Implementación de un método alternativo para la estimación de la dosis combinada en radioterapia de haz externo y braquiterapia para el tratamiento del cáncer de cuello uterino
dc.contributor.advisor | Paz Lozada, Juan Carlos | spa |
dc.contributor.advisor | Plazas, María Cristina | spa |
dc.contributor.author | Chamorro Tobar, Raúl Alexander | spa |
dc.contributor.researchgroup | Grupo Fisica Medica Unalb | spa |
dc.date.accessioned | 2025-07-10T17:28:26Z | |
dc.date.available | 2025-07-10T17:28:26Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | La calidad de un tratamiento de radioterapia para cáncer de cuello uterino, que combina radioterapia de haz externo (EBRT) y braquiterapia de alta tasa de dosis (HDR-BT), depende de múltiples factores radiobiológicos. La dosis biológicamente efectiva (BED) y la dosis equivalente a 2 Gy por fracción (EQD2) son métricas cruciales para evaluar el impacto clínico global, especialmente cuando ocurren desviaciones en la duración total del tratamiento. Para abordar esta necesidad, se desarrolló y validó un script que automatiza la extracción de datos dosimétricos del sistema de planificación (TPS) y el cálculo de la EQD2 total, comparando los resultados con los registros manuales tradicionales. El estudio se basó en un análisis retrospectivo de 160 registros correspondientes a 20 casos clínicos. La validación inicial demostró una concordancia perfecta entre los datos de dosis físicas (D90 y D2cm3) extraídos por el script y los reportados por el TPS (Dose Statistics), confirmando la fiabilidad técnica de la herramienta para la adquisición de datos. La comparación posterior entre la EQD2 calculada por el script y la registrada manualmente reveló discrepancias clínicamente significativas. Aunque la concordancia general fue alta en el volumen tumoral (PTV/CTV), se identificaron errores sistemáticos y puntuales críticos. Notablemente, el registro manual tendió a subestimar la dosis en la vejiga y sobrestimar la dosis en el recto. Se detectaron errores absolutos de hasta 4.09 Gy en el PTV y 26.24 Gy en el colon sigmoide, con errores relativos que alcanzaron el 34.78%. Además, la herramienta automatizada redujo el tiempo de evaluación entre 4 y 6 veces. El script demostró ser una herramienta robusta y precisa para la evaluación dosimétrica. Su implementación es fundamental para superar la variabilidad y los errores críticos inherentes al registro manual, garantizando una monitorización más segura y objetiva de los tratamientos de radioterapia y fortaleciendo la toma de decisiones clínicas (Texto tomado de la fuente). | spa |
dc.description.abstract | The quality of a radiotherapy treatment for cervical cancer, which combines external beam radiotherapy (EBRT) and high-dose-rate brachytherapy (HDR-BT), depends on multiple radiobiological factors. The biologically effective dose (BED) and the equivalent dose in 2 Gy fractions (EQD2) are critical metrics for evaluating the overall clinical impact, especially when deviations in total treatment duration occur. To address this need, a script was developed and validated to automate the extraction of dosimetric data from the treatment planning system (TPS) and the calculation of total EQD2, comparing the results with traditional manual records. The study was based on a retrospective analysis of 160 records corresponding to 20 clinical cases. Initial validation showed perfect agreement between the physical dose data (D90 and D2cm3) extracted by the script and those reported by the TPS (Dose Statistics), confirming the technical reliability of the tool for data acquisition. Subsequent comparison between the EQD2 calculated by the script and manually recorded values revealed clinically significant discrepancies. Although overall agreement was high for the tumor volume (PTV/CTV), critical systematic and isolated errors were identified. Notably, manual recording tended to underestimate the bladder dose and overestimate the rectal dose. Absolute errors of up to 4.09 Gy in the PTV and 26.24 Gy in the sigmoid colon were detected, with relative errors reaching 34.78%. Additionally, the automated tool reduced the evaluation time by a factor of 4 to 6. The script proved to be a robust and accurate tool for dosimetric evaluation. Its implementation is essential to overcome the variability and critical errors inherent to manual recording, ensuring safer and more objective monitoring of radiotherapy treatments and strengthening clinical decision-making. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Física Médica | spa |
dc.description.researcharea | Radioterapia | spa |
dc.format.extent | xiii, 100 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88323 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
dc.relation.references | International Agency for Research on Cancer (IARC). Cancer today. https://gco.iarc.fr/today/en/dataviz/pie?mode=cancer&key=total&types=1& sexes=2&group_cancers=0, 2024. Accedido: 2 de julio de 2024. | spa |
dc.relation.references | International Agency for Research on Cancer (IARC). Cancer today. https://gco.iarc.fr/today/en/dataviz/bars?mode=cancer&key=asr&types= 0_1&sexes=2&include_nmsc_other=0&age_start=0&age_end=17&populations= 170&sort_by=value2&cancers_h=23, 2024. Accedido: 2 de julio de 2024. | spa |
dc.relation.references | Ministerio de Salud y Protecci´on Social de Colombia. Lineamientos para la vacunaci´on contra el virus del papiloma humano (VPH) en ni˜nas y ni˜nos, 2024. ´Ultimo acceso: 2 de diciembre de 2024. | spa |
dc.relation.references | H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A new linear programming approach to radiation therapy treatment planning problems. Operations Research, 54(2):201–216, apr 2006. | spa |
dc.relation.references | C. R. Hansen, M. Hussein, U. Bernchou, R. Zukauskaite, and D. Thwaites. Plan quality in radiotherapy treatment planning – review of the factors and challenges. Journal of Medical Imaging and Radiation Oncology, 66(2):267–278, March 2022. | spa |
dc.relation.references | K. Tanderup et al. Image guided intensity modulated external beam radiochemotherapy and mri based adaptive brachytherapy in locally advanced cervical cancer embrace-ii. The EMBRACE-II Study, 2021. | spa |
dc.relation.references | R. P¨otter et al. The embrace ii study: The outcome and prospect of two decades of evolution within the gec-estro gyn working group and the embrace studies. Clinical and Translational Radiation Oncology, 9:48, feb 2018. | spa |
dc.relation.references | Departamento de Radioterapia. Aplicaci´on de Braquiterapia Ginecol´ogica. Fundaci´on Valle del Lili, 003 edition, junio 2022. Procedimiento PM-RDT-012. | spa |
dc.relation.references | Sociedad Espa˜nola de Oncolog´ıa Radioter´apica (SEOR). Braquiterapia 3D guiada por la imagen. SEOR, Madrid, Espa˜na, 2023. | spa |
dc.relation.references | A. N. Viswanathan et al. Comparison and consensus guidelines for delineation of clinical target volume for ct- and mr-based brachytherapy in locally advanced cervical cancer. International Journal of Radiation Oncology Biology Physics, 90(2):320–328, oct 2014. | spa |
dc.relation.references | Radon Constraints Review. Radiation oncology dose constraints review, 2025. ´Ultimo acceso: 23 de enero de 2025. | spa |
dc.relation.references | A. M. Tornero-L´opez and D. Guirado. Radiobiological considerations in combining doses from external beam radiotherapy and brachytherapy for cervical cancer. Reports of Practical Oncology and Radiotherapy, 23(6):562–573, nov 2018. | spa |
dc.relation.references | R. M. Lanciano, T. F. Pajak, K. Martz, and G. E. Hanks. The influence of treatment time on outcome for squamous cell cancer of the uterine cervix treated with radiation: a patterns-of-care study. International Journal of Radiation Oncology, Biology, Physics, 25(3):391–397, feb 1993. | spa |
dc.relation.references | Instituto Nacional del C´ancer (NIH). C´ancer de cuello uterino. https://www.cancer. gov/espanol/tipos/cuello-uterino, 2022. Consultado: 15 de febrero de 2025. | spa |
dc.relation.references | J. Anselmo Puerta-Ortiz and Javier Morales-Aramburo. Efectos biol´ogicos de las radiaciones ionizantes. Grupo de F´ısica Radiol´ogica, Universidad Nacional de Colombia, 2025. | spa |
dc.relation.references | C. A. Perez, P. W. Grigsby, H. Castro-Vita, and M. A. Lockett. Carcinoma of the uterine cervix. i. impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 32(5):1275–1288, jul 1995. | spa |
dc.relation.references | International Commission on Radiation Units and Measurements (ICRU). Icru report 89: Prescribing, recording, and reporting brachytherapy for cancer of the cervix. Journal of the ICRU, 13(1-2), 2013. | spa |
dc.relation.references | Akila N. Viswanathan, Bruce Thomadsen, and American Brachytherapy Society Cervical Cancer Recommendations Committee. American brachytherapy society consensus guidelines for locally advanced carcinoma of the cervix. part II: High-dose-rate brachytherapy. Brachytherapy, 11(1):47–52, 2012. | spa |
dc.relation.references | U. Mahantshetty, S. Gudi, R. Singh, A. Sasidharan, S. C. Sastri, L. Gurram, D. Sharma, S. Ganeshrajah, J. Mg, D. Badakh, A. Basu, F. James, J. V. Swamidas, T. Kuppuswamy, and R. Bhalavat. Indian brachytherapy society guidelines for radiotherapeutic management of cervical cancer with special emphasis on high-dose-rate brachytherapy. Journal of Contemporary Brachytherapy, 11(4):293–306, Aug 2019 | spa |
dc.relation.references | Umesh Mahantshetty, Lalitha Gurram, Sana Bushra, and et al. Single application multifractionated image guided adaptive high-dose-rate brachytherapy for cervical cancer: Dosimetric and clinical outcomes. International Journal of Radiation Oncology, Biology, Physics, 111(3):826–834, 2021 | spa |
dc.relation.references | B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, B. Shank, L. J. Solin, and M. Wesson. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys., 21(1):109–122, May 1991. | spa |
dc.relation.references | Austin M. Faught and et al. Using varian’s eclipse scripting api to calculate, add, and report biologically equivalent doses for gynecological brachytherapy and external beam radiation therapy patients. Brachytherapy, 15:S137–S138, 2016. Abstracts of the 2016 World Congress of Brachytherapy June 27-29, 2016. | spa |
dc.relation.references | H Wan Chan Tseung, Christopher L. Deufel, and John A. Antolak. Automated plan check software for hdr brachytherapy. Brachytherapy, 15:S154–S155, 2016. Abstracts of the 2016 World Congress of Brachytherapy June 27-29, 2016. | spa |
dc.relation.references | Haziq Asyraaf Shafizan. Evaluation of high-dose rate (HDR) radiobiologic doseequivalent web tool for cervical cancer. Master’s thesis, Universiti Sains Malaysia, Malaysia, 2024. | spa |
dc.relation.references | M. Funderud et al. Script-based automatic radiotherapy planning for cervical cancer. Acta Oncologica, 62(12):1798–1807, 2023. | spa |
dc.relation.references | Craig Macleod, Alan Fowler, Chris Dalrymple, Ken Atkinson, Peter Elliott, and Jonathan Carter. High-dose-rate brachytherapy in the management of high-grade intraepithelial neoplasia of the vagina. International Journal of Radiation Oncology* Biology*Physics, 36(1):123–128, 1996. | spa |
dc.relation.references | Michael Salerno, Emily Hubley, Shibu Anamalayil, Megan Kassick, and Neil Taunk. Po0214: Development of an eclipse script for automatic calculation of eqd2 in combined external beam radiation therapy and high dose rate gynecologic brachytherapy. Brachytherapy, 23(6):S100, 2024. | spa |
dc.relation.references | Pratik Samant, Ben George, Tom Whyntie, and Maxwell Robinson. Automated scripting of the dosimetric evaluation of adaptive versus non-adaptive radiotherapy. Biomedical Physics & Engineering Express, 8(3):037001, 2022. | spa |
dc.relation.references | National Cancer Institute. Definici´on de cuello uterino. https://www. cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/ cuello-uterino. Accedido: 21-Feb-2025. | spa |
dc.relation.references | Fernando Cristancho Mej´ıa. Instrumentaci´on nuclear: Notas de clase, September 2023. Notas de clase, 27 de septiembre de 2023. | spa |
dc.relation.references | Frank Herbert Attix. Introduction to Radiological Physics and Radiation Dosimetry. John Wiley & Sons, Inc., 1st edition, 1986. Accessed: Jan. 2025. | spa |
dc.relation.references | Simon R. Cherry, James A. Sorenson, and Michael E. Phelps. Physics in Nuclear Medicine. Elsevier Health Sciences, Philadelphia, PA, 2012. | spa |
dc.relation.references | Paul Symonds, Charles Deehan, John A. Mills, and Cathy Meredith. Walter and Miller’s Textbook of Radiotherapy: Radiation Physics, Therapy and Oncology. Elsevier, London, UK, 7th edition, 2019. | spa |
dc.relation.references | International Atomic Energy Agency. ¿qu´e es la radioterapia?, 2025. Accedido: enero 2025. | spa |
dc.relation.references | B. Chow, B.Warkentin, and G. Menon. Radiobiological dose calculation parameters for cervix cancer brachytherapy: A systematic review. Brachytherapy, 18:546–558, 2019. | spa |
dc.relation.references | Q. Fu et al. A feasibility study of a modified treatment strategy combined external beam radiation therapy and brachytherapy for cervical cancer. Journal of Applied Clinical Medical Physics, 23(7), jul 2022. | spa |
dc.relation.references | International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. Journal of the ICRU, 14(2):1–160, 2017. | spa |
dc.relation.references | International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (imrt). Journal of the ICRU, 10(1), 2016. | spa |
dc.relation.references | Hamburger Ramos Ricardo Andr´es. M´etodo para mejorar la ca´ıda de dosis en planeaciones dosim´etricas con t´ecnica vmat para tratamientos de srt utilizando cascarones conc´entricos, 2021-04. | spa |
dc.relation.references | Ovidiu Veresezan, Idriss Troussier, Alexis Lacout, Sarah Kreps, Sophie Maillard, Aude Toulemonde, Pierre-Yves Marcy, Florence Huguet, and Juliette Thariat. Adaptive radiation therapy in head and neck cancer for clinical practice: state of the art and practical challenges. Japanese journal of radiology, 35:43–52, 2017. | spa |
dc.relation.references | D. I. Thwaites, B. J. Mijnheer, and J. A. Mills. Quality Assurance of External Beam Radiotherapy. Department Of Oncology Physics, 2000. | spa |
dc.relation.references | Organismo Internacional de Energ´ıa At´omica. Aspectos f´ısicos de la garant´ıa de calidad en radioterapia: Protocolo de control de calidad. https://www-pub.iaea.org/MTCD/ publications/PDF/te_1151_prn.pdf, 2000. Accedido: 2 de julio de 2024. | spa |
dc.relation.references | Baylor Scott & White Health. Braquiterapia (radioterapia interna). https://salud. bswhealth.com/treatments-and-procedures/brachytherapy, 2024. Accedido: 22 de septiembre de 2024. | spa |
dc.relation.references | Varian Medical Systems. Eclipse Photon and Electron Algorithms Reference Guide, 2020. Documentaci´on t´ecnica del algoritmo AAA. | spa |
dc.relation.references | W. Ulmer and D. Harder. Applications of a triple gaussian pencil beam model for photon beam treatment planning. Zeitschrift f¨ur Medizinische Physik, 15:25–34, 2005. | spa |
dc.relation.references | F. M. Khan. The Physics of Radiation Therapy. Lippincott Williams & Wilkins, Philadelphia, 6th edition, 2019. | spa |
dc.relation.references | A. Fogliata, G. Nicolini, A. Clivio, E. Vanetti, and L. Cozzi. Dosimetric evaluation of the aaa algorithm in lung stereotactic body radiotherapy. Radiotherapy and Oncology, 85:223–230, 2007. | spa |
dc.relation.references | T. Kn¨o¨os, E. Wieslander, and L. Cozzi. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy. Radiotherapy and Oncology, 81:317–323, 2006. | spa |
dc.relation.references | E. Vanetti, G. Nicolini, A. Clivio, A. Fogliata, and L. Cozzi. The impact of treatment couch modelling on rapidarc. Physics in Medicine & Biology, 54:N157–N166, 2009. | spa |
dc.relation.references | G. X. Ding, D. M. Duggan, and C. W. Coffey. Accurate patient dosimetry of kilovoltage cone-beam ct in radiation therapy. Medical Physics, 38:528–535, 2011. | spa |
dc.relation.references | Oleg N. Vassiliev, Todd A. Wareing, John McGhee, Gregory Failla, Mohammad R. Salehpour, and Firas Mourtada. Validation of a new grid-based boltzmann equation solver for dose calculation in radiotherapy with photon beams. Physics in Medicine & Biology, 55(3):581–598, 2010. | spa |
dc.relation.references | Antonella Fogliata, Giorgia Nicolini, Alessandro Clivio, Eugenio Vanetti, and Luca Cozzi. Dosimetric validation of the acuros xb advanced dose calculation algorithm: fundamental characterization in water. Physics in Medicine & Biology, 56(6):1879– 1904, 2011. | spa |
dc.relation.references | Varian Medical Systems. Acuros xb algorithm reference guide. Varian Technical Documentation, 2020. Palo Alto, CA: Varian Medical Systems. | spa |
dc.relation.references | L. J. Lorence, Jr., J. E. Morel, and G. D. Valdez. Physics guide to cepxs: A multigroup coupled electron-photon cross-section generating code. Technical Report SAND89- 1685, Sandia National Laboratories, Albuquerque, NM, USA, october 1989 | spa |
dc.relation.references | Mayo Clinic. Braquirradioterapia. https://www.mayoclinic.org/es/ tests-procedures/brachytherapy/about/pac-20385159, 2024. Accedido: 22 de septiembre de 2024. | spa |
dc.relation.references | BrachyAcademy. White paper: General principles of brachytherapy, May 2014. Accessed: 2025-03-13. | spa |
dc.relation.references | M. J. Rivard et al. Update of aapm task group no. 43 report: A revised aapm protocol for brachytherapy dose calculations. Medical Physics, 2004. | spa |
dc.relation.references | Organismo Internacional de Energ´ıa At´omica. Gesti´on de las fuentes radiactivas selladas en desuso. Technical Report NW-T-1.3, Organismo Internacional de Energ´ıa At´omica, Viena, Austria, 2022. Colecci´on de Energ´ıa Nuclear del OIEA Nº NW-T-1.3. | spa |
dc.relation.references | Oncology Medical Physics. Iridium-192. https://oncologymedicalphysics.com/ iridium-192/, 2023. | spa |
dc.relation.references | Chuck Hellier. Handbook of Nondestructive Evaluation. McGraw-Hill Professional, 1 edition, 2001. | spa |
dc.relation.references | Varian Medical Systems. Bravos feature sheet, January 2020. Accessed: 2024-12-05. | spa |
dc.relation.references | J. C. L. Alfonso, M. A. Herrero, and L. N´u˜nez. A dose-volume histogram-based decision-support system for dosimetric comparison of radiotherapy treatment plans. Radiat. Oncol., 10(1):263, 2015. | spa |
dc.relation.references | S. Bi, J. Zhou, M. Xu, and Z. Dai. Reevaluating BED in cervical cancer HDR brachytherapy: source decay and tissue-specific repair significantly impact radiobiological dose. Frontiers in Oncology, 15:1407606, may 2025. | spa |
dc.relation.references | Eric J. Hall and Amato J. Giaccia. Radiobiology for the Radiologist. Wolters Kluwer, 8th edition, 2020. | spa |
dc.relation.references | Michael Joiner and Albert van der Kogel. Basic Clinical Radiobiology. Hodder Arnold, 4th edition, 2009. | spa |
dc.relation.references | Miguel Alcaraz Ba˜nos. Tema 5: Interacci´on de la radiaci´on con la materia viva: Respuesta celular, 2025. ´Ultimo acceso: 23 de enero de 2025. | spa |
dc.relation.references | Michael C. Joiner and Albert J. van der Kogel. Basic Clinical Radiobiology. CRC Press, 5th edition, 2018. | spa |
dc.relation.references | B. Andisheh, M. Edgren, D. Belki´c, P. Mavroidis, A. Brahme, and B. K. Lind. A comparative analysis of radiobiological models for cell surviving fractions at high doses. Technology in Cancer Research & Treatment, 12(2):183–192, 2013. | spa |
dc.relation.references | J. F. Fowler. 21 years of biologically effective dose. The British Journal of Radiology, 83:554–568, 2010. | spa |
dc.relation.references | L. Bodgi, A. Canet, L. Pujo-Menjouet, A. Lesne, J. M. Victor, and N. Foray. Mathematical models of radiation action on living cells: From the target theory to the modern approaches. a historical and critical review. Journal of Theoretical Biology, 394:93–101, Apr 7 2016. Epub 2016 Jan 22. | spa |
dc.relation.references | S. J. McMahon. The linear quadratic model: usage, interpretation and challenges. Physics in Medicine & Biology, 64(1):01TR01, 2018. | spa |
dc.relation.references | C. S. Sureka and C. Armpilia. Radiation Biology for Medical Physicists. CRC Press, 2017. | spa |
dc.relation.references | E. B. Podgorsak. A Handbook for Teachers and Students. E. B. Podgorsak, Unknown, 2005. | spa |
dc.relation.references | H. Kim et al. Dose summation strategies for external beam radiation therapy and brachytherapy in gynecologic malignancy: A review from the nrg oncology and nctn medical physics subcommittees. International Journal of Radiation Oncology Biology Physics, nov 2021. | spa |
dc.relation.references | A. Otal, et al. Review on treatment planning systems for cervix brachytherapy (interventional radiotherapy): Some desirable and convenient practical aspects to be implemented from radiation oncologist and medical physics perspectives. Cancers (Basel), 14(14):3467, 2022. | spa |
dc.relation.references | John F. Fowler. The linear-quadratic formula and progress in fractionated radiotherapy. British Journal of Radiology, 62(740):679–694, 01 2014. | spa |
dc.relation.references | J. R. Fowler, E. V. Maani, C. J. Dunton, D. P. Gasalberti, B. W. Jack, and J. L. Miller. Cervical cancer. In StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL), 2025. [Updated 2023 Nov 12]. | spa |
dc.relation.references | Varian Medical Systems. Biological Modeling Reference Guide. Palo Alto, CA, USA, 2009. Documentation for Eclipse Treatment Planning System. | spa |
dc.relation.references | Stephen A. Roberts, Jolyon H. Hendry, Richard Swindell, John M. Wilkinson, and Robin D. Hunter. Compensation for changes in dose-rate in radical low-dose-rate brachytherapy: A radiobiological analysis of a randomised clinical trial. Radiotherapy and Oncology, 70(1):63–74, January 2004. | spa |
dc.relation.references | S. Lang, and et al. Intercomparison of treatment concepts for MR image assisted brachytherapy of cervical carcinoma based on GYN GEC-ESTRO recommendations. Radiotherapy and Oncology, 78(1):67– 77, 2006. | spa |
dc.relation.references | K. Tanderup, and et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiotherapy and Oncology, 120(3):441–446, sep 2016. Epub 2016 Jun 24. Erratum in: Radiother Oncol. 2017 Apr;123(1):169. doi: 10.1016/j.radonc.2017.01.022. | spa |
dc.relation.references | Junzo Chino, Christina M. Annunziata, Sushil Beriwal, and et al. Radiation therapy for cervical cancer: Executive summary of an astro clinical practice guideline. Practical Radiation Oncology, 10(4):220–234, 2020. | spa |
dc.relation.references | H.R. Withers, J.M. Taylor, and B. Maciejewski. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncologica, 27:131–146, 1988. | spa |
dc.relation.references | Rayos Contra C´ancer. Sesi´on 13 - radiobiolog´ıa y eqd2. https://www.youtube.com/ watch?v=P0jfpVBgww8, 2022. Consultado el [2025-02-27]. | spa |
dc.relation.references | B. Jones, R. G. Dale, C. Deehan, K. I. Hopkins, and D. A. Morgan. The role of biologically effective dose (BED) in clinical oncology. Clinical Oncology, 13(2):71–81, 2001 | spa |
dc.relation.references | J. F. Fowler. Biological factors influencing optimum fractionation in radiation therapy. Acta Oncologica, 40(6):712–717, 2001. | spa |
dc.relation.references | Roger Dale, Georgios Plataniotis, and Bleddyn Jones. A generalised method for calculating repopulation-corrected tumour eqd2 values in a wide range of clinical situations, including interrupted treatments. Physica Medica, 118:103294, Jan 2024. Available online 9 January 2024. © 2024 Associazione Italiana di Fisica Medica e Sanitaria. | spa |
dc.relation.references | Ivan R. Vogelius and Søren M. Bentzen. Dose response and fractionation sensitivity of prostate cancer after external beam radiotherapy: A meta-analysis of randomized trials. International Journal of Radiation Oncology • Biology • Physics, 2017. Received: 18 September 2017; Revised: 28 November 2017; Accepted: 6 December 2017. | spa |
dc.relation.references | S. A. Roberts and J. H. Hendry. Time factors in larynx tumour radiotherapy: lag times and intertumour heterogeneity in clinical data sets from four centers. International Journal of Radiation Oncology*Biology*Physics, 45(5):1247–1257, 1999. | spa |
dc.relation.references | Z. Huang, N. A. Mayr, M. Gao, S. S. Lo, J. Z. Wang, G. Jia, and W. T. Yuh. Onset time of tumor repopulation for cervical cancer: first evidence from clinical data. International Journal of Radiation Oncology, Biology, Physics, 84(2):478–484, oct 2012. | spa |
dc.relation.references | A. Fyles, T. J. Keane, M. Barton, and J. Simm. The effect of treatment duration in the local control of cervix cancer. Radiother Oncol, 25:273–279, 1992. | spa |
dc.relation.references | A. I. Tergas, A. I. Neugut, L. Chen, et al. Radiation duration in women with cervical cancer treated with primary chemoradiation: A population-based analysis. Cancer Invest., 34(3):137–147, 2016. | spa |
dc.relation.references | Travis-Riley K. Korenaga, Emi J. Yoshida, Will Pierson, Jenny Chang, Argyrios Ziogas, Megan L. Swanson, Jocelyn S. Chapman, Sumi Sinha, and Lee may Chen. Better late than never: Brachytherapy is more important than timing in treatment of locally advanced cervical cancer. Gynecologic Oncology, 164(2):348–356, 2022. | spa |
dc.relation.references | J. F. Fowler and M. J. Lindstrom. Loss of local control with prolongation in radiotherapy. International Journal of Radiation Oncology • Biology • Physics, 23:457–461, 1992. | spa |
dc.relation.references | E. J. Pyyry and W. Keranen. Varian APIs: A handbook for programming in the Varian oncology software ecosystem. First edition, 2018. | spa |
dc.relation.references | Statistics How To. Find Sample Size. https://www.statisticshowto.com/ probability-and-statistics/find-sample-size/. Accessed on: Jun. 19, 2025. | spa |
dc.relation.references | J. E. Bartlett, J. W. Kotrlik, and C. C. Higgins. Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1):43–50, 2001. Originalmente publicado en 2001; Accedido en OPALCO el Jul. 9, 2025. | spa |
dc.relation.references | Cameron Thayer-Freeman, Brien Washington, Denise Fabian, Dennis Cheek, William St Clair, Mark Bernard, and Wei Luo. In vitro a/b ratio variations in cervical cancer, with consequent effects on equivalent dose in 2gy fraction in high-dose-rate brachytherapy. Advances in Radiation Oncology, 10(3):101725, March 2025. Open access. | spa |
dc.relation.references | Braden Chow, BradWarkentin, Kareena Nanda, Sunita Ghosh, Fleur Huang, Armin M Gamper, and Geetha Menon. Bairda: a novel in vitro setup to quantify radiobiological parameters for cervical cancer brachytherapy dose estimations. Physics in Medicine & Biology, 67(4):045012, feb 2022. | spa |
dc.relation.references | J. H. Peacock, J. J. Eady, S. M. Edwards, T. J. McMillan, and G. G. Steel. The intrinsic α/β ratio for human tumour cells: Is it a constant? International Journal of Radiation Biology, 61(4):479–487, 1992. | spa |
dc.relation.references | A.J. Stewart, C. Chargari, A. Chyrek, F. Eckert, J.L. Guinot, T.P. Hellebust, P. Hoskin, C. Kirisits, B. Pieters, F.A. Siebert, L. Tagliaferri, K. Tanderup, D. Todor, P. Wojcieszek, and J.M. Hannoun-Levi. Radiobiology and modelling in brachytherapy: A review inspired by the estro brachytherapy pre-meeting course. Clinical and Translational Radiation Oncology, 50:100885, 2025. | spa |
dc.relation.references | H. Farooqi, W. H. Butt, and O. U. Khan. Code re-use recommendation based on software requirements using natural language processing in python. In 2024 13th International Conference on Computer Technologies and Development (TechDev), pages 1–5, Huddersfield, United Kingdom, 2024. | spa |
dc.relation.references | A. Brahme. Dosimetric precision requirements in radiation therapy. Acta Radiologica: Oncology, 23(5):379–391, 1984. | spa |
dc.relation.references | International Commission on Radiation Units and Measurements. Determination of absorbed dose in a patient irradiated by beams of x or gamma rays in radiotherapy. Technical Report 24, ICRU, Bethesda, MD, 1976. | spa |
dc.relation.references | International Atomic Energy Agency. Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. Technical Report 430, IAEA, Vienna, 2004. | spa |
dc.relation.references | N. Bhatla, D. Aoki, D. N. Sharma, and R. Sankaranarayanan. Cancer of the cervix uteri: 2021 update. International Journal of Gynecology and Obstetrics, 155(S1):28–44, oct 2021. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.decs | Neoplasias del Cuello Uterino | spa |
dc.subject.decs | Uterine Cervical Neoplasms | eng |
dc.subject.decs | Braquiterapia | spa |
dc.subject.decs | Brachytherapy | eng |
dc.subject.decs | Fraccionamiento de la Dosis de Radiación | spa |
dc.subject.decs | Dose Fractionation, Radiation | eng |
dc.subject.decs | Radioterapia | spa |
dc.subject.decs | Radiotherapy | eng |
dc.subject.proposal | Effective biological dose | eng |
dc.subject.proposal | Brachytherapy | eng |
dc.subject.proposal | Radiobiology | eng |
dc.subject.proposal | Cervical cancer | eng |
dc.subject.proposal | EQD2 | eng |
dc.subject.proposal | Script | eng |
dc.subject.proposal | Dosis biológica efectiva | spa |
dc.subject.proposal | Braquiterapia | spa |
dc.subject.proposal | Radiobiología | spa |
dc.subject.proposal | Cáncer de cuello uterino | spa |
dc.subject.proposal | EQD2 | spa |
dc.subject.proposal | Modelo LQ | spa |
dc.subject.proposal | LQ model | eng |
dc.subject.proposal | Script | spa |
dc.title | Implementación de un método alternativo para la estimación de la dosis combinada en radioterapia de haz externo y braquiterapia para el tratamiento del cáncer de cuello uterino | spa |
dc.title.translated | Implementation of an alternative method for combined dose estimation in external beam radiotherapy and brachytherapy for the treatment of cervical cancer | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1085906927.2025.pdf
- Tamaño:
- 6.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Física Médica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: