Modeling of Florida limestone Intermediate geomaterials for foundation engineering applications
dc.contributor.advisor | Zapata Medina, David Guillermo | |
dc.contributor.advisor | Arboleda Monsalve, Luis Guillermo | |
dc.contributor.author | Cardona Tobón, Alejandra | |
dc.date.accessioned | 2025-02-24T12:58:14Z | |
dc.date.available | 2025-02-24T12:58:14Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, gráficos, fotografías, mapas | spa |
dc.description.abstract | This study evaluates three constitutive models: Hoek-Brown, Hoek-Brown with softening, and the Hardening Soil model in intermediate geomaterials (IGM) derived from Florida limestone, aiming to predict their main behavioral characteristics. A comprehensive database of laboratory tests, including index and drained triaxial (CID-TXC) probes under confinements ranging from 0.35 MPa to 20.7 MPa were collected and complemented with full size field load tests performed in the IGM derived from Florida Limestone. Finite element models, implemented in Plaxis 2D software, were used to extrapolate the parameters obtained from laboratory calibrations to shallow foundation applications. Laboratory based parameters showed higher strength and stiffness compared to those obtained from field load test simulations, which reflected lower capacity due to the high degree of fracturing in the limestone and the poor quality of the rock mass. The study emphasizes the importance of interpreting laboratory test results with caution, as they may overestimate the material's actual capacity under in situ conditions, influenced by sampling challenges, the natural variability of the material, and the poor quality of the rock mass. This underscores the need for a comprehensive analysis that combines laboratory tests, field tests, and back-analysis for intermediate geomaterials. (Tomado de la fuente) | eng |
dc.description.abstract | Este estudio evalúa tres modelos constitutivos: Hoek-Brown, Hoek-Brown con ablandamiento, y el modelo Hardening Soil en geomateriales intermedios (IGM) derivados de la piedra caliza de Florida, con el objetivo de predecir sus principales características de comportamiento. Se recopiló una base de datos de laboratorio, que incluye pruebas índice y pruebas triaxiales drenadas (CID-TXC) bajo confinamientos que van desde 0.35 MPa y 20.7 MPa, complementadas con pruebas de carga en campo a tamaño real realizadas en los IGM derivados de la piedra caliza de Florida. Se utilizaron modelos de elementos finitos, implementados en software Plaxis 2D, para extrapolar los parámetros obtenidos de la calibraciones de laboratorio a aplicaciones de cimentaciones superficiales. Los parámetros basados en laboratorio mostraron mayor resistencia y rigidez en comparación con los obtenidos de las simulaciones de prueba de carga en campo, las cuales reflejaron una menor capacidad debido al alto grado de fracturamiento en la caliza de Florida y la baja calidad del macizo rocoso. El estudio resalta la importancia de interpretar los resultados de los ensayos de laboratorio con cautela, ya que en estos materiales puede haber una sobreestimación de la capacidad real del material en condiciones in situ, influenciada por los desafíos de muestreo, la variabilidad natural del material y la baja calidad del macizo rocoso. Esto subraya la necesidad de realizar un análisis integral que combine ensayos de laboratorio, ensayos de campo y backanálisis para los geomateriales intermedios. | spa |
dc.description.curriculararea | Ingeniería Civil.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.format.extent | 109 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87535 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Alejano, L. R., Alonso, E., Rodriguez-Dono, A., & Fernandez-Manin, G. (2010). Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek–Brown strain-softening behaviour. International Journal of Rock Mechanics and Mining Sciences, 47(1), 150–160 | spa |
dc.relation.references | Arthur, J. (2019). Florida Department of Environmental Protection. https://floridadep.gov/ | spa |
dc.relation.references | Arthur, J. D. (1988). Petrogenesis of early Mesozoic tholeiite in the Florida basement and an overview of Florida basement geology. | spa |
dc.relation.references | Bolton. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65–78. | spa |
dc.relation.references | Budhu, M. (2010). Soil Mechanics and Foundations (3rd Edition). | spa |
dc.relation.references | Cai, M., Kaiser, P. K., Tasaka, Y., & Minami, M. (2007). Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences, 44(2), 247–265. | spa |
dc.relation.references | Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., & Minami, M. (2004). Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences, 41(1), 3–19. https://doi.org/10.1016/S1365-1609(03)00025-X | spa |
dc.relation.references | Calvello, M. (2002). Inverse analysis of a supported excavation through Chicago glacial clays. Northwestern University. | spa |
dc.relation.references | Consoli, N. C., Rosa, F. D., & Fonini, A. (2009). Plate load tests on cemented soil layers overlaying weaker soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1846–1856. | spa |
dc.relation.references | Deere. (1964). Technical description of rock cores for engineering purpose. Rock Mechanics and Enginee-Ring Geology, 1(1), 17–22. | spa |
dc.relation.references | Deere. (1968). Geological consideration. Rock Mechanics in Engineering Practice. | spa |
dc.relation.references | Deere. (1988). The rock quality designation (RQD) index in practice. In Rock classification systems for engineering purposes. ASTM International. | spa |
dc.relation.references | Deere, D. U., & Patton, F. D. (1971). Slope stability in residual soils. Proc. 4th Pan-American Conf. on Soil Mech. and Found. Engng., 87–170. | spa |
dc.relation.references | Duncan, J. M., & Chang, C.-Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629–1653. | spa |
dc.relation.references | Hanna, A. M. (1981). Foundations on strong sand overlying weak sand. Journal of the Geotechnical Engineering Division, 107(7), 915–927. | spa |
dc.relation.references | Hill, M. C. (2000). Methods and guidelines for effective model calibration. In Building partnerships (pp. 1–10). | spa |
dc.relation.references | Hoek, E. (2006). Practical rock engineering E-book. | spa |
dc.relation.references | Hoek, E., & Brown, E. T. (1988). The Hoek-Brown failure criterion-a 1988 update. https://www.researchgate.net/publication/247896456 | spa |
dc.relation.references | Hoek, E., & Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445–463. https://doi.org/10.1016/j.jrmge.2018.08.001 | spa |
dc.relation.references | Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek- Brown failure criterion -2002 edition. | spa |
dc.relation.references | Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203–215. https://doi.org/10.1016/j.ijrmms.2005.06.005 | spa |
dc.relation.references | Hoek, E., Kaiser, P. K., & Bawden, W. F. (2000). Support of underground excavations in hard rock. CRC Press. | spa |
dc.relation.references | Hoek, E., & Marinos, P. (2000). Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and Tunnelling International, 32(11), 45–51. | spa |
dc.relation.references | Hoek, E., Marinos, P. G., & Marinos, V. P. (2005). Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences, 42(2), 277–285. | spa |
dc.relation.references | Hoek, E., Wood, D., & Shah, S. (1992). A modified Hoek–Brown failure criterion for jointed rock masses. Rock Characterization: ISRM Symposium, Eurock’92, Chester, UK, 14–17 September 1992, 209–214. | spa |
dc.relation.references | Janbu. (1963). Soil compressibility as determined by oedometer and triaxial tests. Proc. European Conf. SMFE, Wiesbaden, 1963, 1, 19–25. | spa |
dc.relation.references | Jiang, H., & Zhao, J. (2015). A Simple Three-dimensional Failure Criterion for Rocks Based on the Hoek–Brown Criterion. Rock Mechanics and Rock Engineering, 48(5), 1807–1819. https://doi.org/10.1007/s00603-014-0691-9 | spa |
dc.relation.references | Joseph E. Bowles. (1997). Foundation Analysis AndDesign (Fifth Edition). | spa |
dc.relation.references | Kondner, R. L. (1963). A hyperbolic stressstrain formulation for sands. Proc. 2nd Pan-American Conf. on SMFE, 1, 289–324. | spa |
dc.relation.references | Krauter, E. (1993). General Co-report: Geological and Geotechnical Features, Investigation and Classification of Hard Soils. Geotechnical Engineering of Hard Soils- Soft Rocks: Proceedings of an International Symposium for ISSMFE, 1819–1826. | spa |
dc.relation.references | Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design. | spa |
dc.relation.references | Kumar, T. A., Saseendran, R., & Sundaravel, V. (2023). Engineering characterization of intermediate geomaterials-A review. Geomechanics and Engineering, 33(5), 453–462. | spa |
dc.relation.references | Lan, C. N., Nguyen, M. H., Thanh, B. T., Long, N. N., Tien, L. D., & Ho, L. S. (2020). Bearing capacity of drilled shaft in intermediate geomaterials. Magazine of Civil Engineering, 99(7). https://doi.org/10.18720/MCE.99.8 | spa |
dc.relation.references | Lee, K. L. (1965). Triaxial compressive strength of saturated sand under seismic loading conditions. University of California, Berkeley. | spa |
dc.relation.references | Maliva, R. G., Missimer, T. M., Clayton, E. A., & Dickson, J. A. D. (2009). Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA. Sedimentary Geology, 217(1–4), 85–94. https://doi.org/10.1016/j.sedgeo.2009.03.011 | spa |
dc.relation.references | Marinelli, F., Zalamea, N., & Seequent, S. B. (2019). Modeling of brittle failure based on a Hoek & Brown yield criterion: parametric studies and constitutive validation. https://www.researchgate.net/publication/332496014 | spa |
dc.relation.references | Marinelli, F., Zalamea, N., Vilhar, G., Brasile, S., Cammarata, G., & Brinkgreve, R. (2019). Modeling of brittle failure based on a Hoek & Brown yield criterion: parametric studies and constitutive validation. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-2019. | spa |
dc.relation.references | Marinos, V. (2017). A revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flysch. Bulletin of Engineering Geology and the Environment, 78, 899–912. | spa |
dc.relation.references | Marinos, V., & Carter, T. G. (2018). Maintaining geological reality in application of GSI for design of engineering structures in rock. Engineering Geology, 239, 282–297. | spa |
dc.relation.references | Marinos, V., Marinos, P., & Hoek, E. (2005a). The geological strength index: Applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1), 55–65. https://doi.org/10.1007/s10064-004-0270-5 | spa |
dc.relation.references | Marinos, V., Marinos, P., & Hoek, E. (2005b). The geological strength index: Applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1), 55–65. https://doi.org/10.1007/s10064-004-0270-5 | spa |
dc.relation.references | Masterton, G., Gannon, J. A., Wallace, W. A., & Wood, D. M. (1999). Piled Foundations in Weak Rock. | spa |
dc.relation.references | McVay, M. C., Song, X., Wasman, S., Assistant, G., Nguyen, T., & Kaiqi Wang, P. (2019). Strength Envelopes for Florida Rock and Intermediate Geomaterials. | spa |
dc.relation.references | Mokwa, R., & Brooks, H. (2008). Axial Capacity of Piles Support on Intermediate Geomaterials. | spa |
dc.relation.references | Mount, G. J., Comas, X., Wright, W. J., & McClellan, M. D. (2015). Delineation of macroporous zones in the unsaturated portion of the Miami Limestone using ground penetrating radar, Miami Dade County, Florida. Journal of Hydrology, 527, 872–883. https://doi.org/10.1016/j.jhydrol.2015.05.053 | spa |
dc.relation.references | NAVFAC DM7-02 Foundations and Earth Structures. (1986). | spa |
dc.relation.references | Oliveira, R. (1993). Weak rock materials. ENGINEERING GEOLOGY SPECIAL PUBLICATION, 5. | spa |
dc.relation.references | O’Neill, M. W., Townsend, F. C., Hassan, K. M., Buller, A., & Chan, P. S. (1996). Load Transfer for Drilled Shafts in Intermediate Geomaterials. | spa |
dc.relation.references | Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1991). Foundation engineering. John Wiley & Sons. | spa |
dc.relation.references | Plaxis. (2018). Plaxis 2D reference manual. The Netherlands. | spa |
dc.relation.references | PLAXIS. (2022). Material Models Manual. | spa |
dc.relation.references | PLAXIS 2D-Reference Manual. (2020). | spa |
dc.relation.references | PLAXIS ADVANCED SOIL. (2019). Hoek & Brown model with softening MODELS. | spa |
dc.relation.references | Poeter, E. P., & Hill, M. C. (1998). Documentation of UCODE, a computer code for universal inverse modeling. Diane Publishing | spa |
dc.relation.references | Ribacchi, R. (2000). Mechanical tests on pervasively jointed rock material: insight into rock mass behaviour. Rock Mechanics and Rock Engineering, 33, 243–266. | spa |
dc.relation.references | rocscience. (2022). Hardening Soil Model. | spa |
dc.relation.references | Rodgers, M. B., Mcvay, M. C., Wasman, S., Tran, K., & Yang, K. (2022). FINAL REPORT Phase Ⅱ: Field Load Testing of Shallow Foundations in Florida Limestone. | spa |
dc.relation.references | Rose, N. D., Scholz, M., Burden, J., King, M., Maggs, C., & Havaej, M. (2018). Quantifying transitional rock mass disturbance in open pit slopes related to mining excavation. Proceedings of the XIV International Congress on Energy and Mineral Resources, 1273–1288. | spa |
dc.relation.references | Sarabia, F. (2012). (2012). Hypoplastic Constitutive Law Adapted to Simulate Excavations in Chicago Glacial Clays. [Doctor of Philosophy Dissertation]. Northwestern University. | spa |
dc.relation.references | Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1998). The hardening soil model: Formulation and verification. In Beyond 2000 in computational geotechnics (pp. 281–296). Routledge. | spa |
dc.relation.references | Scott, T. M. (2001). STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION TEXT TO ACCOMPANY THE GEOLOGIC MAP OF FLORIDA. | spa |
dc.relation.references | Tanimoto, C. (1982). Engineering experience with weak rocks in Japan. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-82. | spa |
dc.relation.references | Thomas M.Scott, Kenneth M. Campbell, Frank R. Rupert, Jonathan D. Arthurt, Thomas M. Missimer, Jacqueline M. Lloyd, J. William Yon, & Joel G. Duncan. (1964). U.S. Geological Survey. Geologic Map of Florida. https://www.nbbd.com/godo/ef/geology/FLGeologyMap.html | spa |
dc.relation.references | Truzman, M. (2016). Use of geological strength index to characterize the miami limestone for shallow foundation design. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-2016. | spa |
dc.relation.references | Vesic, A. S. (1963). Bearing capacity of deep foundations in sand. Highway Research Record, 39. | spa |
dc.relation.references | Vesic, A. S. (1975). Bearing capacity of shallow foundations. Foundation Engineering Handbook. | spa |
dc.relation.references | Yang, K., McVay, M., Nguyen, T., Wang, K., Song, X., Wasman, S., Rodgers, M., Horhota, D., & Herrera, R. (2023). Bearing capacity of shallow foundations on Florida limestone: A study of single layer and rock-over-sand subsurface. Computers and Geotechnics, 163. https://doi.org/10.1016/j.compgeo.2023.105742 | spa |
dc.relation.references | Zapata-Medina David. (2012). Evaluation of Dynamic Soil Parameter Changes Due to Construction-Induced Stresses. Northwestern University . | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::552 - Petrología | spa |
dc.subject.lemb | Cimentaciones | |
dc.subject.lemb | Caliza | |
dc.subject.lemb | Mecánica de rocas | |
dc.subject.lemb | Materiales de construcción | |
dc.subject.proposal | Intermediate Geomaterial | eng |
dc.subject.proposal | Limestone | eng |
dc.subject.proposal | Constitutive models | eng |
dc.subject.proposal | Mechanical behavior | eng |
dc.subject.proposal | Numerical modelling | eng |
dc.subject.proposal | Geo-materiales intermedios | spa |
dc.subject.proposal | Limestone | spa |
dc.subject.proposal | Modelos constitutivos | spa |
dc.subject.proposal | Comportamiento mecánico | spa |
dc.subject.proposal | Modelación numérica | spa |
dc.title | Modeling of Florida limestone Intermediate geomaterials for foundation engineering applications | eng |
dc.title.translated | Modelación de geomateriales intermedios limestone de la Florida para aplicaciones en ingeniería de cimentaciones | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1040048202.2025.pdf
- Tamaño:
- 3.58 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: