed.). https://doi.org/10.1201/9781420092578spa
dc.relation.referencesNeethu, S., Shinoy, K. S., & Shajilal, A. S. (2010). Novel design, optimization and realization of axial flux motor for implantable blood pump. 2010 Joint International Conference on Power Electronics, Drives and Energy Systems, PEDES 2010 and 2010 Power India, 1–6. https://doi.org/10.1109/PEDES.2010.5712458spa
dc.relation.referencesOh, S., Wang, S., & Cho, S. (2016). Topology optimization of a suction muffler in a fluid machine to maximize energy efficiency and minimize broadband noise. Journal of Sound and Vibration, 366, 27–43. https://doi.org/10.1016/j.jsv.2015.10.022spa
dc.relation.referencesPicelli, R., Vicente, W. M., & Pavanello, R. (2015). Bi-directional evolutionary structural optimization for design-dependent fluid pressure loading problems. Engineering Optimization, 47(10), 1324–1342. https://doi.org/10.1080/0305215x.2014.963069spa
dc.relation.referencesPicelli, R., Vicente, W. M., & Pavanello, R. (2017). Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads. Finite Elements in Analysis and Design, 135(January), 44–55. https://doi.org/10.1016/j.finel.2017.07.005spa
dc.relation.referencesPietropaoli, M., Montomoli, · F, & Gaymann, · A. (2018). Structural and Multidisciplinary Optimization Three-dimensional fluid topology optimization for heat transfer. Structural and Multidisciplinary Optimization, 59(3), 801–812. https://doi.org/10.1007/s00158-018-2102-4spa
dc.relation.referencesQian, K. (1990). Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump. Journal of Biomedical Engineering, 12(6), 533–535. https://doi.org/10.1016/0141-5425(90)90066-Vspa
dc.relation.referencesReddy, J. N. (2006). An Introduction to the Finite Element Method (3rd ed.). McGraw-Hill.spa
dc.relation.referencesReddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics third edition. In The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition (3rd ed.). https://doi.org/10.1201/9781439882573spa
dc.relation.referencesRindi, A., Meli, E., Boccini, E., Iurisci, G., Corbò, S., & Falomi, S. (2016). Static and Modal Topology Optimization of Turbomachinery Components. Journal of Engineering for Gas Turbines and Power, 138(11). https://doi.org/10.1115/1.4033512spa
dc.relation.referencesRomero, J. S., & Silva, E. C. N. (2014). A topology optimization approach applied to laminar flow machine rotor design. Computer Methods in Applied Mechanics and Engineering, 279, 268–300. https://doi.org/10.1016/j.cma.2014.06.029spa
dc.relation.referencesRomero, J. S., & Silva, E. C. N. (2016). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55(5), 1711–1732. https://doi.org/10.1007/s00158-016-1599-7spa
dc.relation.referencesRozvany, G. I. N. (2001, April). Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Structural and Multidisciplinary Optimization, Vol. 21, pp. 90–108. https://doi.org/10.1007/s001580050174spa
dc.relation.referencesRozvany, G. I. N. (2009). A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37(3), 217–237. https://doi.org/10.1007/s00158-007-0217-0spa
dc.relation.referencesRozvany, G. I. N., & Lewiński, T. (2014). Topology Optimization in Structural and Continuum Mechanics. In CISM International Centre for Mechanical Sciences (Vol. 549). https://doi.org/10.1007/978-3-7091-1643-2spa
dc.relation.referencesRozvany, G. I. N., & Zhou, M. (1991a). The COC algorithm, Part I: Cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering, 89(1–3), 281–308. https://doi.org/10.1016/0045-7825(91)90045-8spa
dc.relation.referencesRozvany, G. I. N., & Zhou, M. (1991b). The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1–3), 309–336. https://doi.org/10.1016/0045-7825(91)90046-9spa
dc.relation.referencesSá, L. F. N. (2016). Topology optimization method applied to laminar flow machine rotor design (master’s thesis). University of São Paulo.spa
dc.relation.referencesSá, L. F. N., Novotny, A. A., Romero, J. S., & Silva, E. C. N. (2017). Design optimization of laminar flow machine rotors based on the topological derivative concept. Structural and Multidisciplinary Optimization, 56(5), 1013–1026. https://doi.org/10.1007/s00158-017-1698-0spa
dc.relation.referencesSá, L. F. N., Romero, J. S., Horikawa, O., & Silva, E. C. N. (2018). Topology optimization applied to the development of small scale pump. Structural and Multidisciplinary Optimization, 57(5), 2045–2059. https://doi.org/10.1007/s00158-018-1966-7spa
dc.relation.referencesSá, L. F. N., Romero, J. S., Silva, E. C. N., & Horikawa, O. (2015). Design, Optimization, Manufacturing, and Characterization of an Ventricle Assist Pump. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, 4–11. https://doi.org/10.20906/cps/cob-2015-0712spa
dc.relation.referencesSchobeiri, M. T. (2012). Turbomachinery Flow Physics and Dynamic Performance (2nd ed.). https://doi.org/10.1007/978-3-642-24675-3spa
dc.relation.referencesSeppälä, J., & Hupfer, A. (2014). Topology Optimization in Structural Design of a LP Turbine Guide Vane: Potential of Additive Manufacturing for Weight Reduction. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 1–10. Düsseldorf.spa
dc.relation.referencesShah, S. R., Jain, S. V., Patel, R. N., & Lakhera, V. J. (2013). CFD for centrifugal pumps: A review of the state-of-the-art. Procedia Engineering, 51, 715–720. https://doi.org/10.1016/j.proeng.2013.01.102spa
dc.relation.referencesShen, X., Dong, S., & Chen, Z. (2014). Research of an Advanced Turbine Disk for High Thrust-Weight Ratio Engine. Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 1–7. Düsseldorf.spa
dc.relation.referencesShojaeefard, M. H., Tahani, M., Ehghaghi, M. B., Fallahian, M. A., & Beglari, M. (2012). Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Computers and Fluids, 60, 61–70. https://doi.org/10.1016/j.compfluid.2012.02.028spa
dc.relation.referencesSigmund, O. (2001). A 99 line topology optimization code written in matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127. https://doi.org/10.1007/s001580050176spa
dc.relation.referencesSigmund, O. (2007). Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33(4–5), 401–424. https://doi.org/10.1007/s00158-006-0087-xspa
dc.relation.referencesSigmund, O., & Bendsøe, M. P. (2004). Topology optimization: from airplanes to nano-optics. In K. Stubkjær & T. Kortenbach (Eds.), Bridging From Technology To Society (pp. 40–51). Lyngby: Technical University of Denmark.spa
dc.relation.referencesSigmund, Ole. (2000). Topology optimization: a tool for the tailoring of structures and materials. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 358, 211–227.spa
dc.relation.referencesSvanberg, K. (1987). The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24(2), 359–373. https://doi.org/10.1002/nme.1620240207spa
dc.relation.referencesSvanberg, K. (2002). A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization, 12(2), 555–573. https://doi.org/https://doi.org/10.1137/S1052623499362822spa
dc.relation.referencesTaylor, C., & Hood, P. (1973). A numerical solution of the Navier-Stokes equations using the finite element technique. Computers and Fluids, 1(1), 73–100. https://doi.org/10.1016/0045-7930(73)90027-3spa
dc.relation.referencesThe MathWorks Inc. (2019). Matlab R2019b [computer program]. Natick, Massachusetts.spa
dc.relation.referencesTsai, T. D., & Cheng, C. C. (2012). Topology Optimization of Flywheel Rotors Using SIMP Method: A Preliminary Study. Advanced Materials Research, 579, 427–434. https://doi.org/10.4028/www.scientific.net/AMR.579.427spa
dc.relation.referencesVatanabe, S. L., Lippi, T. N., Lima, C. R. de, Paulino, G. H., & Silva, E. C. N. (2016). Topology optimization with manufacturing constraints: A unified projection-based approach. Advances in Engineering Software, 100, 97–112. https://doi.org/10.1016/j.advengsoft.2016.07.002spa
dc.relation.referencesWhite, F. M. (2011). Fluid Mechanics. New York: McGraw-Hill Education.spa
dc.relation.referencesWiker, N., Klarbring, A., & Borrvall, T. (2007). Topology optimization of regions of Darcy and Stokes flow. International Journal for Numerical Methods in Engineering, 69(7), 1374–1404. https://doi.org/10.1002/nme.1811spa
dc.relation.referencesWu, D., Zhu, Z., Ren, Y., Gu, Y., Mou, J., & Zheng, S. (2019). Integrated topology optimization for vibration suppression in a vertical pump. Advances in Mechanical Engineering, 11(3), 1–13. https://doi.org/10.1177/1687814019832689spa
dc.relation.referencesXie, G., Liu, J., Zhang, W., Lorenzini, G., & Biserni, C. (2014). Numerical Prediction of Turbulent Flow and Heat Transfer Enhancement in a Square Passage With Various Truncated Ribs on One Wall. Journal of Heat Transfer, 136(January), 1–11. https://doi.org/10.1115/1.4024989spa
dc.relation.referencesXu, B., Ye, S., & Zhang, J. (2016). Numerical and experimental studies on housing optimization for noise reduction of an axial piston pump. Applied Acoustics, 110, 43–52. https://doi.org/10.1016/j.apacoust.2016.03.022spa
dc.relation.referencesXu, S., Cai, Y., & Cheng, G. (2010). Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41(4), 495–505. https://doi.org/10.1007/s00158-009-0452-7spa
dc.relation.referencesYoon, G. H. (2010a). Structural topology optimization for frequency response problem using model reduction schemes. Computer Methods in Applied Mechanics and Engineering, 199(25–28), 1744–1763. https://doi.org/10.1016/j.cma.2010.02.002spa
dc.relation.referencesYoon, G. H. (2010b). Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. International Journal for Numerical Methods in Engineering, 82(5), 591–616. https://doi.org/10.1002/nme.2777spa
dc.relation.referencesZhang, Y., Duda, T., Scobie, J. A., Sangan, C. M., Copeland, C. D., & Redwood, A. (2018). Design of an air-cooled radial turbine: Part 1 — Computational modelling. Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 1–13. https://doi.org/10.1115/gt2018-76378spa
dc.relation.referencesZienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The Finite Element Method: Its Basis and Fundamentals (6th ed.). McGraw-Hill.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalOptimización topológicaspa
dc.subject.proposalTopology optimizationeng
dc.subject.proposalTurbomachineeng
dc.subject.proposalTurbomáquinaspa
dc.subject.proposalPumpeng
dc.subject.proposalBombaspa
dc.subject.proposalRotoreng
dc.subject.proposalRotorspa
dc.subject.proposalInteracción fluido-estructuraspa
dc.subject.proposalFluid-structure interactioneng
dc.subject.proposalFinite element methodeng
dc.subject.proposalMétodo de los elementos finitosspa
dc.titleOptimización topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluidospa
dc.title.alternativeTopology optimization applied to the design of turbomachines considering structural and fluid restrictionsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037615439.2020.pdf
Tamaño:
6.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: