Implementación de un dispositivo de manufactura aditiva conformada no planar para extrusión de filamento polimérico

dc.contributor.advisorNarváez Tovar, Carlos Alberto
dc.contributor.authorOrtiz Lambertino, Deisy Valeria
dc.contributor.researchgroupInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)spa
dc.date.accessioned2023-11-27T14:30:30Z
dc.date.available2023-11-27T14:30:30Z
dc.date.issued2023-11-13
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste documento describe el flujo de trabajo desarrollado para implementar un dispositivo de manufactura aditiva de 5 ejes empleando una impresora 3D Creality Ender 3 Pro en configuración 3 + 2 ejes. El proyecto inicia con la revisión y análisis del estado del arte de dispositivos de fabricación multiejes actualmente existentes, a partir de los cuales se determinan parámetros y requerimientos de diseño. El flujo de diseño inicia con el diseño mecánico de la estructura del sistema, donde se parte de la selección del sistema de transmisión y piezas normalizadas, y se continua con el diseño estructural empleando la herramienta de Diseño Generativo para desarrollar piezas mecánicamente óptimas para su fabricación empleando manufactura aditiva. Se describe la etapa de fabricación de prototipos, verificación del funcionamiento y mejoramiento de las piezas. Para el diseño electrónico se realizó la selección de la tarjeta electrónica, el reemplazo de los dispositivos existentes y la instalación de los nuevos motores y sensores. Códigos G fueron implementados para controlar los movimientos y trayectorias de impresión de los 2 ejes adicionales en conjunto con los 3 ejes principales de la impresora. Los resultados de fabricación de la estructura, implementación electrónica, software Slicer y programación demuestran el funcionamiento e impresión de las probetas de prueba para manufactura en 5 ejes. (Texto tomado de la fuente)spa
dc.description.abstractThis document describes the workflow developed to implement a 5-axis additive manufacturing device using a Creality Ender 3 Pro 3D printer in 3+2-axis configuration. The project begins with the review and analysis of the state of the art for the currently existing multi-axis manufacturing devices, from which parameters and design requirements are determined. The design flow begins with the mechanical design of the system structure, which starts selecting the transmission system and standardized parts, and continues with the structural design using the Generative Design tool to develop mechanically optimal parts for manufacturing using additive manufacturing. The stage of prototype manufacturing, verification of operation and improvement of the parts is described. For the electronic design was developed the selection of the electronic board, the replacement of existing devices and the installation of new motors and sensors. G-codes were implemented to control the movements and printing trajectories of the 2 additional axes in conjunction with the 3 main axes of the printer. The results of structure manufacturing, electronic implementation, Slicer software and programming demonstrate the operation and printing of the test specimens for 5-axis manufacturing.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaIndustria 4.0 en Automatizaciónspa
dc.format.extentxvii, 97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84964
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesArrowTI 3D. Impresoras 3D FDM plástico. url: https://arrowti3d.com/impresoras-3d. (accessed: 08/02/2023).spa
dc.relation.references5AxisMaker. How 5AxisMaker came to be. 2020. url: https://5axismaker.co.uk/blog/how-5axismaker-came-to-be. (accessed: 05.11.2020).spa
dc.relation.referencesDaniel Ahlers et al. “3D printing of nonplanar layers for smooth surface generation”. En: IEEE International Conference on Automation Science and Engineering 2019- Augus.August (2019), p´ags. 1737-1743. issn: 21618089. doi: 10.1109/COASE.2019.8843116.spa
dc.relation.referencesFaez Alkadi et al. “Conformal additive manufacturing using a direct-print process”. En: Additive Manufacturing 32.October 2019 (2020). ISSN: 22148604. DOI: 10.1016/j.addma.2019.100975.spa
dc.relation.referencesRobert J.A. Allen y Richard S. Trask. “An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot”. En: Additive Manufacturing 8 (2015), págs. 78-87. ISSN: 22148604. DOI: 10.1016/j.addma.2015.09.001. url: http://dx.doi.org/10.1016/j.addma.2015.09.001.spa
dc.relation.referencesMohsen Attaran. “The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing”. En: Business Horizons 60.5 (2017), págs. 677-688. ISSN: 00076813. DOI: 10.1016/j.bushor.2017.05.011. url: http://dx.doi.org/10.1016/j.bushor.2017.05.011.spa
dc.relation.referencesAutodesk. Diseño generativo aplicado a la fabricación con Fusion 360. 2018. URL: https://www.autodesk.es/solutions/generative-design. (accessed: 08/02/2023).spa
dc.relation.referencesPrahar M. Bhatt et al. “Building free-form thin shell parts using supportless extrusion based additive manufacturing”. En: Additive Manufacturing 32. December (2020). ISSN:22148604. DOI: 10.1016/j.addma.2019.101003.spa
dc.relation.referencesMárton Tamás Birosz, Dániel Ledenyák y Mátyás Andó. “Effect of FDM infill patterns on mechanical properties”. En: Polymer Testing 113.March (2022), pág. 107654. ISSN:01429418. DOI: 10.1016/j.polymertesting.2022.107654.spa
dc.relation.referencesA. Casteláo et al. “Design for AM: Contributions from surface finish, part geometry and part positioning”. En: Procedia CIRP 84 (2019), págs. 491-495. ISSN: 22128271. DOI: 10.1016/j.procir.2019.04.247. url: https://doi.org/10.1016/j.procir.2019.04.247.spa
dc.relation.referencesDebapriya Chakraborty, B. Aneesh Reddy y A. Roy Choudhury. “Extruder path generation for Curved Layer Fused Deposition Modeling”. En: CAD Computer Aided Design 40.2 (2008), págs. 235-243. ISSN: 00104485. DOI: 10.1016/j.cad.2007.10.014.spa
dc.relation.referencesPrint3D Colombia. Impresoras 3D de filamento - FDM/FFF. URL: https://www.print3dcolombia . com / 20 - impresoras - 3d - de - filamento - fdmfff. (accessed:08/02/2023).spa
dc.relation.referencesCreality. Download Product Firmware - Ender-3 Pro1,1,6,2VSourceCode. 2021. URL: https : / / www . creality . com / pages / download - ender - 3 - pro ? spm = . . page_1934481.products_display_1.1. (accessed: 08/02/2023).spa
dc.relation.referencesDotx. 5 Axis Slicer. 2007. URL: https://www.dotxcontrol.com/products/5-axisslicer/. (accessed: 08/02/2023).spa
dc.relation.referencesDuet. Calibrating your Duet-based machine. 2022. URL: https://docs.duet3d.com/en/How_to_guides/Calibration. (accessed: Calibrating your Duet-based machine).spa
dc.relation.referencesDuet. Commissioning your machine. 2023. URL: https://docs.duet3d.com/en/How_to_guides/Commissioning. (accessed: 06/16/2023).spa
dc.relation.referencesDuet. Configuring RepRapFirmware for your machine. 2022. URL: https://docs.duet3d.com/en/How_to_guides/Configuring_firmware. (accessed: 04/06/2022).spa
dc.relation.referencesDuet. Duet 3 Mini 5+. 2023. URL: https://docs.duet3d.com/Duet3D_hardware/Duet_3_family/Duet_3_Mini_5+_Hardware_Overview. (accessed: 08/30/2023).spa
dc.relation.referencesDuet. Duet 3 Mini 5+ Guide Part 1: Wiring. 2023. URL: https://docs.duet3d.com/How_to_guides/e3p_Mini5+_guide_part1_wiring. (accessed: 03/08/2023).spa
dc.relation.referencesDuet. Duet 3 Mini 5+ Guide Part 2: Configuration. 2022. URL: https : / / docs .duet3d.com/How_to_guides/e3p_Mini5+_guide_part2_configuration. (accessed:05/27/2022).spa
dc.relation.referencesDuet. Duet 3 Mini Expansion Mini 2+. 2022. URL: https://docs.duet3d.com/Duet3D_hardware/Duet_3_family/Duet_3_Expansion_Mini_2. (accessed: 02/11/2022).spa
dc.relation.referencesDuet. Duet3D Documentation. 2023. URL: https://docs.duet3d.com/. (accessed:01/24/2023).spa
dc.relation.referencesDuet. Getting connected to your Duet. 2022. URL: https://docs.duet3d.com/en/How_to_guides/Getting_connected/Getting_connected_to_your_Duet. (accessed:07/29/2022).spa
dc.relation.referencesDuet. The Duet family of motion controllers. 2022. URL: https://docs.duet3d.com/en/Duet3D_hardware/Hardware_overview. (accessed: 12/13/2022).spa
dc.relation.referencesEthereal. Ethereal Halo - 5 Axis CNC. 2021. URL: https://etherealmachines.com/halo-hybrid/. (accessed: 02/26/2023).spa
dc.relation.referencesEsther Titilayo Akinlabi Fredrick Madaraka Mwema. Fused Deposition Modeling. Springer Briefs in Applied Sciences and Technology. Springer Cham, 2020. ISBN: 978-3-030- 48258-9.spa
dc.relation.referencesJ. A. Gardner et al. “Aligning material extrusion direction with mechanical stress via 5-axis tool paths”. En: Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018 (2020), págs. 2005-2019.spa
dc.relation.referencesFreddie Hong et al. “Open5x: Accessible 5-axis 3D printing and conformal slicing”. En: Conference on Human Factors in Computing Systems - Proceedings (2022). doi: 10.1145/3491101.3519782. arXiv: 2202.11426.spa
dc.relation.referencesISO/ASTM. “Additive manufacturing—General principles—Terminology (ISO/ASTM 52900:2015)”. En: (2015).spa
dc.relation.referencesSungwoo Lim et al. “Modelling curved-layered printing paths for fabricating large-scale construction components”. En: Additive Manufacturing 12 (2016), pags. 216-230. ISSN: 22148604. doi: 10.1016/j.addma.2016.06.004. url: http://dx.doi.org/10.1016/j.addma.2016.06.004.spa
dc.relation.referencesSomos makeR. Impresoras 3D FDM. URL: https://somosmaker.com/categoriaproducto/impresoras-3d/. (accessed: 08/02/2023).spa
dc.relation.referencesMarlinFirmware. About Marlin Firmware. 2014. URL: https://marlinfw.org/. (accessed:08/02/2023).spa
dc.relation.referencesMarlinFirmware. Repositorio Marlin Firmware. 2014. URL: https://github.com/MarlinFirmware/Marlin. (accessed: 08/02/2023).spa
dc.relation.referencesJohn C.S. McCaw y Enrique Cuan-Urquizo. “Curved-Layered Additive Manufacturing of non-planar, parametric lattice structures”. En: Materials and Design 160 (2018), págs. 949-963. ISSN: 18734197. DOI: 10.1016/j.matdes.2018.10.024. URL: https://doi.org/10.1016/j.matdes.2018.10.024.spa
dc.relation.referencesPulak Mohan Pandey, N. Venkata Reddy y Sanjay G. Dhande. “Slicing procedures in layered manufacturing: A review”. En: Rapid Prototyping Journal 9.5 (2003), págs. 274-288. ISSN: 13552546. DOI: 10.1108/13552540310502185.spa
dc.relation.referencesGeorg Aarnes Nisja, Anni Cao y Chao Gao. “Short review of nonplanar fused deposition modeling printing”. En: Material Design and Processing Communications 3.4 (2021), págs. 1-11. ISSN: 25776576. DOI: 10.1002/mdp2.221.spa
dc.relation.referencesRobert L. Norton. Diseño de máquinas. México: Pearson Educación, 2011.spa
dc.relation.referencesRepRap. Welcome to the RepRapFirmware Configuration Tool. 2016. URL: https ://configtool.reprapfirmware.org/Start. (accessed: 08/02/2023).spa
dc.relation.referencesSaquib Rouf et al. “Additive manufacturing technologies: Industrial and medical applications”. En: Sustainable Operations and Computers 3.January (2022), págs. 258-274. ISSN: 26664127. DOI: 10.1016/j.susoc.2022.05.001.spa
dc.relation.referencesAniruddha V. Shembekar et al. “Generating robot trajectories for conformal threedimensional printing using nonplanar layers”. En: Journal of Computing and Information Science in Engineering 19.3 (2019). ISSN: 15309827. DOI: 10.1115/1.4043013.spa
dc.relation.referencesAniruddha V. Shembekar et al. “Trajectory Planning for Conformal 3D Printing Using Non-Planar Layers”. En: June 2021 (2018). DOI: 10.1115/detc2018-85975.spa
dc.relation.referencesSarat Singamneni et al. “Modeling and evaluation of curved layer fused deposition”. En: Journal of Materials Processing Technology 212.1 (2012), págs. 27-35. ISSN: 09240136. DOI: 10.1016/j.jmatprotec.2011.08.001. URL: http://dx.doi.org/10.1016/j.jmatprotec.2011.08.001.spa
dc.relation.referencesSKF. Catálogo de rodamientos SKF. Gotemburgo, Secia, 2022.spa
dc.relation.referencesOyvind Kallevik Grutle. Designing a 5-axis 3D Printer. Department of Informatics. University of Oslo. Master's Thesis Autumn. 2015.spa
dc.relation.referencesKaufui V. Wong y Aldo Hernandez. “A Review of Additive Manufacturing”. En: ISRN Mechanical Engineering 2012 (2012), págs. 1-10. DOI: 10.5402/2012/208760.spa
dc.relation.referencesDonghua Zhao y Weizhong Guo. “Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping”. En: Journal of Intelligent Manufacturing 31.4 (2020), págs. 985-1002. ISSN: 15728145. DOI: 10.1007/s10845- 019-01490-z. URL: https://doi.org/10.1007/s10845-019-01490-z.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembManufacturasspa
dc.subject.lembManufactureseng
dc.subject.lembTecnologíaspa
dc.subject.lembTechnologyeng
dc.subject.proposalManufactura aditivaspa
dc.subject.proposalConformadaspa
dc.subject.proposalNo planarspa
dc.subject.proposalFDMspa
dc.subject.proposalImpresión 3Dspa
dc.subject.proposalDuetspa
dc.subject.proposalAdditive manufacturingeng
dc.subject.proposalConformaleng
dc.subject.proposalNo planareng
dc.subject.proposalFDMeng
dc.subject.proposalDueteng
dc.subject.proposal3D Printingeng
dc.titleImplementación de un dispositivo de manufactura aditiva conformada no planar para extrusión de filamento poliméricospa
dc.title.translatedImplementation of a non-planar conformal additive manufacturing device for polymeric filament extrusioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019139004.2023.pdf
Tamaño:
21.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: