Modeling of Florida limestone Intermediate geomaterials for foundation engineering applications

dc.contributor.advisorZapata Medina, David Guillermo
dc.contributor.advisorArboleda Monsalve, Luis Guillermo
dc.contributor.authorCardona Tobón, Alejandra
dc.date.accessioned2025-02-24T12:58:14Z
dc.date.available2025-02-24T12:58:14Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficos, fotografías, mapasspa
dc.description.abstractThis study evaluates three constitutive models: Hoek-Brown, Hoek-Brown with softening, and the Hardening Soil model in intermediate geomaterials (IGM) derived from Florida limestone, aiming to predict their main behavioral characteristics. A comprehensive database of laboratory tests, including index and drained triaxial (CID-TXC) probes under confinements ranging from 0.35 MPa to 20.7 MPa were collected and complemented with full size field load tests performed in the IGM derived from Florida Limestone. Finite element models, implemented in Plaxis 2D software, were used to extrapolate the parameters obtained from laboratory calibrations to shallow foundation applications. Laboratory based parameters showed higher strength and stiffness compared to those obtained from field load test simulations, which reflected lower capacity due to the high degree of fracturing in the limestone and the poor quality of the rock mass. The study emphasizes the importance of interpreting laboratory test results with caution, as they may overestimate the material's actual capacity under in situ conditions, influenced by sampling challenges, the natural variability of the material, and the poor quality of the rock mass. This underscores the need for a comprehensive analysis that combines laboratory tests, field tests, and back-analysis for intermediate geomaterials. (Tomado de la fuente)eng
dc.description.abstractEste estudio evalúa tres modelos constitutivos: Hoek-Brown, Hoek-Brown con ablandamiento, y el modelo Hardening Soil en geomateriales intermedios (IGM) derivados de la piedra caliza de Florida, con el objetivo de predecir sus principales características de comportamiento. Se recopiló una base de datos de laboratorio, que incluye pruebas índice y pruebas triaxiales drenadas (CID-TXC) bajo confinamientos que van desde 0.35 MPa y 20.7 MPa, complementadas con pruebas de carga en campo a tamaño real realizadas en los IGM derivados de la piedra caliza de Florida. Se utilizaron modelos de elementos finitos, implementados en software Plaxis 2D, para extrapolar los parámetros obtenidos de la calibraciones de laboratorio a aplicaciones de cimentaciones superficiales. Los parámetros basados en laboratorio mostraron mayor resistencia y rigidez en comparación con los obtenidos de las simulaciones de prueba de carga en campo, las cuales reflejaron una menor capacidad debido al alto grado de fracturamiento en la caliza de Florida y la baja calidad del macizo rocoso. El estudio resalta la importancia de interpretar los resultados de los ensayos de laboratorio con cautela, ya que en estos materiales puede haber una sobreestimación de la capacidad real del material en condiciones in situ, influenciada por los desafíos de muestreo, la variabilidad natural del material y la baja calidad del macizo rocoso. Esto subraya la necesidad de realizar un análisis integral que combine ensayos de laboratorio, ensayos de campo y backanálisis para los geomateriales intermedios.spa
dc.description.curricularareaIngeniería Civil.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87535
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlejano, L. R., Alonso, E., Rodriguez-Dono, A., & Fernandez-Manin, G. (2010). Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek–Brown strain-softening behaviour. International Journal of Rock Mechanics and Mining Sciences, 47(1), 150–160spa
dc.relation.referencesArthur, J. (2019). Florida Department of Environmental Protection. https://floridadep.gov/spa
dc.relation.referencesArthur, J. D. (1988). Petrogenesis of early Mesozoic tholeiite in the Florida basement and an overview of Florida basement geology.spa
dc.relation.referencesBolton. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65–78.spa
dc.relation.referencesBudhu, M. (2010). Soil Mechanics and Foundations (3rd Edition).spa
dc.relation.referencesCai, M., Kaiser, P. K., Tasaka, Y., & Minami, M. (2007). Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences, 44(2), 247–265.spa
dc.relation.referencesCai, M., Kaiser, P. K., Uno, H., Tasaka, Y., & Minami, M. (2004). Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences, 41(1), 3–19. https://doi.org/10.1016/S1365-1609(03)00025-Xspa
dc.relation.referencesCalvello, M. (2002). Inverse analysis of a supported excavation through Chicago glacial clays. Northwestern University.spa
dc.relation.referencesConsoli, N. C., Rosa, F. D., & Fonini, A. (2009). Plate load tests on cemented soil layers overlaying weaker soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1846–1856.spa
dc.relation.referencesDeere. (1964). Technical description of rock cores for engineering purpose. Rock Mechanics and Enginee-Ring Geology, 1(1), 17–22.spa
dc.relation.referencesDeere. (1968). Geological consideration. Rock Mechanics in Engineering Practice.spa
dc.relation.referencesDeere. (1988). The rock quality designation (RQD) index in practice. In Rock classification systems for engineering purposes. ASTM International.spa
dc.relation.referencesDeere, D. U., & Patton, F. D. (1971). Slope stability in residual soils. Proc. 4th Pan-American Conf. on Soil Mech. and Found. Engng., 87–170.spa
dc.relation.referencesDuncan, J. M., & Chang, C.-Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629–1653.spa
dc.relation.referencesHanna, A. M. (1981). Foundations on strong sand overlying weak sand. Journal of the Geotechnical Engineering Division, 107(7), 915–927.spa
dc.relation.referencesHill, M. C. (2000). Methods and guidelines for effective model calibration. In Building partnerships (pp. 1–10).spa
dc.relation.referencesHoek, E. (2006). Practical rock engineering E-book.spa
dc.relation.referencesHoek, E., & Brown, E. T. (1988). The Hoek-Brown failure criterion-a 1988 update. https://www.researchgate.net/publication/247896456spa
dc.relation.referencesHoek, E., & Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445–463. https://doi.org/10.1016/j.jrmge.2018.08.001spa
dc.relation.referencesHoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek- Brown failure criterion -2002 edition.spa
dc.relation.referencesHoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203–215. https://doi.org/10.1016/j.ijrmms.2005.06.005spa
dc.relation.referencesHoek, E., Kaiser, P. K., & Bawden, W. F. (2000). Support of underground excavations in hard rock. CRC Press.spa
dc.relation.referencesHoek, E., & Marinos, P. (2000). Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and Tunnelling International, 32(11), 45–51.spa
dc.relation.referencesHoek, E., Marinos, P. G., & Marinos, V. P. (2005). Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences, 42(2), 277–285.spa
dc.relation.referencesHoek, E., Wood, D., & Shah, S. (1992). A modified Hoek–Brown failure criterion for jointed rock masses. Rock Characterization: ISRM Symposium, Eurock’92, Chester, UK, 14–17 September 1992, 209–214.spa
dc.relation.referencesJanbu. (1963). Soil compressibility as determined by oedometer and triaxial tests. Proc. European Conf. SMFE, Wiesbaden, 1963, 1, 19–25.spa
dc.relation.referencesJiang, H., & Zhao, J. (2015). A Simple Three-dimensional Failure Criterion for Rocks Based on the Hoek–Brown Criterion. Rock Mechanics and Rock Engineering, 48(5), 1807–1819. https://doi.org/10.1007/s00603-014-0691-9spa
dc.relation.referencesJoseph E. Bowles. (1997). Foundation Analysis AndDesign (Fifth Edition).spa
dc.relation.referencesKondner, R. L. (1963). A hyperbolic stressstrain formulation for sands. Proc. 2nd Pan-American Conf. on SMFE, 1, 289–324.spa
dc.relation.referencesKrauter, E. (1993). General Co-report: Geological and Geotechnical Features, Investigation and Classification of Hard Soils. Geotechnical Engineering of Hard Soils- Soft Rocks: Proceedings of an International Symposium for ISSMFE, 1819–1826.spa
dc.relation.referencesKulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design.spa
dc.relation.referencesKumar, T. A., Saseendran, R., & Sundaravel, V. (2023). Engineering characterization of intermediate geomaterials-A review. Geomechanics and Engineering, 33(5), 453–462.spa
dc.relation.referencesLan, C. N., Nguyen, M. H., Thanh, B. T., Long, N. N., Tien, L. D., & Ho, L. S. (2020). Bearing capacity of drilled shaft in intermediate geomaterials. Magazine of Civil Engineering, 99(7). https://doi.org/10.18720/MCE.99.8spa
dc.relation.referencesLee, K. L. (1965). Triaxial compressive strength of saturated sand under seismic loading conditions. University of California, Berkeley.spa
dc.relation.referencesMaliva, R. G., Missimer, T. M., Clayton, E. A., & Dickson, J. A. D. (2009). Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA. Sedimentary Geology, 217(1–4), 85–94. https://doi.org/10.1016/j.sedgeo.2009.03.011spa
dc.relation.referencesMarinelli, F., Zalamea, N., & Seequent, S. B. (2019). Modeling of brittle failure based on a Hoek & Brown yield criterion: parametric studies and constitutive validation. https://www.researchgate.net/publication/332496014spa
dc.relation.referencesMarinelli, F., Zalamea, N., Vilhar, G., Brasile, S., Cammarata, G., & Brinkgreve, R. (2019). Modeling of brittle failure based on a Hoek & Brown yield criterion: parametric studies and constitutive validation. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-2019.spa
dc.relation.referencesMarinos, V. (2017). A revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flysch. Bulletin of Engineering Geology and the Environment, 78, 899–912.spa
dc.relation.referencesMarinos, V., & Carter, T. G. (2018). Maintaining geological reality in application of GSI for design of engineering structures in rock. Engineering Geology, 239, 282–297.spa
dc.relation.referencesMarinos, V., Marinos, P., & Hoek, E. (2005a). The geological strength index: Applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1), 55–65. https://doi.org/10.1007/s10064-004-0270-5spa
dc.relation.referencesMarinos, V., Marinos, P., & Hoek, E. (2005b). The geological strength index: Applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1), 55–65. https://doi.org/10.1007/s10064-004-0270-5spa
dc.relation.referencesMasterton, G., Gannon, J. A., Wallace, W. A., & Wood, D. M. (1999). Piled Foundations in Weak Rock.spa
dc.relation.referencesMcVay, M. C., Song, X., Wasman, S., Assistant, G., Nguyen, T., & Kaiqi Wang, P. (2019). Strength Envelopes for Florida Rock and Intermediate Geomaterials.spa
dc.relation.referencesMokwa, R., & Brooks, H. (2008). Axial Capacity of Piles Support on Intermediate Geomaterials.spa
dc.relation.referencesMount, G. J., Comas, X., Wright, W. J., & McClellan, M. D. (2015). Delineation of macroporous zones in the unsaturated portion of the Miami Limestone using ground penetrating radar, Miami Dade County, Florida. Journal of Hydrology, 527, 872–883. https://doi.org/10.1016/j.jhydrol.2015.05.053spa
dc.relation.referencesNAVFAC DM7-02 Foundations and Earth Structures. (1986).spa
dc.relation.referencesOliveira, R. (1993). Weak rock materials. ENGINEERING GEOLOGY SPECIAL PUBLICATION, 5.spa
dc.relation.referencesO’Neill, M. W., Townsend, F. C., Hassan, K. M., Buller, A., & Chan, P. S. (1996). Load Transfer for Drilled Shafts in Intermediate Geomaterials.spa
dc.relation.referencesPeck, R. B., Hanson, W. E., & Thornburn, T. H. (1991). Foundation engineering. John Wiley & Sons.spa
dc.relation.referencesPlaxis. (2018). Plaxis 2D reference manual. The Netherlands.spa
dc.relation.referencesPLAXIS. (2022). Material Models Manual.spa
dc.relation.referencesPLAXIS 2D-Reference Manual. (2020).spa
dc.relation.referencesPLAXIS ADVANCED SOIL. (2019). Hoek & Brown model with softening MODELS.spa
dc.relation.referencesPoeter, E. P., & Hill, M. C. (1998). Documentation of UCODE, a computer code for universal inverse modeling. Diane Publishingspa
dc.relation.referencesRibacchi, R. (2000). Mechanical tests on pervasively jointed rock material: insight into rock mass behaviour. Rock Mechanics and Rock Engineering, 33, 243–266.spa
dc.relation.referencesrocscience. (2022). Hardening Soil Model.spa
dc.relation.referencesRodgers, M. B., Mcvay, M. C., Wasman, S., Tran, K., & Yang, K. (2022). FINAL REPORT Phase Ⅱ: Field Load Testing of Shallow Foundations in Florida Limestone.spa
dc.relation.referencesRose, N. D., Scholz, M., Burden, J., King, M., Maggs, C., & Havaej, M. (2018). Quantifying transitional rock mass disturbance in open pit slopes related to mining excavation. Proceedings of the XIV International Congress on Energy and Mineral Resources, 1273–1288.spa
dc.relation.referencesSarabia, F. (2012). (2012). Hypoplastic Constitutive Law Adapted to Simulate Excavations in Chicago Glacial Clays. [Doctor of Philosophy Dissertation]. Northwestern University.spa
dc.relation.referencesSchanz, T., Vermeer, P. A., & Bonnier, P. G. (1998). The hardening soil model: Formulation and verification. In Beyond 2000 in computational geotechnics (pp. 281–296). Routledge.spa
dc.relation.referencesScott, T. M. (2001). STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION TEXT TO ACCOMPANY THE GEOLOGIC MAP OF FLORIDA.spa
dc.relation.referencesTanimoto, C. (1982). Engineering experience with weak rocks in Japan. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-82.spa
dc.relation.referencesThomas M.Scott, Kenneth M. Campbell, Frank R. Rupert, Jonathan D. Arthurt, Thomas M. Missimer, Jacqueline M. Lloyd, J. William Yon, & Joel G. Duncan. (1964). U.S. Geological Survey. Geologic Map of Florida. https://www.nbbd.com/godo/ef/geology/FLGeologyMap.htmlspa
dc.relation.referencesTruzman, M. (2016). Use of geological strength index to characterize the miami limestone for shallow foundation design. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-2016.spa
dc.relation.referencesVesic, A. S. (1963). Bearing capacity of deep foundations in sand. Highway Research Record, 39.spa
dc.relation.referencesVesic, A. S. (1975). Bearing capacity of shallow foundations. Foundation Engineering Handbook.spa
dc.relation.referencesYang, K., McVay, M., Nguyen, T., Wang, K., Song, X., Wasman, S., Rodgers, M., Horhota, D., & Herrera, R. (2023). Bearing capacity of shallow foundations on Florida limestone: A study of single layer and rock-over-sand subsurface. Computers and Geotechnics, 163. https://doi.org/10.1016/j.compgeo.2023.105742spa
dc.relation.referencesZapata-Medina David. (2012). Evaluation of Dynamic Soil Parameter Changes Due to Construction-Induced Stresses. Northwestern University .spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc550 - Ciencias de la tierra::552 - Petrologíaspa
dc.subject.lembCimentaciones
dc.subject.lembCaliza
dc.subject.lembMecánica de rocas
dc.subject.lembMateriales de construcción
dc.subject.proposalIntermediate Geomaterialeng
dc.subject.proposalLimestoneeng
dc.subject.proposalConstitutive modelseng
dc.subject.proposalMechanical behavioreng
dc.subject.proposalNumerical modellingeng
dc.subject.proposalGeo-materiales intermediosspa
dc.subject.proposalLimestonespa
dc.subject.proposalModelos constitutivosspa
dc.subject.proposalComportamiento mecánicospa
dc.subject.proposalModelación numéricaspa
dc.titleModeling of Florida limestone Intermediate geomaterials for foundation engineering applicationseng
dc.title.translatedModelación de geomateriales intermedios limestone de la Florida para aplicaciones en ingeniería de cimentacionesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1040048202.2025.pdf
Tamaño:
3.58 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: