Computational model of bone remodeling using discrete structures

dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.advisorMárquez, Kalenia María
dc.contributor.authorQuexada Rodríguez, Diego Alfredo
dc.contributor.researchgroupGNUM - Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2021-08-03T17:05:07Z
dc.date.available2021-08-03T17:05:07Z
dc.date.issued2021-06-22
dc.descriptionLibro de tesis, algunas figuras en color, mayoría en blanco y negro.
dc.descriptionilustraciones, tablasspa
dc.description.abstractIn-silico models applied to bone remodeling are widely used to investigate bone mechanics, bone diseases, bone-implant interactions, and also the effect of treatments in bone pathologies. This work proposes a new methodology to solve the bone remodeling problem using one-dimensional (1D) elements to discretize trabecular structures more efficiently. First a concept review on the bone remodelling process and mathematical approaches, such as homogenization for its modelling are revised along with famous previous works on this field, later, in chapter two, the discrete modelling approach is validated by comparing FE simulations with experimental results for a cellular like material created using additive manufacturing and following a tessellation algorithm, and later, applying an optimization scheme based on maximum stiffness for a given porosity. In chapter three, an Euler integration scheme for a bone remodelling problem is coupled with the momentum equations to obtain the evolution of material density at each step. For the simulations, the equations were solved by using the finite element method and a direct formulation, and two benchmark tests were solved varying mesh parameters in two dimensions, an additional three-dimensional benchmark was addressed with the same methodology. Proximal femur and calcaneus bone were selected as study cases given the vast research available on the topology of these bones, and compared with the anatomical features of trabecular bone reported in the literature, the study cases were examined mainly in two dimensions, but the main trabecular groups for the femur were also obtained in three dimensions. The presented methodology has proven to be efficient in optimizing topologies of lattice structures; It can predict the trend in formation patterns of the main trabecular groups from two different cancellous bones (femur and calcaneus) using domains set up by discrete elements as a starting point. Preliminary results confirm that the proposed approach is suitable and useful in bone remodeling problems in 2D and 3D leading to a considerable computational cost reduction. Characteristics similar to those encountered in topological optimization algorithms were identified in the benchmark tests as well, showing the viability of the proposed approach in other applications such as bio-inspired design. Finally, in the last part of this work, the discrete approach developed in chapter two and three is coupled with two classic bone remodelling models, forming a new model that takes into account a variety of biological parameters such as paracrine and autocrine regulators and is able to predict different periodical responses in the bone remodelling process within a 2D domain with mechanical field variables. (Text taken from source)eng
dc.description.abstractLos modelos in-silico aplicados a la remodelación ósea son ampliamente utilizados para investigar la mecánica del hueso, las enfermedades óseas, las interacciones hueso-implante y también el efecto de los tratamientos en las patologías óseas. Este trabajo propone una nueva metodología para resolver el problema de la remodelación ósea utilizando elementos unidimensionales (1D) para discretizar las estructuras trabeculares de forma más eficiente. En primer lugar se revisa una revisión conceptual sobre el proceso de remodelación ósea y las aproximaciones matemáticas, como el método de homogeneización para su modelización, junto con famosos trabajos previos en este campo, posteriormente, en el capítulo dos, se valida la modelación discreta comparando las simulaciones de FE (elementos finitos) con los resultados experimentales para un material similar al celular creado mediante fabricación aditiva y siguiendo un algoritmo de teselación, y posteriormente, aplicando un esquema de optimización basado en la máxima rigidez para una determinada porosidad. En el capítulo tres, se acopla un esquema de integración de Euler para un problema de remodelación ósea con las ecuaciones de momento para obtener la evolución de la densidad del material en cada paso de tiempo. Para las simulaciones, las ecuaciones se resolvieron utilizando el método de los elementos finitos y una formulación directa, y se resolvieron dos pruebas de referencia variando los parámetros de la malla en dos dimensiones, adicionalmente, se abordó una prueba de referencia tridimensional adicional con la misma metodología. Se seleccionaron el fémur proximal y el hueso calcáneo como casos de estudio, dada la amplia investigación disponible sobre la topología de estos huesos, y se compararon con las características anatómicas del hueso trabecular reportadas en la literatura, los casos de estudio se examinaron principalmente en dos dimensiones, pero los principales grupos trabeculares para el fémur también se obtuvieron en tres dimensiones. La metodología presentada ha demostrado ser eficaz en la optimización de las topologías de estructuras reticulares; puede predecir la tendencia de los patrones de formación de los principales grupos trabeculares de dos huesos esponjosos diferentes (fémur y calcáneo) utilizando dominios establecidos por elementos discretos como punto de partida. Los resultados preliminares confirmaron que el enfoque propuesto es adecuado y útil en problemas de remodelación ósea en 2D y 3D, lo que conlleva una considerable reducción del coste computacional. En las pruebas de referencia también se identificaron características similares a las encontradas en los algoritmos de optimización topológica, lo que demuestra la viabilidad del enfoque propuesto en otras aplicaciones como el diseño bioinspirado. Finalmente, en la última parte de este trabajo, el enfoque discreto desarrollado en los capítulos dos y tres se acopla con dos modelos clásicos de remodelación ósea, formando un nuevo modelo que tiene en cuenta una variedad de parámetros biológicos como los reguladores paracrinos y autocrinos, y es capaz de predecir diferentes respuestas periódicas en el proceso de remodelación ósea dentro de un dominio 2D con variables de campo mecánico. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaMecánica computacionalspa
dc.format.extent117 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79884
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Imágenes diagnósticasspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesAbboud, Fraser Harrold;Rami. 2018. “Biomechanics of the Foot and Ankle.” Orthopaedic Knowledge Update: Foot and Ankle 5, 3–12.spa
dc.relation.referencesAndreassen, Erik, Anders Clausen, Mattias Schevenels, Boyan S. Lazarov, and Ole Sigmund. 2011. “Efficient Topology Optimization in MATLAB Using 88 Lines of Code.” Structural and Multidisciplinary Optimization 43 (1): 1–16. https://doi.org/10.1007/s00158-010-0594-7.spa
dc.relation.referencesAnnicchiarico, W., G. Martinez, and M. Cerrolaza. 2007. “Boundary Elements and β-Spline Surface Modeling for Medical Applications.” Applied Mathematical Modelling 31 (2): 194–208. https://doi.org/10.1016/j.apm.2005.08.021.spa
dc.relation.referencesBahia, M. T., M. B. Hecke, E. G.F. Mercuri, and M. M. Pinheiro. 2020. “A Bone Remodeling Model Governed by Cellular Micromechanics and Physiologically Based Pharmacokinetics.” Journal of the Mechanical Behavior of Biomedical Materials 104: 103657. https://doi.org/10.1016/j.jmbbm.2020.103657.spa
dc.relation.referencesBeaupre, G S, and T E Orr. 1990. “An Approach for Time-Dependent Bone Modeling and Remodeling—Application: A Preliminary Remodeling Simulation - Beaupré - 2005 - Journal of Orthopaedic Research - Wiley Online Library.” Journal of Orthopaedic …, 662–70. http://onlinelibrary.wiley.com/doi/10.1002/jor.1100080507/abstract%5Cnpapers2://publication/uuid/9D5C378F-EDD8-4736-B052-510B4EFC85B9.spa
dc.relation.referencesBelinha, J., R. M. Natal Jorge, and L. M.J.S. Dinis. 2012. “Bone Tissue Remodelling Analysis Considering a Radial Point Interpolator Meshless Method.” Engineering Analysis with Boundary Elements 36 (11): 1660–70. https://doi.org/10.1016/j.enganabound.2012.05.009.spa
dc.relation.referencesBhate, Dhruv, Clint A. Penick, Lara A. Ferry, and Christine Lee. 2019. “Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches.” Designs 3 (1): 1–31. https://doi.org/10.3390/designs3010019.spa
dc.relation.referencesBraun, Jan-matthias, Poramate Manoonpong, and Xiaofeng Xiong. n.d. BIOLOGY-INSPIRED ENGINEERING AND ENGINEERING-INSPIRED BIOLOGY. https://doi.org/10.3389/978-2-88966-340-8.spa
dc.relation.referencesBuenzli, P. R., P. Pivonka, and D. W. Smith. 2011. “Spatio-Temporal Structure of Cell Distribution in Cortical Bone Multicellular Units: A Mathematical Model.” Bone 48 (4): 918–26. https://doi.org/10.1016/j.bone.2010.12.009.spa
dc.relation.referencesBullock, Whitney A., Frederick M. Pavalko, and Alexander G. Robling. 2019. “Osteocytes and Mechanical Loading: The Wnt Connection.” Orthodontics and Craniofacial Research 22 (S1): 175–79. https://doi.org/10.1111/ocr.12282.spa
dc.relation.referencesCerrolaza, M., F. Nieto, and Y. González. 2018. “Computation of the Dynamic Compression Effects in Spine Discs Using Integral Methods.” Journal of Mechanics in Medicine and Biology 18 (5): 1–16. https://doi.org/10.1142/S0219519417501032.spa
dc.relation.referencesCesar, R., R. S. Boffa, L. T. Fachine, T. P. Leivas, A. M.H. Silva, C. A.M. Pereira, R. B.M. Reiff, and J. M.D.A. Rollo. 2013. “Evaluation of Trabecular Microarchitecture of Normal Osteoporotic and Osteopenic Human Vertebrae.” Procedia Engineering 59: 6–15. https://doi.org/10.1016/j.proeng.2013.05.087.spa
dc.relation.referencesCha, Yong Han, Jun Il Yoo, Seok Young Hwang, Kap Jung Kim, Ha Yong Kim, Won Sik Choy, and Sun Chul Hwang. 2019. “Biomechanical Evaluation of Internal Fixation of Pauwels Type III Femoral Neck Fractures: A Systematic Review of Various Fixation Methods.” CiOS Clinics in Orthopedic Surgery 11 (1): 1–14. https://doi.org/10.4055/cios.2019.11.1.1.spa
dc.relation.referencesChen, Wenjiong, Xiaonan Zheng, and Shutian Liu. 2018. “Finite-Element-Mesh Based Method for Modeling and Optimization of Lattice Structures for Additive Manufacturing.” Materials 11 (11). https://doi.org/10.3390/ma11112073.spa
dc.relation.references“Computer-Assisted Femoral Augmentation for Osteoporotic Hip Fracture Prevention.” 2013.spa
dc.relation.referencesCorte, Alessandro Della, Ivan Giorgio, and Daria Scerrato. 2020. “A Review of Recent Developments in Mathematical Modeling of Bone Remodeling.” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234 (3): 273–81. https://doi.org/10.1177/0954411919857599.spa
dc.relation.referencesCowin, SC, and JJ Telega,. 2003. Bone Mechanics Handbook, 2nd Edition. -. Applied Mechanics Reviews. Vol. 56. https://doi.org/10.1115/1.1579463.spa
dc.relation.referencesCowin, S. C. 1986. “Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium.” Journal of Biomechanical Engineering 108 (1): 83–88. https://doi.org/10.1115/1.3138584.spa
dc.relation.referencesDaxner, Thomas. 2010. “Finite Element Modeling of Cellular Materials. In: Altenbach H., Öchsner A. (Eds) Cellular and Porous Materials in Structures and Processes. CISM International Centre for Mechanical Sciences, Vol 521. Springer, Vienna. Https://Doi.Org/10.1007/978-3-7091-0.” In , 634.spa
dc.relation.referencesEriksen, E. F., H. J.G. Gundersen, F. Melsen, and L. Mosekilde. 1984. “Reconstruction of the Formative Site in Iliac Trabecular Bone in 20 Normal Individuals Employing a Kinetic Model for Matrix and Mineral Apposition.” Metabolic Bone Disease and Related Research 5 (5): 243–52. https://doi.org/10.1016/0221-8747(84)90066-3.spa
dc.relation.referencesFeng, Xu, and Jay M. McDonald. 2011. “Disorders of Bone Remodeling.” Annual Review of Pathology: Mechanisms of Disease 6 (1): 121–45. https://doi.org/10.1146/annurev-pathol-011110-130203.spa
dc.relation.referencesFonseca-vel, Aldemar. 2009. “Implementaci ´ on Del Modelo de Remodelaci ´ on ´ Osea de Komarova Para El Estudio de La Sensibilidad Del Proceso de Remodelamiento ´ Oseo Ante Cambios En Factores Locales,” 107–32.spa
dc.relation.referencesGabriel García-Acosta, Fahir D. Castañeda, Diego A. Garzón-Alvarado, Kalenia Márquez-Flórez, Diego A. Quexada-Rodriguez, Armando Salgado, Marco A. Velasco. 2020. “Design for the Additive Manufacturing of Structural Elements with Cellular Materials Using Voronoi Diagrams and Delaunay Triangulations: Biological and Structural Applications.” Unpublished Manuscript, 33.spa
dc.relation.referencesGanghoffer, Jean François, and Ibrahim Goda. 2018. “Prediction of Size Effects in Bone Brittle and Plastic Collapse.” Multiscale Biomechanics, 345–88. https://doi.org/10.1016/B978-1-78548-208-3.50008-3.spa
dc.relation.referencesGarzón-Alvarado, D. A., and D. Linero. 2012a. “Comparative Analysis of Numerical Integration Schemes of Density Equation for a Computational Model of Bone Remodelling.” Computer Methods in Biomechanics and Biomedical Engineering 15 (11): 1189–96. https://doi.org/10.1080/10255842.2011.585972.spa
dc.relation.references———. 2012b. “Comparative Analysis of Numerical Integration Schemes of Density Equation for a Computational Model of Bone Remodelling.” Computer Methods in Biomechanics and Biomedical Engineering 15 (11): 1189–96. https://doi.org/10.1080/10255842.2011.585972.spa
dc.relation.referencesGasser, Jürg Andreas, and Michaela Kneissel. 2017. Bone Toxicology. Bone Toxicology. https://doi.org/10.1007/978-3-319-56192-9.spa
dc.relation.referencesGeris, L., J. Vander Sloten, and H. Van Oosterwyck. 2010. “Connecting Biology and Mechanics in Fracture Healing: An Integrated Mathematical Modeling Framework for the Study of Nonunions.” Biomechanics and Modeling in Mechanobiology 9 (6): 713–24. https://doi.org/10.1007/s10237-010-0208-8.spa
dc.relation.referencesGonzález, Y., M. Cerrolaza, and C. González. 2009. “Poroelastic Analysis of Bone Tissue Differentiation by Using the Boundary Element Method.” Engineering Analysis with Boundary Elements 33 (5): 731–40. https://doi.org/10.1016/j.enganabound.2008.09.008.spa
dc.relation.referencesGuevara, J. M., M. A. Moncayo, J. J. Vaca-González, M. L. Gutiérrez, L. A. Barrera, and D. A. Garzón-Alvarado. 2015. “Growth Plate Stress Distribution Implications during Bone Development: A Simple Framework Computational Approach.” Computer Methods and Programs in Biomedicine 118 (1): 59–68. https://doi.org/10.1016/j.cmpb.2014.10.007.spa
dc.relation.referencesHambli, Ridha. 2014. “Connecting Mechanics and Bone Cell Activities in the Bone Remodeling Process: An Integrated Finite Element Modeling.” Frontiers in Bioengineering and Biotechnology 2 (APR): 1–12. https://doi.org/10.3389/fbioe.2014.00006.spa
dc.relation.referencesHambli, Ridha, Mohamed Hafedh Boughattas, Jean Luc Daniel, and Azeddine Kourta. 2016. “Prediction of Denosumab Effects on Bone Remodeling: A Combined Pharmacokinetics and Finite Element Modeling.” Journal of the Mechanical Behavior of Biomedical Materials 60 (January 2016): 492–504. https://doi.org/10.1016/j.jmbbm.2016.03.010.spa
dc.relation.referencesHopkins, R. B., N. Burke, C. Von Keyserlingk, W. D. Leslie, S. N. Morin, J. D. Adachi, A. Papaioannou, et al. 2016. “The Current Economic Burden of Illness of Osteoporosis in Canada.” Osteoporosis International 27 (10): 3023–32. https://doi.org/10.1007/s00198-016-3631-6.spa
dc.relation.referencesJerez, S., and B. Chen. 2015. “Stability Analysis of a Komarova Type Model for the Interactions of Osteoblast and Osteoclast Cells during Bone Remodeling.” Mathematical Biosciences 264 (1): 29–37. https://doi.org/10.1016/j.mbs.2015.03.003.spa
dc.relation.referencesKenkre, J. S., and J. H.D. Bassett. 2018. The Bone Remodelling Cycle. Annals of Clinical Biochemistry. Vol. 55. https://doi.org/10.1177/0004563218759371.spa
dc.relation.referencesKey, Radiolology. 2020. “Bone Mineral Density and Quantitative Imaging.” 12 de Junio. 2020. https://radiologykey.com/bone-mineral-density-and-quantitative-imaging/.spa
dc.relation.referencesKOCH, JOHN C. 1993. “THE LAWS OF BONE ARCHITECTURE.” From the Department of Anatomy, Johns Hopkins Medical School, Baltimore, Md. 2 (6): 444–54.spa
dc.relation.referencesKomarova, Svetlana V., Robert J. Smith, S. Jeffrey Dixon, Stephen M. Sims, and Lindi M. Wahl. 2003. “Mathematical Model Predicts a Critical Role for Osteoclast Autocrine Regulation in the Control of Bone Remodeling.” Bone 33 (2): 206–15. https://doi.org/10.1016/S8756-3282(03)00157-1.spa
dc.relation.referencesKumar, Natarajan Chennimalai, Iwona Jasiuk, and Jonathan Dantzig. 2011. “Dissipation Energy as a Stimulus for Cortical Bone Adaptation.” Journal of Mechanics of Materials and Structures 6 (1–4): 303–19. https://doi.org/10.2140/jomms.2011.6.303.spa
dc.relation.referencesLemaire, Vincent, Frank L. Tobin, Larry D. Greller, Carolyn R. Cho, and Larry J. Suva. 2004. “Modeling the Interactions between Osteoblast and Osteoclast Activities in Bone Remodeling.” Journal of Theoretical Biology 229 (3): 293–309. https://doi.org/10.1016/j.jtbi.2004.03.023.spa
dc.relation.referencesLenthe, G. Harry van, and Ralph Müller. 2006. “Prediction of Failure Load Using Micro-Finite Element Analysis Models: Toward in Vivo Strength Assessment.” Drug Discovery Today: Technologies 3 (2): 221–29. https://doi.org/10.1016/j.ddtec.2006.06.001.spa
dc.relation.referencesLi, Jianying, Haiyan Li, Li Shi, Alex S.L. Fok, Cemal Ucer, Hugh Devlin, Keith Horner, and Nick Silikas. 2007. “A Mathematical Model for Simulating the Bone Remodeling Process under Mechanical Stimulus.” Dental Materials 23 (9): 1073–78. https://doi.org/10.1016/j.dental.2006.10.004.spa
dc.relation.referencesLi, Xiaofeng, Yazhou Zhang, Heeseog Kang, Wenzhong Liu, Peng Liu, Jianghong Zhang, Stephen E. Harris, and Dianqing Wu. 2005. “Sclerostin Binds to LRP5/6 and Antagonizes Canonical Wnt Signaling.” Journal of Biological Chemistry 280 (20): 19883–87. https://doi.org/10.1074/jbc.M413274200.spa
dc.relation.referencesLuxner, Mathias H., Alexander Woesz, Juergen Stampfl, Peter Fratzl, and Heinz E. Pettermann. 2009. “A Finite Element Study on the Effects of Disorder in Cellular Structures.” Acta Biomaterialia 5 (1): 381–90. https://doi.org/10.1016/j.actbio.2008.07.025.spa
dc.relation.referencesMakris, Panagiotis A., Christopher G. Provatidis, and Demetrios A. Rellakis. 2006. “Discrete Variable Optimization of Frames Using a Strain Energy Criterion.” Structural and Multidisciplinary Optimization 31 (5): 410–17. https://doi.org/10.1007/s00158-005-0588-z.spa
dc.relation.referencesMarco, Miguel, Eugenio Giner, José Ramón Caeiro-Rey, M. Henar Miguélez, and Ricardo Larraínzar-Garijo. 2019. “Numerical Modelling of Hip Fracture Patterns in Human Femur.” Computer Methods and Programs in Biomedicine 173: 67–75. https://doi.org/10.1016/j.cmpb.2019.03.010.spa
dc.relation.referencesMartín, Raúl Álvarez San, and José Antonio Velutini Kochen. 2011. “Anatomía de La Cabeza Femoral Humana: Consideraciones En Ortopedia, Parte II. Biomecánica y Morfología Microscópica.” International Journal of Morphology 29 (2): 371–76.spa
dc.relation.referencesMartínez, G., and M. Cerrolaza. 2006. “A Bone Adaptation Integrated Approach Using BEM.” Engineering Analysis with Boundary Elements 30 (2): 107–15. https://doi.org/10.1016/j.enganabound.2005.08.010.spa
dc.relation.referencesMaxwell, Clerk. n.d. “Prof . Maxwell on Reciprocal Figures XLV . On Reciprocal Figures and Diagrams of Forces . JBy J . CLERK MAXWELL , F . R . S ., Professor of Natural Philosophy in King ’ s College , London ~ . and Diagrams of Forces . On Reciprocal Plane Figures . Definiti” xxv: 250–61.spa
dc.relation.referencesMetcalf, Louis M., Enrico Dall’Ara, Margaret A. Paggiosi, John R. Rochester, Nicolas Vilayphiou, Graham J. Kemp, and Eugene V. McCloskey. 2018. “Validation of Calcaneus Trabecular Microstructure Measurements by HR-PQCT.” Bone 106: 69–77. https://doi.org/10.1016/j.bone.2017.09.013.spa
dc.relation.referencesMeyer, G. H. 1867. “‘Die Architektur Der Spongiosa,’ Archiv Fur Anatomie, Physiologie Und Wissenschaftliche Medizin, Reichert Und DuBois-Reymonds Archiv.” Nackenhorst, Udo. 1997. “Numerical Simulation of Stress Stimulated Bone Remodeling.” Technische Mechanik 17 (1): 31–40. http://www.uni-magdeburg.de/ifme/zeitschrift_tm/1997_Heft1/Nackenhorst.pdf.spa
dc.relation.referencesNiu, Tianhua, and Clifford J. Rosen. 2005. “The Insulin-like Growth Factor-I Gene and Osteoporosis: A Critical Appraisal.” Gene 361 (1–2): 38–56. https://doi.org/10.1016/j.gene.2005.07.016.spa
dc.relation.referencesOkaji, Masayo, Hideaki Sakai, Eiko Sakai, Mitsue Shibata, Fumio Hashimoto, Yasuhiro Kobayashi, Noriaki Yoshida, Kuniaki Okamoto, Kenji Yamamoto, and Yuzo Kato. 2003. “The Regulation of Bone Resorption in Tooth Formation and Eruption Processes in Mouse Alveolar Crest Devoid of Cathepsin K.” Journal Pharmacological Sciences 91 (4): 285–94. https://doi.org/10.1254/jphs.91.285.spa
dc.relation.referencesOwen, Robert, and Gwendolen C. Reilly. 2018. “In Vitro Models of Bone Remodelling and Associated Disorders.” Frontiers in Bioengineering and Biotechnology 6 (OCT): 1–22. https://doi.org/10.3389/fbioe.2018.00134.spa
dc.relation.referencesParfitt, A. M. 1994. “Osteonal and Hemi‐osteonal Remodeling: The Spatial and Temporal Framework for Signal Traffic in Adult Human Bone.” Journal of Cellular Biochemistry 55 (3): 273–86. https://doi.org/10.1002/jcb.240550303.spa
dc.relation.referencesPeng, Matthew Jian Qiao, Hong Wen Xu, Hai Yan Chen, Ze Lin, Xin Xu Li, Chu Long Shen, Yong Qiang Lau, Er Xing He, and Yue Ming Guo. 2020. “Biomechanical Analysis for Five Fixation Techniques of Pauwels-III Fracture by Finite Element Modeling.” Computer Methods and Programs in Biomedicine 193: 105491. https://doi.org/10.1016/j.cmpb.2020.105491.spa
dc.relation.referencesPeyroteo, M. M.A., J. Belinha, S. Vinga, L. M.J.S. Dinis, and R. M. Natal Jorge. 2019. “Mechanical Bone Remodelling: Comparative Study of Distinct Numerical Approaches.” Engineering Analysis with Boundary Elements 100 (January 2018): 125–39. https://doi.org/10.1016/j.enganabound.2018.01.011.spa
dc.relation.referencesPivonka, Peter, Jan Zimak, David W. Smith, Bruce S. Gardiner, Colin R. Dunstan, Natalie A. Sims, T. John Martin, and Gregory R. Mundy. 2008. “Model Structure and Control of Bone Remodeling: A Theoretical Study.” Bone 43 (2): 249–63. https://doi.org/10.1016/j.bone.2008.03.025. Raggatt, Liza J., and Nicola C. Partridge. 2010. “Cellular and Molecular Mechanisms of Bone Remodeling.” Journal of Biological Chemistry 285 (33): 25103–8. https://doi.org/10.1074/jbc.R109.041087.spa
dc.relation.referencesRapisarda, Alessio Ciro, Alessandro Della Corte, Rafał Drobnicki, Fabio Di Cosmo, and Luigi Rosa. 2019. “A Model for Bone Mechanics and Remodeling Including Cell Populations Dynamics.” Zeitschrift Fur Angewandte Mathematik Und Physik 70 (1): 1–17. https://doi.org/10.1007/s00033-018-1055-1.spa
dc.relation.referencesRuff1. Ruffoni, D. & Van Lenthe, G. H. 3.10 Finite element analysis in bone research: A computational method relating structure to mechanical function. Comprehensive Biomaterials II vol. 3 (Elsevier Ltd., 2017).oni, D., and G. H. Van Lenthe. 2017. 3.10 Finite Element Analysis in Bone Research: A Computational Method Relating Structure to Mechanical Function. Comprehensive Biomaterials II. Vol. 3. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-803581-8.09798-8.spa
dc.relation.referencesSchaedler, Tobias A., and William B. Carter. 2016. “Architected Cellular Materials.” Annual Review of Materials Research 46 (April): 187–210. https://doi.org/10.1146/annurev-matsci-070115-031624.spa
dc.relation.referencesSeeman, Ego. 2003. “The Structural and Biomechanical Basis of the Gain and Loss of Bone Strength in Women and Men.” Endocrinology and Metabolism Clinics of North America 32 (1): 25–38. https://doi.org/10.1016/S0889-8529(02)00078-6.spa
dc.relation.referencesSozen, Tumay, Lale Ozisik, and Nursel Calik Basaran. 2017. “An Overview and Management of Osteoporosis.” European Journal of Rheumatology 4 (1): 46–56. https://doi.org/10.5152/eurjrheum.2016.048.spa
dc.relation.referencesStein, Emily M., Barbara C. Silva, Stephanie Boutroy, Bin Zhou, Ji Wang, Julia Udesky, Chiyuan Zhang, et al. 2013. “Primary Hyperparathyroidism Is Associated with Abnormal Cortical and Trabecular Microstructure and Reduced Bone Stiffness in Postmenopausal Women.” Journal of Bone and Mineral Research 28 (5): 1029–40. https://doi.org/10.1002/jbmr.1841.spa
dc.relation.referencesStröm, O., F. Borgström, John A. Kanis, Juliet Compston, Cyrus Cooper, Eugene V. McCloskey, and Bengt Jönsson. 2011. “Osteoporosis: Burden, Health Care Provision and Opportunities in the EU.” Archives of Osteoporosis 6 (1–2): 59–155. https://doi.org/10.1007/s11657-011-0060-1.spa
dc.relation.referencesSun, Xiaoqiang, Yunqing Kang, Jiguang Bao, Yuanyuan Zhang, Yunzhi Yang, and Xiaobo Zhou. 2013. “Modeling Vascularized Bone Regeneration within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors.” Biomaterials 34 (21): 4971–81. https://doi.org/10.1016/j.biomaterials.2013.03.015.spa
dc.relation.referencesSwarthout, John T., Richard C. D’Alonzo, Nagarajan Selvamurugan, and Nicola C. Partridge. 2002. “Parathyroid Hormone-Dependent Signaling Pathways Regulating Genes in Bone Cells.” Gene 282 (1–2): 1–17. https://doi.org/10.1016/S0378-1119(01)00798-3.spa
dc.relation.referencesValdez, S. Ivvan, Salvador Botello, Miguel A. Ochoa, José L. Marroquín, and Victor Cardoso. 2017. “Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and Minimum Volume in Planar Stress Problems.” Archives of Computational Methods in Engineering 24 (4): 803–39. https://doi.org/10.1007/s11831-016-9190-3.spa
dc.relation.referencesVanegas-Acosta, J. C., N. S. Landinez P., D. A. Garzón-Alvarado, and M. C. Casale R. 2011. “A Finite Element Method Approach for the Mechanobiological Modeling of the Osseointegration of a Dental Implant.” Computer Methods and Programs in Biomedicine 101 (3): 297–314. https://doi.org/10.1016/j.cmpb.2010.11.007.spa
dc.relation.referencesWalton, Dan, and Hadi Moztarzadeh. 2017. “Design and Development of an Additive Manufactured Component by Topology Optimisation.” Procedia CIRP 60: 205–10. https://doi.org/10.1016/j.procir.2017.03.027.spa
dc.relation.referencesWeinans, H., R. Huiskes, and H. J. Grootenboer. 1992. “The Behavior of Adaptive Bone-Remodeling Simulation Models.” Journal of Biomechanics 25 (12): 1425–41. https://doi.org/10.1016/0021-9290(92)90056-7.spa
dc.relation.referencesWippert, Pia Maria, Michael Rector, Gisela Kuhn, and Karin Wuertz-Kozak. 2017. “Stress and Alterations in Bones: An Interdisciplinary Perspective.” Frontiers in Endocrinology 8 (MAY): 1–7. https://doi.org/10.3389/fendo.2017.00096.spa
dc.relation.referencesWu, Jun, Weiming Wang, and Xifeng Gao. 2019. “Design and Optimization of Conforming Lattice Structures.” IEEE Transactions on Visualization and Computer Graphics, 1–1. https://doi.org/10.1109/tvcg.2019.2938946.spa
dc.relation.referencesYamamoto, Yoko, Tatsuya Yoshizawa, Toru Fukuda, Yuko Shirode-Fukuda, Taiyong Yu, Keisuke Sekine, Takashi Sato, et al. 2013. “Vitamin D Receptor in Osteoblasts Is a Negative Regulator of Bone Mass Control.” Endocrinology 154 (3): 1008–20. https://doi.org/10.1210/en.2012-1542.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsSimulación por computador
dc.subject.decsSimulation Computer
dc.subject.lembModelado en medicina
dc.subject.lembMoulage in medicine
dc.subject.proposalBone remodellingeng
dc.subject.proposalbone architectureeng
dc.subject.proposaldiscrete modellingeng
dc.subject.proposaltrabecular boneeng
dc.subject.proposalRemodelamiento óseospa
dc.subject.proposalArquitectura óseaspa
dc.subject.proposalModelamiento discretospa
dc.subject.proposalHueso trabecularspa
dc.titleComputational model of bone remodeling using discrete structureseng
dc.title.translatedModelo computacional de remodelamiento óseo mediante estructuras discretasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis_final_repositorio.pdf
Tamaño:
3.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: