Estudio de la formación de azaciclofanos derivados de L-Tirosina y su interacción con zinc

dc.contributor.advisorQuevedo Pastor, Ariel Rodolfospa
dc.contributor.authorCháves Sánchez, Sebastián Camilospa
dc.contributor.cvlacChaves, Sebastian [0001703007]spa
dc.contributor.googlescholarChaves, Sebastián [e2tLfbwAAAAJ]spa
dc.contributor.orcidChaves, Sebastián [0000-0001-7479-7858]spa
dc.contributor.researchgateChaves, Sebastián [Sebastian-Chaves-Sanchez]spa
dc.contributor.researchgroupQuímica Macrocíclicaspa
dc.date.accessioned2024-05-14T20:16:07Z
dc.date.available2024-05-14T20:16:07Z
dc.date.issued2024-04-18
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este trabajo se estudió la síntesis de azaciclofanos derivados de L-tirosina empleando la estrategia de síntesis denominada “Síntesis asistida por enlace de hidrógeno”. Los resultados permiten establecer que la estrategia de síntesis permite obtener azaciclofanos pentacíclicos simétricos por reacciones de 2 componentes y asimétricos por reacciones de 3 componentes. Esta estrategia de síntesis permite obtener ciclofanos bencílicos simétricos con sustituyentes sobre el nitrógeno por reacciones de dos componentes y asimétricos por reacción de tres componentes. Cabe mencionar que efectos estéricos e interacciones ácido-base pueden influir en el curso de la reacción para la obtención del producto macrocíclico u oligómeros lineales. Se determino que los azaciclofanos derivados de L-tirosina interactúan con Zn 2+ por la periferia del macrociclo por la parte alifática y que su relación estequiométrica es 1:1 entre el azaciclofano y el metal, con la mayoría de ciclofanos estudiados. (Texto tomado de la fuente).spa
dc.description.abstractIn this work, the synthesis of azacyclophanes derived from L-tyrosine was studied using the synthesis strategy called “Hydrogen bond-assisted synthesis”. The results allow us to establish that the synthesis strategy allows obtaining symmetrical pentacyclic azacyclophanes by 2-component reactions and asymmetric by 3-component reactions. This synthesis strategy allows obtaining symmetrical benzylic cyclophanes with substituents on the nitrogen by two-component reactions and asymmetrical ones by three-component reaction. It is worth mentioning that steric effects and acid-base interactions can influence the course of the reaction to obtain the macrocyclic product or linear oligomers. It was determined that azacyclophanes derived from L-tyrosine interact with Zn2+ at the periphery of the macrocycle on the aliphatic part and that their stoichiometric relationship is 1:1 between azacyclophane and the metal, with the majority of cyclophanes studied.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaSíntesis orgánicaspa
dc.format.extentxxix, 157 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86083
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesE. Marsault and M. L. Peterson, “Macrocycles are great cycles: Applications, opportunities, and challenges of synthetic macrocycles in drug discovery,” J Med Chem, vol. 54, no. 7, pp. 1961–2004, Apr. 2011, doi: 10.1021/jm1012374.spa
dc.relation.referencesG. Almaraz, C. Cabedo, R. Calvelo, and F. Gómez, “NUEVOS MACROLIDOS ¿SUPERAN A ERITROMICINA?,” Farm. Hosp, vol. 19, no. 5, pp. 259–265, 1995.spa
dc.relation.referencesA. K. Yudin, “Macrocycles: lesson from the distant past, recent developments, and future directions,” Chem. Sci., vol. 6, pp. 30–49, 2015.spa
dc.relation.referencesM. J. van Eis et al., “Tricarbonylchromium complexes of [5]- and [6]metacyclophane: an experimental and theoretical study,” Tetrahedron, vol. 64, no. 51, pp. 11641–11646, Dec. 2008, doi: 10.1016/j.tet.2008.10.016.spa
dc.relation.referencesA. V Bordunov et al., “A New Approach to the Synthesis of Phenol-Containing Macroheterocycles,” J. Org. Chem, vol. 60, pp. 4912–4918, 1995, doi: 0022-3267/95/1960-4912$09.00/0.spa
dc.relation.referencesP. Rajakumar and A. M. A. Rasheed, “Synthesis, characterization and ion transportation studies of some novel cyclophane amides,” Tetrahedron, vol. 61, no. 22, pp. 5351–5362, May 2005, doi: 10.1016/j.tet.2005.03.064.spa
dc.relation.referencesL. R. Perez and K. J. Franz, “Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease,” Dalton Transactions, vol. 39, no. 9. pp. 2177–2187, 2010. doi: 10.1039/b919237a.spa
dc.relation.referencesS. Kotha, “The building block approach to unusual α-amino acid derivatives and peptides,” Acc Chem Res, vol. 36, no. 5, pp. 342–351, May 2003, doi: 10.1021/ar020147q.spa
dc.relation.referencesM. Sato, F. Uehara, K. Sato, M. Yamaguchi, and C. Kabuto, “Convenient synthesis of chiral cyclophanes that can coordinate to metals,” J Am Chem Soc, vol. 121, no. 36, pp. 8270–8276, Sep. 1999, doi: 10.1021/ja983907u.spa
dc.relation.referencesP. Rajakumar and M. Srisailas, “Synthesis of bicyclic cyclophanes with chiral cages by sixfold coupling,” Tetrahedron Lett, vol. 43, no. 10, pp. 1909–1913, 2002, doi: 10.1016/S0040-4039(02)00137-5.spa
dc.relation.referencesN. Nuñez, “Estudio de la reacción entre derivados del ácido (2S)-2-amino-3-(4-hidroxifenil)propanoico y formaldehído, Tesis de Maestría en Química,” Universidad Nacional de Colombia, Bogotá, 2012.spa
dc.relation.referencesL. Rossa and F. Vögtle, Synthesis of Medio-and Macrocyclic Compounds by High Dilution Principle Techniques. Berlin. doi: https://doi.org/10.1007/3-540-12397-0_1.spa
dc.relation.referencesW. Zhang and J. Moore, “Shape-Persistent Macrocycles: Structure and Synthetic Approaches from Arylene and Ethynylene Building Blocks,” Angew.Chem Int Ed, vol. 45, pp. 4416–4439, 2006.spa
dc.relation.referencesV. Rozenberg, E. Sergeeva, and H. Hopf, “Cyclophanes as Templates in Stereoselective Synthesis,” in Modern Cyclophane Chemistry, R. Gleiter and H. Hopf, Eds., Weinheim: Wiley-VCH, 2004.spa
dc.relation.referencesH. S. Chong, H. A. Song, X. Ma, S. Lim, X. Sun, and S. B. Mhaske, “Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents,” Chemical Communications, no. 21, pp. 3011–3013, 2009, doi: 10.1039/b823000e.spa
dc.relation.referencesM. Formica, V. Fusi, L. Giorgi, M. Micheloni, P. Palma, and R. Pontellini, “A Template Synthesis of Polyamine Macrocycles Containing the 1,1-Bis(2-phenol) Function,” Eur. J. Org. Chem., pp. 402–404, 2002.spa
dc.relation.referencesR. Quevedo, “Influence of Steric, Electronic, and Molecular Preorganization Effects in the Reactivity of β-Phenylethylamines with Nonenolizable Aldehides,” in Non-covalent Interactions in the Synthesis and Design of New Compounds, Abel M. Maharramov, Kamran T. Mahmudov, Maximilian N. Kopylovich, and Armando J. L. Pombeiro, Eds., Hoboken, New Jersey: John Wiley & Sons, 2016, pp. 49–62.spa
dc.relation.referencesN. Nuñez-Dallos, A. Reyes, and R. Quevedo, “Hydrogen bond assisted synthesis of azacyclophanes from l-tyrosine derivatives,” Tetrahedron Lett, vol. 53, no. 5, pp. 530–534, Feb. 2012, doi: 10.1016/j.tetlet.2011.11.086.spa
dc.relation.referencesC. Díaz-Oviedo and R. Quevedo, “Role of hydrogen bonding in the selectivity of aromatic Mannich reaction of tyramines: Macrocyclization vs. linear condensation,” J Mol Struct, vol. 1202, Feb. 2020, doi: 10.1016/j.molstruc.2019.127283.spa
dc.relation.referencesR. Quevedo and B. Moreno-Murillo, “One-step synthesis of a new heterocyclophane family,” Tetrahedron Lett, vol. 50, no. 8, pp. 936–938, Feb. 2009, doi: 10.1016/j.tetlet.2008.12.023.spa
dc.relation.referencesM. Maldonado, A. Martinez-Manjarres, and R. Quevedo, “1H-NMR spectroscopic and thermogravimetric research regarding alcohol interaction with tyrosine-derived azacyclophanes,” Res Chem Intermed, vol. 44, 2018, doi: 10.1007/s11164.spa
dc.relation.referencesR. Quevedo, “1H- and 13C-NMR spectroscopic study of intermolecular interactions between tyrosine-derived azacyclophanes and aromatic rings,” J Mol Struct, vol. 1207, May 2020, doi: 10.1016/j.molstruc.2020.127777.spa
dc.relation.referencesR. Quevedo, L. Pabón, and Y. Quevedo-Acosta, “1H NMR study on the intermolecular interactions of macrocyclic and single α-Amino acids,” J Mol Struct, vol. 1041, pp. 68–72, 2013, doi: 10.1016/j.molstruc.2013.03.012.spa
dc.relation.referencesN. Nuñez-Dallos, C. Díaz-Oviedo, and R. Quevedo, “Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium,” Tetrahedron Lett, vol. 55, no. 30, pp. 4216–4221, Jul. 2014, doi: 10.1016/j.tetlet.2014.05.048.spa
dc.relation.referencesJ. H. Burckhalter, J. N. Wells, and W. J. Mayer, “MECHANISM OF THE MANNICH REATION INVOLVING 2,4-DIMETHYLPHENOL AND MORPHOLINE,” Tetrahedron Lett, no. 21, pp. 1353–1359, 1964.spa
dc.relation.referencesB. Blackburn Thompson, “The Mannich Reaction Mechanistic and Technological Considerations,” 1968.spa
dc.relation.referencesL. Cruickshank, A. R. Kennedy, and N. Shankland, “Tautomeric and ionisation forms of dopamine and tyramine in the solid state,” J Mol Struct, vol. 1051, pp. 132–136, 2013, doi: 10.1016/j.molstruc.2013.08.002.spa
dc.relation.referencesM. S. Refat, H. A. Saad, A. M. A. Adam, and H. H. Eldaroti, “A Structural study of the intermolecular interactions of tyramine with some π-acceptors: Quantification of biogenic amines based on charge-transfer complexation,” Russ J Gen Chem, vol. 85, no. 1, pp. 185–191, 2015, doi: 10.1134/S1070363215010326.spa
dc.relation.referencesC. Díaz-Oviedo and R. Quevedo, “Transamidación y transamidación-reducciónde N-benciltiramina con DMF,” Rev. Colomb. Quim., vol. 47, no. 1, pp. 5–9, 2018, doi: http://dx.doi.org/10.15446/rev.colomb.quim.v47n1.63976.spa
dc.relation.referencesR. Quevedo, I. Ortiz, and A. Reyes, “Synthesis and conformational analysis of azacyclophanes from l-tyrosine,” Tetrahedron Lett, vol. 51, no. 8, pp. 1216–1219, 2010, doi: 10.1016/j.tetlet.2009.12.116.spa
dc.relation.referencesR. Quevedo, M. González, and C. Díaz-Oviedo, “Synthesis of macrocyclic α-amino esters through the chemoselective hydrolysis of benzoxazinephanes,” Tetrahedron Lett, vol. 53, no. 13, pp. 1595–1597, Mar. 2012, doi: 10.1016/j.tetlet.2012.01.064.spa
dc.relation.referencesM. Guillermo Gonzalez Alvarado, “SÍNTESIS DE NUEVOS AZACICLOFANOS DERIVADOS DE L-TIROSINA,” 2012.spa
dc.relation.referencesC. D. Díaz-Oviedo, “Estudio de la reacción entre β-(4-hidroxifenil)etilaminas y aldehídos no enolizables Competencia entre las reacciones de Betti y de Pictet-Spengler,” Universidad Nacional de Colombia, Bogota, 2014.spa
dc.relation.referencesGaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.spa
dc.relation.referencesA. R. Allouche, “Gabedit - A graphical user interface for computational chemistry softwares,” J Comput Chem, vol. 32, no. 1, pp. 174–182, Jan. 2011, doi: 10.1002/jcc.21600.spa
dc.relation.referencesRahman Md. Moshikur, Chowdhury Md Raihan, Rie Wakabayashi, Yoshiro Tahara, Muhammad Moniruzzaman, and Masahiro Goto, “Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids,” Int J Pharm, vol. 546, no. 1–2, pp. 31–38, 2018, doi: https://doi.org/10.1016/j.ijpharm.2018.05.021.spa
dc.relation.referencesK. Hirayama, “NOMENCLATURE OF CYCLOPHANES,” Tetrahedron Lett, vol. 8, no. 21, p. 18, 1972.spa
dc.relation.referencesI. Alkorta, I. Rozas, and J. Elguero, “Non-conventional hydrogen bonds,” Chem Soc Rev, vol. 27, no. 2, pp. 163–170, 1998, doi: 10.1039/a827163z.spa
dc.relation.referencesM. J. Minch, “An Introduction to Hydrogen Bonding,” J Chem Educ, vol. 76, no. 6, p. 759, 1999.spa
dc.relation.referencesC. R. Martinez and B. L. Iverson, “Rethinking the term ‘pi-stacking,’” Chem Sci, vol. 3, no. 7, pp. 2191–2201, 2012, doi: 10.1039/c2sc20045g.spa
dc.relation.referencesT. F. Headen, C. A. Howard, N. T. Skipper, M. A. Wilkinson, D. T. Bowron, and A. K. Soper, “Structure of π-π Interactions in aromatic liquids,” J Am Chem Soc, vol. 132, no. 16, pp. 5735–5742, Apr. 2010, doi: 10.1021/ja909084e.spa
dc.relation.referencesS. Riegelman, L. A. Strait, and E. Z. Fischer, “Acid Dissociation Constants of Phenylalkanolamines,” J Pharm Sci, vol. 51, no. 2, pp. 129–133, 1962, doi: https://doi.org/10.1002/jps.2600510210.spa
dc.relation.referencesF. Yamazakl, K. Fujiki, and Y. Murata, “The Ionization Constants of Organic Compounds. I. The Microscopic Ionization Constants of Tyrosine and Related Compounds*,” Bull Chem Soc Jpn, vol. 38, no. 1, pp. 8–12, 1965, doi: https://doi.org/10.1246/bcsj.38.8.spa
dc.relation.referencesS. Alhassan, D. Schiraldi, S. Qutubuddin, T. Agag, and H. Ishida, “Various approaches for main-chain type benzoxazine polymers,” in Handbook of Benzoxazine Resins, Elsevier, 2011, pp. 309–318. doi: 10.1016/B978-0-444-53790-4.00060-6.spa
dc.relation.referencesJ. Sun, W. Wei, Y. Xu, J. Qu, X. Liu, and T. Endo, “A curing system of benzoxazine with amine: Reactivity, reaction mechanism and material properties,” RSC Adv, vol. 5, no. 25, pp. 19048–19057, 2015, doi: 10.1039/c4ra16582a.spa
dc.relation.referencesD. Trybuła, A. Marszałek-Harych, M. Gazińska, S. Berski, D. Jȩdrzkiewicz, and J. Ejfler, “N-Activated 1,3-Benzoxazine Monomer as a Key Agent in Polybenzoxazine Synthesis,” Macromolecules, vol. 53, no. 19, pp. 8202–8215, Oct. 2020, doi: 10.1021/acs.macromol.0c02036.spa
dc.relation.referencesF. F. Blicke, “1938-32387600-The-Mannich-Reaction-Org-Rxn-Vol-01-Chap-10-Ff-Blicke-Pg-303-3415934,” in Organic Reactions, vol. 1, R. Adams, Ed., 1991, pp. 303–341. Accessed: Nov. 06, 2022. [Online]. Available: https://www.thevespiary.org/rhodium/Rhodium/Vespiary/talk/files/1938-32387600-The-Mannich-Reaction-Org-Rxn-Vol-01-Chap-10-Ff-Blicke-Pg-303-3415934.pdfspa
dc.relation.referencesA. Sharifi, M. Mirzaei, and M. R. Naimi-Jamal, “Solvent-free aminoalkylation of phenols and indoles assisted by microwave irradiation,” Monatsh Chem, vol. 132, no. 7, pp. 875–880, 2001, doi: 10.1007/s007060170077.spa
dc.relation.referencesW. Lewis Nobles and N. D. Potti, “Studies on the Mechanism of the Mannich Reaction,” J Pharm Sci, vol. 57, no. 7, pp. 1097–1103, 1968.spa
dc.relation.referencesY. Omura, Y. Taruno, Y. Irisa, M. Morimoto, H. Saimoto, and Y. Shigemasa, “Regioselective Mannich reaction of phenolic compounds and its application to the synthesis of new chitosan derivatives,” Tetrahedron Lett, vol. 42, no. 41, pp. 7273–7275, 2001.spa
dc.relation.referencesT. Furuncuoğlu Özaltın, S. Catak, B. Kiskan, Y. Yagci, and V. Aviyente, “Rationalizing the regioselectivity of cationic ring-opening polymerization of benzoxazines,” Eur Polym J, vol. 105, pp. 61–67, Aug. 2018, doi: 10.1016/j.eurpolymj.2018.05.024.spa
dc.relation.referencesP. Chutayothin and H. Ishida, “Cationic ring-opening polymerization of 1,3-benzoxazines: Mechanistic study using model compounds,” Macromolecules, vol. 43, no. 10, pp. 4562–4572, May 2010, doi: 10.1021/ma901743h.spa
dc.relation.referencesW. J. Burke, “3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Subtituted Phenols with N,N-Dimethylolamines,” J. Am. Química. Soc., vol. 71, no. 2, pp. 609–612, 1949.spa
dc.relation.referencesR. Quevedo, C. Díaz-Oviedo, and Y. Quevedo-Acosta, “Role of hydroxyl groups on the aromatic ring in the reactivity and selectivity of the reaction of β -phenylethylamines with non-enolizable aldehydes,” Research on Chemical Intermediates, vol. 41, no. 12, pp. 9835–9843, Dec. 2015, doi: 10.1007/s11164-015-1987-4.spa
dc.relation.referencesL. Palatinus and G. Chapuis, “SUPERFLIP - A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions,” J Appl Crystallogr, vol. 40, no. 4, pp. 786–790, Jul. 2007, doi: 10.1107/S0021889807029238.spa
dc.relation.referencesG. M. Sheldrick, “Crystal structure refinement with SHELXL,” Acta Crystallogr C Struct Chem, vol. 71, pp. 3–8, Jan. 2015, doi: 10.1107/S2053229614024218.spa
dc.relation.referencesC. F. MacRae et al., “Mercury 4.0: From visualization to analysis, design and prediction,” J Appl Crystallogr, vol. 53, pp. 226–235, Feb. 2020, doi: 10.1107/S1600576719014092.spa
dc.relation.referencesA. Mostand and C. Romming, “acta_vol_27_p0401-0410,” Acta Chem Scand, vol. 27, no. 2, pp. 401–410, 1973, Accessed: Oct. 30, 2022. [Online]. Available: http://actachemscand.org/pdf/acta_vol_27_p0401-0410.pdfspa
dc.relation.referencesB. Nicolaiö, N. Mahé, R. Céolin, I. B. Rietveld, M. Barrio, and J. L. Tamarit, “Tyrosine alkyl esters as prodrug: The structure and intermolecular interactions of L-tyrosine methyl ester compared to L-tyrosine and its ethyl and n-butyl esters,” Struct Chem, vol. 22, no. 3, pp. 649–659, Jun. 2011, doi: 10.1007/s11224-010-9723-6.spa
dc.relation.referencesP. A. F. Pieret, F. Durant, M. Griffi~, G. Germain, and T. Debaerdemaeker, “Structure Cristalline de FEster Ethylique de la Tyrosine,” 1970.spa
dc.relation.referencesS. S. Qian, H. L. Zhu, and E. R. T. Tiekink, “L-Tyrosine n-butyl ester,” Acta Crystallogr Sect E Struct Rep Online, vol. 62, no. 3, Mar. 2006, doi: 10.1107/S1600536806003606.spa
dc.relation.referencesN. Nuñez-Dallos, K. Wurst, and R. Quevedo, “L-Tyrosine isopropyl ester,” Acta Crystallogr Sect E Struct Rep Online, vol. 68, no. 11, Nov. 2012, doi: 10.1107/S1600536812042377.spa
dc.relation.referencesS. Melandri and A. Maris, “Intramolecular hydrogen bonds and conformational properties of biogenic amines: A free-jet microwave study of tyramine,” Physical Chemistry Chemical Physics, vol. 6, no. 10, pp. 2863–2866, May 2004, doi: 10.1039/b404153d.spa
dc.relation.referencesR. Quevedo, N. Nuñez-Dallos, K. Wurst, and Á. Duarte-Ruiz, “A structural study of the intermolecular interactions of tyramine in the solid state and in solution,” J Mol Struct, vol. 1029, pp. 175–179, Dec. 2012, doi: 10.1016/j.molstruc.2012.07.013.spa
dc.relation.referencesA. Rivera, D. Moyano, M. Maldonado, J. Ríos-Motta, and A. Reyes, “FT-IR and DFT studies of the proton affinity of small aminal cages,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 74, no. 2, pp. 588–590, Oct. 2009, doi: 10.1016/j.saa.2009.07.009.spa
dc.relation.referencesC. E. Housecroft and A. G. Sharpe, “d-Block metal chemistry: the first row metals,” in Inorganic Chemistry, Second edition., Edunburgh Gate: Pearson Education Limited, 2005, pp. 639–641. [Online]. Available: www.pearsoned.co.uk/housecroftspa
dc.relation.referencesC. E. Housercroft and A. G. Sharpe, “Structures and energetics of metallic and ionic solids,” in Inorganic Chemistry, Second., Edinburgh Gate: Pearson Education Limited, 2005, pp. 146–152. [Online]. Available: www.pearsoned.co.uk/housecroftspa
dc.relation.referencesE. N. Maslen, K. J. Watson, and S. C. Ridout, “Electron Density in Diammonium Hexaaquazinc(ll) Sulfate – an X-ray and Neutron Study,” Acta Cryst. , vol. C44, pp. 1510–1514, 1988.spa
dc.relation.referencesS. G. Roh, J. U. Yoon, and J. H. Jeong, “Synthesis and characterization of a chiral Zn(II) complex based on a trans-1,2-diaminocyclohexane derivative and catalytic reduction of acetophenone,” Polyhedron, vol. 23, no. 12, pp. 2063–2067, Jul. 2004, doi: 10.1016/j.poly.2004.04.033.spa
dc.relation.referencesS. Staderini et al., “Zinc Coordination Polymers Containing the m-(2-thiazolyl)benzoic Acid Spacer: Synthesis, Characterization and Luminescent Properties in Aqueous Solutions,” ChemistrySelect, vol. 1, no. 6, pp. 1123–1131, May 2016, doi: 10.1002/slct.201600331.spa
dc.relation.referencesD. C. Fox, A. T. Fiedler, H. L. Halfen, T. C. Brunold, and J. A. Halfen, “Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: An experimental and theoretical study,” J Am Chem Soc, vol. 126, no. 24, pp. 7627–7638, Jun. 2004, doi: 10.1021/ja039419q.spa
dc.relation.referencesL. Rulisek and Z. Havlas, “Theoretical studies of metal ion selectivity. 1. DFT calculations of interaction energies of amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+),” J Am Chem Soc, vol. 122, no. 42, pp. 10428–10439, Oct. 2000, doi: 10.1021/ja001265g.spa
dc.relation.referencesS. Saeednia, P. Iranmanesh, M. H. Ardakani, M. Mohammadi, and G. Norouzi, “Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies,” Mater Res Bull, vol. 78, pp. 1–10, Jun. 2016, doi: 10.1016/j.materresbull.2016.02.010.spa
dc.relation.referencesC. Kimblin, B. M. Bridgewater, D. G. Churchill, T. Hascall, and G. Parkin, “Bis(mercaptoimidazolyl)(pyrazolyl)hydroborato complexes of zinc, cadmium, and cobalt: Structural evidence for the enhanced tendency of zinc in biological systems to adopt tetrahedral M[S4] coordination,” Inorg Chem, vol. 39, no. 19, pp. 4240–4243, Sep. 2000, doi: 10.1021/ic000093l.spa
dc.relation.referencesJ. G. Melnick, A. Docrat, and G. Parkin, “Methyl, hydrochalcogenido, and phenylchalcogenolate complexes of zinc in a sulfur rich coordination environment: Syntheses and structural characterization of the tris(2-mercapto-1-tert-butylimidazolyl)-hydroboratozinc complexes [TmBut]ZnMe, [TmBut]ZnEH (E = S, Se) and [TmBut]ZnEPh (E = O, S, Se, Te),” Chemical Communications, no. 24, pp. 2870–2871, Dec. 2004, doi: 10.1039/b412218f.spa
dc.relation.referencesF. A. Carey and R. J. Sundberg, “Structural Effects on Stability and Reactivity,” in Advanced Organic Chemistry Part A: Structure and Mechanisms, Fifth., Charlottesville: Springer, 2007, pp. 362–367.spa
dc.relation.referencesJ. J. Ellison and P. P. Power, “Synthesis and Characterization of New Thiolato Derivatives of Lithium, Magnesium, and Zinc: Examples of Two-Coordinate Lithium and Zinc Species Ligated by Sulfur,” Inorg. Chem, vol. 33, pp. 423–424, 1994.spa
dc.relation.referencesT. Mizutani, K. Wada, and S. Kitagawa, “Molecular recognition of amines and amino esters by zinc porphyrin receptors: Binding mechanisms and solvent effects,” Journal of Organic Chemistry, vol. 65, no. 19, pp. 6097–6106, Sep. 2000, doi: 10.1021/jo000557x.spa
dc.relation.referencesA. Gergely and T. Kiss, “Complexes of 3,4-Dihydroxyphenyl Derivatives. I. Copper(I1) Complexes of DL-3,4-dihydroxyphenylalanine,” Inorganica Chim. Acta, vol. 16, pp. 51–59, 1976.spa
dc.relation.referencesA. Gergely, T. Kiss, and G. Deak, “Complexes of 3,4-Dihydroxyphenyl Derivatives. II.* Complex Formation Processes in the Nickel(II)-GDOPA and Zinc(II)-L-DOPA Systems,” Inorganica Chim. Acta, vol. 36, pp. 113–120, 1979.spa
dc.relation.referencesT. Kiss and A. Gergely, “Complexes of 3,4-Dihydroxyphenyl Derivatives, III.* Equilibrium Study of Parent and some Mixed Ligand Complexes of Dopamine, Alanine and Pyrocatechol with Nickel( II), Copper( II) and Zinc( II) Ions,” Inorganica Chim. Acta, vol. 36, pp. 31–36, 1979.spa
dc.relation.referencesT. Kiss, G. Deak, and A. Gergely, “Complexes of 3,4_Dihydroxyphenyl Derivatives. VII*. Mixed Ligand Complexes of Gdopa and Related Compounds,” Inorganica Chim. Acta, vol. 91, pp. 269–277, 1984.spa
dc.relation.referencesT. Kiss and A. Gergely, “Complexes of 3,4-Dihydroxyphenyl Derivatives. VI*. Microprocesses of Formation of Proton and Metal Complexes of L-Dopa,” Inorganica Chim. Acta, vol. 78, pp. 247–254, 1983.spa
dc.relation.referencesT. Kiss and A. Gergely, “Copper(I1) and Nickel(I1) Ternary Complexes of L-Dopa and Related Compounds,” J. Inorg. Biochem., vol. 25, pp. 247–259, 1985.spa
dc.relation.referencesA. Wojciechowska, M. Daszkiewicz, and A. Bieńko, “Polymeric Zn(II) and Cu(II) complexes with exobidentate bridging l-tyrosine: Synthesis, structural and spectroscopic properties,” Polyhedron, vol. 28, no. 8, pp. 1481–1489, Jun. 2009, doi: 10.1016/j.poly.2009.02.031.spa
dc.relation.referencesF. Rogalewicz, G. Louazel, Y. Hoppilliard, and G. Ohanessian, “Structures and fragmentations of electrosprayed Zn(II) complexes of carboxylic acids in the gas phase: Isomerisation versus desolvation during the last desolvation step,” Int J Mass Spectrom, vol. 228, no. 2–3, pp. 779–795, Aug. 2003, doi: 10.1016/S1387-3806(03)00244-6.spa
dc.relation.referencesC. A. Grapperhaus, T. Tuntulani, J. H. Reibenspies, and M. Y. Darensbourg, “Methylation of Tethered Thiolates in [(bme-daco)Zn] 2 and [(bme-daco)Cd] 2 as a Model of Zinc Sulfur-Methylation Proteins,” Inorg. Chem, vol. 37, pp. 4052–4058, 1998.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.decsTirosina/químicaspa
dc.subject.decsTyrosine/chemistryeng
dc.subject.proposalAzaciclofanosspa
dc.subject.proposalL - tirosinaspa
dc.subject.proposalAzacyclophaneseng
dc.subject.proposalL - tyrosineeng
dc.subject.proposalMannich type reactioneng
dc.subject.proposalhydrogen bondeng
dc.subject.proposalAminaspa
dc.subject.proposalReacción tipo Mannichspa
dc.subject.proposalFormaldehídospa
dc.subject.proposalEnlace de hidrógenospa
dc.subject.proposalAmineeng
dc.subject.proposalFormaldehydeeng
dc.subject.unescoInvestigación químicaspa
dc.subject.unescoChemical researcheng
dc.subject.wikidataMacrociclospa
dc.subject.wikidatamacrocycleeng
dc.titleEstudio de la formación de azaciclofanos derivados de L-Tirosina y su interacción con zincspa
dc.title.translatedStudy of the formation of azacyclophanes derived from L-Tyrosine and its interaction with zinceng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014216534.2024.pdf
Tamaño:
5.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: