Evaluación de la virulencia de un mutante de Mycobacterium tuberculosis defectivo en el transporte iónico mediado por una ATPasa tipo P, en modelos experimentales de infección
dc.contributor.advisor | Soto Ospina, Carlos Yesid | spa |
dc.contributor.author | López Ruíz, Gina Marcela | spa |
dc.contributor.researchgroup | Bioquímica y Biología Molecular de las Micobacterias | spa |
dc.date.accessioned | 2025-03-12T22:12:00Z | |
dc.date.available | 2025-03-12T22:12:00Z | |
dc.date.issued | 2025-02-26 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La tuberculosis (TB) continúa siendo uno de los principales problemas de salud pública a nivel mundial. Actualmente, el control de la tuberculosis se ve dificultado por la prevalencia de comorbilidades, las deficiencias en el diagnóstico, la baja eficiencia de la vacuna BCG, y el surgimiento de cepas resistentes a los compuestos antituberculosos. Esto supone una necesidad constante de desarrollar nuevas estrategias de control, para lo que se requiere una mejor comprensión de los mecanismos moleculares involucrados en las interacciones huésped-patógeno. En efecto, comprender el papel que desempeñan los componentes estructurales y funcionales involucrados en la evasión del bacilo a las condiciones de estrés durante la infección tuberculosa es de gran utilidad para identificar dianas alternativas de atenuación y construir racionalmente nuevas vacunas antituberculosas. En este sentido, estudios previos han sugerido el papel de las ATPasas tipo P en la homeostasis iónica, la virulencia y como posibles blancos de atenuación de Mycobacterium tuberculosis (Mtb). Por lo anterior, el objetivo del presente trabajo ha sido evaluar la relevancia del transporte de cobre mediado por ATPasas tipo P, en la viabilidad y la virulencia de Mtb. Inicialmente, se evaluó el efecto de la deleción del gen que codifica la ATPasa tipo P1B, CtpA de Mtb (mutante MtbH37RaΔctpA) en la capacidad de respuesta del bacilo tuberculoso a condiciones de estrés in vitro, en comparación con la cepa silvestre y complementada. Se observó que, la disrupción de ctpA en el genoma de Mtb genera un fenotipo sensible frente agentes de estrés oxidativo (IC50 de H2O2 = 784 ± 41 μM) y nitrosativo (IC50 de NPS= 55.4 ± 1.6 μM), en comparación con la cepa tipo silvestre (IC50 de H2O2 = 1473 ± 9 μM; IC50 de NPS=142 ± 5 μM). Esta sensibilidad se ha relacionado con la incapacidad de la cepa mutante (MtbH37RaΔctpA) para evitar la acumulación intracelular de especies reactivas de oxígeno (ROS) y con la reducida capacidad de los lisados de las células completas del mutante para oxidar los sustratos orgánicos de la multicobre oxidasa de Mtb (MmcO): p-fenilendiamina (pPD) y 2,2-azino-bis (ácido 3-etilbenzotiazol-6-sulfónico) (ABTS). Sin embargo, ya que MtbH37RaΔctpA no mostró una alteración del crecimiento en respuesta a altas dosis de cobre en comparación con la cepa silvestre, y la deleción del gen ctpA en Mtb no indujo la acumulación de cobre en células sometidas a dosis tóxicas del metal. Los resultados sugieren fuertemente que CtpA no participa directamente en el mantenimiento de los niveles fisiológicos citoplasmáticos del cobre y que, en lugar de ello, el eflujo de cobre mediado por CtpA puede ser necesario para otras funciones, como la metalización y la actividad de cuproenzimas redox de Mtb, como MmcO. Por lo tanto, CtpA podría estar involucrada en la respuesta al estrés redox en Mtb. En segundo lugar, con el fin de establecer el potencial de ctpA como diana de atenuación de Mtb, se evaluó el efecto de la deleción de ctpA en la virulencia de MtbH37Rv utilizando un modelo de infección de macrófagos alveolares de la línea MH-S in vitro, y ratones BALB/c infectados en un modelo de TB pulmonar progresiva (in vivo). De manera interesante, se encontró que ctpA es requerido para la proliferación intracelular de Mtb en macrófagos alveolares infectados en presencia de cobre. Toda vez que, en ausencia de cobre no se encontraron diferencias significativas en la capacidad replicativa entre las cepas silvestre (MtbH37Rv), mutante (MtbH37RvΔctpA) y complementada (MtbH37RvΔctpA::ctpA) bal infectar macrófagos MH-S. Sin embargo, al suplementar con CuSO4 (50 µM), la tasa de proliferación intracelular de las cepas mutante, parental y complementada a los 6 días posinfeccion fue de 6.22 veces (5388.9 vs 33500 UFC/mL), 11.5 veces (20090.6 vs 231333 UFC/mL), y 8.09 veces (14373 vs. 116320 UFC/mL), respectivamente. Este hallazgo, combinado con la mayor expresión del gen que codifica para la subunidad catalítica de la NADPH oxidasa 2 (Nox2), mostrada por las células MH-S infectadas con la cepa mutante, y con la capacidad reducida para prevenir la generación de ROS en macrófagos infectados activados con 12-miristato 13-acetato de forbol (PMA), sugieren que la atenuación del mutante MtbH37RvΔctpA se debe probablemente a un efecto específico del cobre y a una posible interrupción de los mecanismos de respuesta al estrés redox generado durante la infección micobacteriana. Por su parte, al evaluar la infección en ratones BALB/c, se encontró que los ratones infectados con la cepa mutante (MtbH37RvΔctpA) mostraron un tiempo de supervivencia media mayor, y una carga bacteriana pulmonar significativamente menor que los animales infectados con la cepa parental. Esto sugiere que la atenuación de MtbH37RvΔctpA durante la fase aguda de la infección puede estar relacionada con defectos en los mecanismos de evasión del bacilo a la respuesta inmune innata del huésped. Por último, se evaluó de manera preliminar el posible uso de la deleción de ctpA en Mtb como blanco de atenuación en la construcción de un agente vacunal. Se encontró que la inmunización de ratones BALB/c con la cepa mutante (MtbH37RvΔctpA) protegió a los animales de la proliferación de las cepas de Mtb virulenta (MtbH37Rv) e híper-virulenta (Mtb900586) en los pulmones, a niveles similares a los mostrados por la vacunación con BCG. Resultado que ha aumenta nuestro interés en generar una segunda mutación no relacionada sobre esta cepa, con el fin de construir una cepap viva atenuada con potencial vacunal que genere una mayor protección que BCG. En conjunto, nuestros resultados sugieren que ctpA podría ser relevante para la virulencia de Mtb y ser un componente clave en los mecanismos de evasión del bacilo en respuesta al estrés redox generado por las células fagocíticas durante la progresión de la infección tuberculosa. Razón por la cual, su deleción podría favorecer la reactivación de diversas funciones efectoras adicionales en macrófagos, que contribuyen en la generación de respuestas inmunes protectoras superiores en el huésped. Por lo anterior, en línea con las nuevas estrategias de diseño de vacunas anti-TB, nuestros hallazgos sugieren el uso de ctpA como blanco de atenuación en el desarrollo de cepas atenuadas de Mtb con potencial vacunal. (Texto tomado de la fuente). | spa |
dc.description.abstract | Despite ongoing efforts, tuberculosis (TB) continues to represent a significant public health concern. This is largely attributable to the high incidence of co-morbidities, deficiencies in diagnostic methodologies, the relatively low efficacy of the Bacille Calmette-Guérin (BCG) vaccine, and the emergence of drug-resistant strains. Collectively, these factors present significant challenges to our ability to control this disease. The current necessity for developing new strategies for TB control requires a better understanding of host-pathogen interactions. In this context, the identification of alternative targets of Mtb viability and virulence is pivotal for the development of new live anti-TB vaccines. Previous studies have suggested the relevance of P-type ATPases in mycobacterial homeostasis and virulence, and thus have recognized them as potential tubercle bacillus attenuation targets. The objective of the present study was to assess the significance of copper transport facilitated by P-type ATPases in the viability and virulence of Mtb. Initially, the effect of the deletion of the gene encoding the P1B-type ATPase, ctpA of MtbH37Ra (MtbΔctpA) on the responsiveness of the tubercle to stress conditions in vitro was evaluated. The mutant strain exhibited greater sensitivity to oxidative stress agents, with an H2O2 IC50 value of 784 ± 41 μM, compared to the wild-type strain, which had an H2O2 IC50 value of 1473 ± 9 μM. Similarly, the mutant strain was found to be more sensitive to nitrosative stress agents, with a lower SNP IC50 value of 55.4 ± 1.6 μM, in comparison to the wild-type strain, which had an SNP IC50 value of 142 ± 5 μM. This sensitivity has been linked to the inability of the mutant strain (MtbΔctpA) to prevent intracellular accumulation of reactive oxygen species (ROS) and the diminished activity of ctpA-deficient Mtb whole cell lysates in oxidizing organic substrates of MmcO, including p-phenylenediamine (pPD) and 2,2-azino-bis (3-ethylbenzothiazol-6-sulfonic acid) (ABTS). However, MtbΔctpA did not show growth impairment in response to high doses of copper compared to the wild type strain. Indeed, disruption of the ctpA gene in Mtb did not induce copper accumulation in cells under toxic doses of the metal. The results strongly suggest that CtpA is not directly involved in maintaining physiological cytoplasmic copper levels. Instead, CtpA-mediated copper efflux may play a relevant role for the response to redox stress and may be required for the metalation and activity of cuproenzymes redox as MmcO in Mtb. Secondly, in order to ascertain the potential of ctpA as a target for Mtb attenuation, the effect of ctpA deletion on MtbH37Rv virulence was assessed using an alveolar macrophage infection model of the MH-S line (in vitro) and BALB/c mice infected in a progressive pulmonary TB model (in vivo). It was observed that ctpA is necessary for the intracellular proliferation of Mtb in infected alveolar macrophages when copper is present. In the absence of copper, no significant differences in replicative capacity were observed between the wild-type (MtbH37Rv) and mutant (MtbH37RvΔctpA) strains when infecting MH-S macrophages. However, upon supplementation with CuSO₄ (50 µM), the intracellular replication rate of the mutant, parental and complemented strains at 6 days post-infection was 6.22-fold (5388.9 vs 33500 CFU/mL), 11.5-fold (20090.6 vs 231333 CFU/mL), and 8.09-fold (14373 vs. 116320 CFU/mL), respectively. This finding, when considered alongside the increased expression of the gene encoding the catalytic subunit of NADPH oxidase 2 (Nox2) observed in MH-S cells infected with the mutant strain, and the reduced capacity to prevent ROS generation in infected macrophages activated with Phorbol 12-myristate 13-acetate (PMA) indicates that the attenuation of the MtbH37RvΔctpA mutant is likely due to a copper-specific effect and a potential disruption of the redox stress response mechanisms that are generated during mycobacterial infection. Infection of BALB/c mice with the mutant strain (MtbH37RvΔctpA) resulted in a longer median survival time and a significantly lower lung bacterial load compared to mice infected with the parental strain. These findings suggest that attenuation of MtbH37RvΔctpA during the acute phase of infection may be related to defects in the mechanisms of bacillus evasion of the host innate immune response. At last, we conducted a preliminary assessment of the potential utility of ctpA deletion in Mtb as an attenuation target in the development of a vaccine agent. The immunization of BALB/c mice with the mutant strain (MtbH37RvΔctpA) was observed to provide protection for the animals from the proliferation of virulent (MtbH37Rv) and hypervirulent (Mtb900586) Mtb strains in the lungs at levels comparable to those demonstrated by BCG vaccination. This result has prompted our investigation into generating a second unrelated mutation in this strain, with the objective of constructing a live attenuated strain that possesses vaccine potential and generates greater protection than BCG. In conclusion, the results of this study indicate that CtpA may play a significant role in the virulence of Mtb and could be a crucial element in the bacillus's evasion mechanisms in response to the redox stress triggered by phagocytic cells during the course of TB infection. Therefore, its deletion may facilitate the reactivation of additional effector functions in macrophages, thereby contributing to the generation of more robust protective immune responses in the host. Consequently, our findings support the incorporation of ctpA as an attenuation target in the development of attenuated Mtb strains with vaccine potential, aligning with contemporary anti-TB vaccine design strategies. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Bioquímica | spa |
dc.description.researcharea | Hospedero-Patógeno | spa |
dc.format.extent | xx, 154 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87645 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Bioquímica | spa |
dc.relation.references | World Health Organization. Global Tuberculosis Report 2023. World Health Organization, editor. Geneva: World Health Organization; 2023 | spa |
dc.relation.references | Rezaei N, Hosseini NS, Saghazadeh A. Introduction to Tuberculosis: Integrated Studies for a Complex Disease. In: Rezaei N, editor. Tuberculosis: Integrated Studies for a Complex Disease. Cham: Springer; 2023. p. 1–16. | spa |
dc.relation.references | Verma H, Choudhary S, Silakari O. Resistance in Tuberculosis: Molecular Mechanisms and Modulation. In: Rezaei N, editor. Tuberculosis: Integrated Studies for a Complex Disease. Cham: Springer; 2023. p. 361–402. | spa |
dc.relation.references | Kuan R, Muskat K, Peters B, Lindestam Arlehamn CS. BCG vaccine efficacy, immune correlates of protection and antigen-specific T cell responses. J Intern Med. 2020 Dec 1;288(6):651–60. | spa |
dc.relation.references | Fine PEM. Variation in protection by BCG: implications of and for heterologous immunity. The Lancet. 1995;346(8986):1339–45. | spa |
dc.relation.references | Trunz BB, Fine P, C Dye Dp. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. The Lancet. 2006;367(9517):1173–80. Available from: www.thelancet.com | spa |
dc.relation.references | Lange C, Aaby P, Behr MA, Donald PR, Kaufmann SHE, Netea MG, Mandalakas AM. 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect Dis. 2021 Jan 1;22(1):e2–12. | spa |
dc.relation.references | Gómez Ayala AE. Tuberculosis Abordaje farmacoterapéutico. Offarm: farmacia y sociedad. 2007 Nov;26(10):88–94. | spa |
dc.relation.references | Zhang Y, Wallace J, Mazurek GH, Mazurek G. Genetic differences between BCG substrains. Tubercle and Lung Disease. 1995;76:43–50. | spa |
dc.relation.references | Andersen P, Doherty TM. The success and failure of BCG-implications for a novel tuberculosis vaccine. Nat Rev Microbiol. 2005 Jul 11;3:656–62. Available from: www.nature.com/reviews/micro | spa |
dc.relation.references | Castro da Costa A, Veloso Nogueira S, Kipnis A, Junqueira-Kipnis AP. Recombinant BCG: innovations on an old vaccine. Scope of BCG strains and strategies to improve long-lasting memory. Front Immunol. 2014;5(152):1–9. | spa |
dc.relation.references | Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel). 2023 Aug 1;11(8):1304. | spa |
dc.relation.references | Li J, Zhao A, Tang J, Wang G, Shi Y, Zhan L, Qin C. Tuberculosis vaccine development: from classic to clinical candidates. European Journal of Clinical Microbiology and Infectious Diseases. 2020 Aug 1;39(8):1405–25. | spa |
dc.relation.references | Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel). 2024 Jan 1;12(38):1–15. | spa |
dc.relation.references | Zhou F, Zhang D. Recent advance in the development of tuberculosis vaccines in clinical trials and virus-like particle-based vaccine candidates. Front Immunol. 2023;14:1238649. | spa |
dc.relation.references | World health Organization. An Investment Case for New Tuberculosis Vaccines. World Health Organization, editor. World Health Organization; 2022. | spa |
dc.relation.references | León-Torres A, Novoa-Aponte L, Soto CY. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals. 2015 May 1;28:713–24. | spa |
dc.relation.references | León-Torres A, Arango E, Castillo E, Soto CY. CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biol Res. 2020 Feb 13;53(6):1–13. | spa |
dc.relation.references | López M, Quitian LV, Calderón MN, Soto CY. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch Microbiol. 2018 Apr 1;200(3):483–92. | spa |
dc.relation.references | Maya-Hoyos M, Rosales C, Novoa-Aponte L, Castillo E, Soto CY. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon. 2019 Nov 1;5(11). | spa |
dc.relation.references | Novoa-Aponte L, Soto Ospina CY. Mycobacterium tuberculosis P-type ATPases: Possible targets for drug or vaccine development. Biomed Res Int. 2014;2014:296986. | spa |
dc.relation.references | Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Argüello JM. Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol Microbiol. 2014 Jan;91(1):185–97. | spa |
dc.relation.references | Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, Wang C, Tailleux L, Tilleul S, Charrire GM, Waddell SJ, Foti M, Lugo-Villarino G, Gao Q, Maridonneau-Parini I, Butcher PD, Castagnoli PR, Gicquel B, De Chastellier C, Neyrolles O. Mycobacterial P1-Type ATPases mediate resistance to Zinc poisoning in Human macrophages. Cell Host Microbe. 2011 Sep 15;10(3):248–59. | spa |
dc.relation.references | Maya-Hoyos M, Mata-Espinosa D, López-Torres MO, Tovar-Vázquez B, Barrios-Payán J, León-Contreras JC, Ocampo M, Hernández-Pando R, Soto CY. The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. Int J Mol Sci. 2022 Jun 1;23(11):6015. | spa |
dc.relation.references | Padilla-Benavides T, Long JE, Raimunda D, Sassetti CM, Argüello JM. A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. Journal of Biological Chemistry. 2013 Apr 19;288(16):11334–47. | spa |
dc.relation.references | Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM. CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol. 2010 Sep;77(5):1096–110. | spa |
dc.relation.references | León Torres AF. Respuesta de las ATPasas tipo P 1B a las condiciones de estrés en Mycobacterium tuberculosis [Doctorado]. Universidad Nacional de Colombia (UNAL); 2018. | spa |
dc.relation.references | Novoa-Aponte L, León-Torres A, Patiño-Ruiz M, Cuesta-Bernal J, Salazar LM, Landsman D, Mariño-Ramírez L, Soto CY. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct Biol. 2012;12(25). | spa |
dc.relation.references | Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. Journal of Biological Inorganic Chemistry. 2022 Sep 1;27(6):509–28. | spa |
dc.relation.references | Shi X, Darwin KH. Copper homeostasis in Mycobacterium tuberculosis. Metallomics. 2015 Jun 1;7(6):929–34. | spa |
dc.relation.references | Soldati T, Neyrolles O. Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! Traffic. 2012 Aug;13(8):1042–52. | spa |
dc.relation.references | Stafford SL, Bokil NJ, Achard MES, Kapetanovic R, Schembri MA, Mcewan AG, Sweet MJ. Metal ions in macrophage antimicrobial pathways: Emerging roles for zinc and copper. Biosci Rep. 2013;33(4):541–54. | spa |
dc.relation.references | González-Guerrero M, Raimunda D, Cheng X, Argüello JM. Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol Microbiol. 2010 Dec;78(5):1246–58. | spa |
dc.relation.references | Patel SJ, Padilla-Benavides T, Collins JM, Argüello JM. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. Microbiology (United Kingdom). 2014;160(6):1237–51. | spa |
dc.relation.references | Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol. 2007;3(1):60–8. | spa |
dc.relation.references | Ward SK, Hoye EA, Talaat AM. The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol. 2008 Apr;190(8):2939–46. | spa |
dc.relation.references | Kinkar E, Kinkar A, Saleh M. The multicopper oxidase of Mycobacterium tuberculosis (MmcO) exhibits ferroxidase activity and scavenges reactive oxygen species in activated THP-1 cells. International Journal of Medical Microbiology. 2019 Nov 1;309(7):151324. | spa |
dc.relation.references | Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA. Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun. 2001;69(8):4980–7. | spa |
dc.relation.references | Rowland JL, Niederweis M. A multicopper oxidase is required for copper resistance in mycobacterium tuberculosis. J Bacteriol. 2013;195(16):3724–33. | spa |
dc.relation.references | Ketata W, Rekik WK, Ayadi H, Kammoun S. Extrapulmonary tuberculosis. Rev Pneumol Clin. 2015 Apr 1;71(2–3):83–92. | spa |
dc.relation.references | Organización Panamericana de la Salud. Situación de la Tuberculosis en las Américas [Internet]. Tuberculosis. 2023 [cited 2024 Oct 3]. Available from: https://www.paho.org/es/temas/tuberculosis | spa |
dc.relation.references | Ding C, Hu M, Guo W, Hu W, Li X, Wang S, Shangguan Y, Zhang Y, Yang S, Xu K. Prevalence trends of latent tuberculosis infection at the global, regional, and country levels from 1990–2019. International Journal of Infectious Diseases. 2022 Sep 1;122:46–62. | spa |
dc.relation.references | Organización Panamericana de la Salud. Infección latente por tuberculosis. Directrices actualizadas y unificadas para el manejo programático. World Health Organization, editor. Washington D.C.; 2018. | spa |
dc.relation.references | Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol. 2018 Jun 1;26(6):555–6. | spa |
dc.relation.references | Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr. 2019 Jul 19;7(4):10–1128. | spa |
dc.relation.references | Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope — a moving target. Nat Rev Microbiol. 2020 Jan 1;18(1):47–59. | spa |
dc.relation.references | Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol. 2023 May;14:1194923. | spa |
dc.relation.references | Rousseau C, Winter N, Pivert E, Bordat Y, Neyrolles O, Avé P, Huerre M, Gicquel B, Jackson M. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell Microbiol. 2004;6(3):277–87. | spa |
dc.relation.references | Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev [Internet]. 2020 Jan;34(1):e00141-20. Available from: https://doi.org/10.1128/CMR | spa |
dc.relation.references | Jarlier V, Nikaido H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994 Oct 15;123(1–2):11–8. | spa |
dc.relation.references | Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol. 2018 May 1;13(6):689–710. | spa |
dc.relation.references | Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4958–63. | spa |
dc.relation.references | Daffé M, Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tubercle and Lung Disease [Internet]. 1999 [cited 2024 Sep 24];79(3):153–69. Available from: https://doi.org/10.1054/tuld.1998.0200 | spa |
dc.relation.references | Dobbs TE, Webb RM. Chemotherapy of Tuberculosis. Schlossberg D, editor. Microbiol Spectr. 2017 Mar 10;5(2). | spa |
dc.relation.references | Singh V, Cardoso N, Huszár S. Chemotherapy for Drug-Susceptible Tuberculosis. In: Rezaei N, editor. Tuberculosis: Integrated Studies for a Complex Disease. Cham, Switzerland: Springer; 2023. p. 229–55. | spa |
dc.relation.references | White RJ, Lancini GC, Silvestri LG. Mechanism of Action of Rifampin on Mycobacterium smegmatis. J Bacteriol. 1971;108(2):737–41. | spa |
dc.relation.references | Kunz Coyne AJ, Casapao AM, Egelund EF. The Pharmacokinetic and Pharmacodynamic Properties of Antitubercular Medications. In: Rezaei N, editor. Tuberculosis: Integrated Studies for a Complex Disease. Cham, Switzerland: Springer; 2023. p. 257–75. | spa |
dc.relation.references | Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. International Journal of Tuberculosis and Lung Disease. 2015 Nov 1;19(11):1276–89. | spa |
dc.relation.references | Pérez-Martínez D, Mejía-Ponce P, Licona-Cassani C, de Igartua E, Bermúdez G, Viveros D, Zenteno-Cuevas R. Drug Resistance in Tuberculosis: Mechanisms, Diagnosis, New Responses, and the Need for an Integrated Approach. In: Rezaei N, editor. Tuberculosis: Integrated Studies for a Complex Disease. Cham, Switzerland: Springer; 2023. p. 331–59. | spa |
dc.relation.references | Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian Journal of Tuberculosis. 2023 Jan 1;70:S14–23. | spa |
dc.relation.references | World Health Organization. WHO Preferred Product Characteristics for New Tuberculosis Vaccines (NoWHO/IVB/18.06). Geneve; 2018. | spa |
dc.relation.references | Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol. 2022 Jun 23;13:895020. | spa |
dc.relation.references | Liu X, Li H, Li S, Yuan J, Pang Y. Maintenance and recall of memory T cell populations against tuberculosis: Implications for vaccine design. Front Immunol. 2023;14:1100741. | spa |
dc.relation.references | Stop TB Partnership. TB Vaccine Clinical Pipeline [Internet]. The Working Group on New TB Vaccines. 2024 [cited 2024 Aug 9]. Available from: https://newtbvaccines.org/tb-vaccine-pipeline/clinical-phase | spa |
dc.relation.references | Larsen SE, Baldwin SL, Coler RN. Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? International Journal of Infectious Diseases. 2023 May 1;130:S47–51. | spa |
dc.relation.references | Rodrigues TS, Conti BJ, Fraga-Silva TF de C, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol. 2020 Oct 1;108(4):1139–56. | spa |
dc.relation.references | Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence. 2023;14(1):2150449. | spa |
dc.relation.references | Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022 Dec 1;20(12):750–66. | spa |
dc.relation.references | Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol. 2022 Mar 7;13:820124. | spa |
dc.relation.references | Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012 Aug;12(8):581–91. | spa |
dc.relation.references | Elkington P, Polak ME, Reichmann MT, Leslie A. Understanding the tuberculosis granuloma: the matrix revolutions. Trends Mol Med. 2022 Feb 1;28(2):143–54. | spa |
dc.relation.references | Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol. 2013;3:411. | spa |
dc.relation.references | de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr. 2019 Aug 27;7:350. | spa |
dc.relation.references | Ravesloot-Chávez MM, Dis E Van, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol. 2021;39:611–37. | spa |
dc.relation.references | Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr. 2019 Jul 19;7(4). | spa |
dc.relation.references | Blanc L, Gilleron M, Prandi J, Song O ryul, Jang MS, Gicquel B, Drocourt D, Neyrolles O, Brodin P, Tiraby G, Vercellone A, Nigou J. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11205–10. | spa |
dc.relation.references | Madan-Lala R, Sia JK, King R, Adekambi T, Monin L, Khader SA, Pulendran B, Rengarajan J. Mycobacterium tuberculosis Impairs Dendritic Cell Functions through the Serine Hydrolase Hip1. The Journal of Immunology. 2014 May 1;192(9):4263–72. | spa |
dc.relation.references | Naffin-Olivos JL, Georgieva M, Goldfarb N, Madan-Lala R, Dong L, Bizzell E, Valinetz E, Brandt GS, Yu S, Shabashvili DE, Ringe D, Dunn BM, Petsko GA, Rengarajan J. Mycobacterium tuberculosis Hip1 Modulates Macrophage Responses through Proteolysis of GroEL2. PLoS Pathog. 2014;10(5). | spa |
dc.relation.references | Warren E, Teskey G, Venketaraman V. Effector mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection. J Clin Med. 2017 Feb 7;6(2):15. | spa |
dc.relation.references | Esin S, Counoupas C, Aulicino A, Brancatisano FL, Maisetta G, Bottai D, Di Luca M, Florio W, Campa M, Batoni G. Interaction of Mycobacterium tuberculosis Cell Wall components with the Human Natural Killer Cell Receptors NKp44 and Toll-like Receptor 2. Scand J Immunol. 2013 Jun;77(6):460–9. | spa |
dc.relation.references | Vankayalapati R, Garg A, Porgador A, Griffith DE, Klucar P, Safi H, Girard WM, Cosman D, Spies T, Barnes PF. Role of NK Cell-Activating Receptors and Their Ligands in the Lysis of Mononuclear Phagocytes Infected with an Intracellular Bacterium 1. The Journal of Immunology. 2005;175(7):4611–7. | spa |
dc.relation.references | Choreño Parra JA, Martínez Zúñiga N, Jiménez Zamudio LA, Jiménez Álvarez LA, Salinas Lara C, Zúñiga J. Memory of Natural Killer Cells: A new Chance against Mycobacterium tuberculosis? Front Immunol. 2017 Aug 14;8:967. | spa |
dc.relation.references | Ankley L, Thomas S, Olive AJ. Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies to Defeat Them. Infect Immun. 2020 Jul 1;88(7):e00916-19. | spa |
dc.relation.references | Prezzemolo T, Guggino G, La Manna MP, Di Liberto D Di, Dieli F, Caccamo N. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis. Front Immunol. 2014 Apr;5(180). | spa |
dc.relation.references | Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst JD. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. Journal of Experimental Medicine. 2008 Jan 21;205(1):105–15. | spa |
dc.relation.references | Sánchez-Villa JD, Preciado de Santos M. Regulación de la respuesta inmune durante la infección por Mycobacterium tuberculosis. Lux Médica. 2017;12(35):29–37. | spa |
dc.relation.references | Torrado E, Copper AM. Cytokines in the Balance of Protection and Pathology During Mycobacterial Infections. In: Divangahi M, editor. The New Paradigm of Immunity to Tuberculosis, Advances in Experimental Medicine and Biology. New York: Springer Science+Business Media; 2013. p. 121–40. | spa |
dc.relation.references | Sabbagh DK, Beasley R, Marks GB. The Immunological Mysteries of Tuberculosis. Journal of Allergy and Clinical Immunology: In Practice. 2019 Feb 1;7(2):649–50. | spa |
dc.relation.references | Larson RP, Shafiani S, Urdahl KB. Foxp3+ Regulatory T Cells in Tuberculosis. In: Divangahi M, University M, editors. The New Paradigm of Immunity to Tuberculosis, Advances in Experimental Medicine and Biology. New York; 2013. p. 165–80. | spa |
dc.relation.references | Lin PL, Flynn JAL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol. 2015 May 26;37(3):239–49. | spa |
dc.relation.references | Quan DH, Kwong AJ, Hansbro PM, Britton WJ. No smoke without fire: the impact of cigarette smoking on the immune control of tuberculosis. European Respiratory Review. 2022 Jun 30;31(164):210252. | spa |
dc.relation.references | Kozakiewicz L, Phuah J, Flynn J, Chan J. The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection. In: Divangahi M, editor. The New Paradigm of Immunity to Tuberculosis, Advances in Experimental Medicine and Biology. New York: Springer Science+Business Media; 2013. | spa |
dc.relation.references | Neyrolles O, Wolschendorf F, Mitra A, Niederweis M. Mycobacteria, metals, and the macrophage. Immunol Rev. 2015 Mar 1;264(1):249–63. | spa |
dc.relation.references | Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci. 2019 Jan 2;20(2):340. | spa |
dc.relation.references | Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis. 2018 Jun 1;76(4). | spa |
dc.relation.references | Shui W, Petzold CJ, Redding A, Liu J, Pitcher A, Sheu L, Hsieh T yen, Keasling JD, Bertozzi CR. Organelle Membrane Proteomics Reveals Differential Influence of Mycobacterial Lipoglycans on Macrophage Phagosome Maturation and Autophagosome Accumulation. J Proteome Res. 2011 Jan 7;10(1):339–48. | spa |
dc.relation.references | Wong KW. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr. 2017 May 19;5(3). | spa |
dc.relation.references | Moraco AH, Kornfeld H. Cell Death and Autophagy in TB. Semin Immunol. 2014 Dec 1;26(6):497–511. | spa |
dc.relation.references | Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, Lee SH, Lee ZW, Cho SN, Kim JM, Friedman RL, Jo EK. Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 2010;6(12):e1001230. | spa |
dc.relation.references | Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-Velayudhan S, Carreño LJ, Xu J, Chan J, Larsen MH, Jacobs Jr WR, Porcelli SA. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol. 2016 Aug 15;1(9):1–12. | spa |
dc.relation.references | Köster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, Grigsby SJ, Mittal E, Park HS, Jones V, Hsu FF, Jackson M, Sassetti CM, Philips JA. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8711–20. | spa |
dc.relation.references | Chen M, Divangahi M, Gan H, Shin DSJ, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG. Lipid mediators in innate immunity against tuberculosis: Opposing roles of PGE2 and LXA4 in the induction of macrophage death. Journal of Experimental Medicine. 2008 Nov 12;205(12):2791–801. | spa |
dc.relation.references | Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol. 2009;10(8):899–906. | spa |
dc.relation.references | Karaji N, Sattentau QJ. Efferocytosis of pathogen-infected cells. Front Immunol. 2017 Dec 22;8:1863. | spa |
dc.relation.references | Bruns H, Stenger S. New insights into the interaction of Mycobacterium tuberculosis and human macrophages. Future Microbiol. 2014;9(3):327–41. | spa |
dc.relation.references | Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs Jr. WR, Porcelli SA. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. Journal of Clinical Investigation. 2007 Aug 1;117(8):2279–88. | spa |
dc.relation.references | Miller JL, Velmurugan K, Cowan MJ, Briken V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog. 2010 Apr;6(4):e1000864. | spa |
dc.relation.references | Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR, Porcelli SA, Briken V. Mycobacterium tuberculosis nuoG Is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 2007 Jul;3(7):0972–80. | spa |
dc.relation.references | Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: Defence against host stresses. Cell Microbiol. 2009;11(8):1170–8. | spa |
dc.relation.references | Herb M, Schramm M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants. 2021 Feb 19;10(2):313. | spa |
dc.relation.references | Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015 Dec 1;6:472–85. | spa |
dc.relation.references | Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol. 2023 Aug 1;64:102795. | spa |
dc.relation.references | Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science (1979). 2022 Jun 24;376(1431). | spa |
dc.relation.references | Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their implications in the modulation of Cellular Immunity during Mycobacterial Infection. Front Microbiol. 2019 Jun 14;10(6):1121. | spa |
dc.relation.references | Macmicking J, Xie QW, Hathan C. Nitric Oxide and Macrophage Function. Annu Rev Immunol [Internet]. 1997;15:323–50. Available from: www.annualreviews.org | spa |
dc.relation.references | Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A. Cell Activation and Apoptosis by Bacterial Lipoproteins Through Toll-like Receptor-2. Science (1979). 1999 Jul 30;285(5428):736–9. | spa |
dc.relation.references | Braverman J, Stanley SA. Nitric Oxide Modulates Macrophage Responses to Mycobacterium tuberculosis Infection through Activation of HIF-1α and Repression of NF-κB. The Journal of Immunology. 2017 Sep 1;199(5):1805–16. | spa |
dc.relation.references | Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W, Eugenin E, Smith CM, Phuah JY, Long JE, Dubuke ML, Palace SG, Goguen JD, Baker RE, Nambi S, Mishra R, Booty MG, Baer CE, Shaffer SA, Dartois V, McCormick BA, Chen X, Sassetti CM. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat Microbiol. 2017 May 15;2:17072. | spa |
dc.relation.references | Ganguly N, Giang PH, Gupta C, Basu SK, Siddiqui I, Salunke DM, Sharma P. Mycobacterium tuberculosis secretory proteins CFP-10, ESAT-6 and the CFP10:ESAT6 complex inhibit lipopolysaccharide-induced NF-κB transactivation by downregulation of reactive oxidative species (ROS) production. Immunol Cell Biol. 2008 Jan;86(1):98–106. | spa |
dc.relation.references | Wagner D, Maser J, Lai B, Cai Z, Barry III CE, Höner zu Bentrup K, Russell DG, Bermudez LE. Elemental Analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell’s Endosomal System. The Journal of Immunology. 2005 Feb 1;174(3):1491–500. | spa |
dc.relation.references | Tailleux L, Waddel SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, Foti M, Neyrolles O. Probing Host Pathogen Cross-talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages. PLoS One. 2008 Jan 2;3(1):e1403. | spa |
dc.relation.references | Zondervan NA, van Dam JCJ, Schaap PJ, Dos Santos VAPM, Suarez-Diez M. Regulation of three virulence strategies of Mycobacterium tuberculosis: A success story. Int J Mol Sci. 2018 Feb 1;19(2):347. | spa |
dc.relation.references | Luo M, Fadeev EA, Groves JT. Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol. 2005 Aug 3;1(3):149–53. | spa |
dc.relation.references | Pandey R, Russo R, Ghanny S, Huang X, Helmann J, Rodriguez GM. MntR(Rv2788): A transcriptional regulator that controls manganese homeostasis in Mycobacterium tuberculosis. Mol Microbiol. 2015 Dec 1;98(6):1168–83. | spa |
dc.relation.references | Santos P, Maya-Hoyos M, López-R M, Rosales C, Vásquez V, Varón A, Chavarro-Portillo B, Arenas NE, Soto CY. P-Type ATPases: A Relevant Component in Mycobacterium tuberculosis Viability. In: Rezaei N, editor. Tuberculosis: Integrated Studies for a Complex Disease. Cham: Springer International Publishing; 2023. p. 459–81. (Integrated Science; vol. 11). | spa |
dc.relation.references | Rowland JL, Niederweis M. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis. 2012 May;92(3):202–10. | spa |
dc.relation.references | Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C. Identification of a Copper-binding Metallothionein in pathogenic Mycobacteria. Nat Chem Biol. 2008;4(10):609–16. | spa |
dc.relation.references | Boudehen YM, Faucher M, Maréchal X, Miras R, Rech J, Rombouts Y, Sénèque O, Wallat M, Demange P, Bouet JY, Saurel O, Catty P, Gutierrez C, Neyrolles O. Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun. 2022 Dec 1;13(1):4731. | spa |
dc.relation.references | Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in bacteria: The Ins and Outs. Membranes (Basel). 2020 Sep 1;10(9):242. | spa |
dc.relation.references | Saari JT. Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol. 2000;78(10):848–55. | spa |
dc.relation.references | Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’halloran T V, Mondragón A. Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science (1979). 2003;301:1383–7. | spa |
dc.relation.references | Solioz M. Copper Toxicity. In: Copper and Bacteria Evolution, Homeostasis and Toxicity [Internet]. Cham, Switzerland: Springer International Publishing; 2018. Available from: http://www.springer.com/series/10046 | spa |
dc.relation.references | Masip L, Veeravalli K, Georgiou G. The Many Faces of Glutathione in Bacteria. Antioxid Redox Signal. 2006 Jun 13;8(5–6):753–62. | spa |
dc.relation.references | Aliaga ME, López-Alarcón C, Bridi R, Speisky H. Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione. J Inorg Biochem. 2016 Jan;154:78–88. | spa |
dc.relation.references | Pearson RG. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J Chem Educ. 1968 Sep 1;45(9):581. | spa |
dc.relation.references | Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences. 2009 May 19;106(20):8344–9. | spa |
dc.relation.references | Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA, Miethke M. Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis. J Bacteriol. 2010 May;192(10):2512–24. | spa |
dc.relation.references | Xu FF, Imlay JA. Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol. 2012 Feb 17;78(10):3614–21. | spa |
dc.relation.references | Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1621–6. | spa |
dc.relation.references | Faller M, Niederweis M, Schulz GE. The structure of a Mycobacterial Outer-Membrane Channel. Science. 2004;303(5661):1189–92. | spa |
dc.relation.references | Speer A, Rowland JL, Haeili M, Niederweis M, Wolschendorf F. Porins Increase copper susceptibility of Mycobacterium tuberculosis. J Bacteriol. 2013 Nov;195(22):5133–40. | spa |
dc.relation.references | Wang Q, Boshoff HIM, Harrison JR, Ray PC, Green SR, Wyatt PG, Barry III CE. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science (1979). 2020;367:1147–51. | spa |
dc.relation.references | Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol. 2020 Jan 1;113(1):4–21. | spa |
dc.relation.references | Ehtram A, Shariq M, Ali S, Quadir N, Sheikh JA, Ahmad F, Sharma T, Ehtesham NZ, Hasnain SE. Teleological cooption of Mycobacterium tuberculosis PE/PPE proteins as porins: Role in molecular immigration and emigration. International Journal of Medical Microbiology. 2021 Apr 1;311(3):151495. | spa |
dc.relation.references | Festa RA, Jones MB, Butler-Wu S, Sinsimer D, Gerads R, Bishai WR, Peterson SN, Darwin KH. A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol. 2011 Jan;79(1):133–48. | spa |
dc.relation.references | Li C, Li Y, Ding C. The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int J Mol Sci. 2019 Jan 1;20(175):1–15. | spa |
dc.relation.references | Marcus SA, Sidiropoulos SW, Steinberg H, Talaat AM. CsoR is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis. PLoS One. 2016 Mar 1;11(3):e0151816. | spa |
dc.relation.references | Grass G, Rensing C. CueO is a Multi-copper Oxidase that confers Copper Tolerance in Escherichia coli. Biochem Biophys Res Commun. 2001 Sep 7;286(5):902–8. | spa |
dc.relation.references | Kaur K, Sharma A, Capalash N, Sharma P. Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res. 2019 May 1;222:1–13. | spa |
dc.relation.references | Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006 May;24(5):219–26. | spa |
dc.relation.references | Nowicka U, Hoffman M, Randles L, Shi X, Khavrutskii L, Stefanisko K, Tarasova NI, Darwin KH, Walters KJ. Mycobacterium tuberculosis copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer. Proteins: Structure, Function and Bioinformatics. 2016 Feb 1;84(2):193–200. | spa |
dc.relation.references | Darwin KH. Mycobacterium tuberculosis and copper: A Newly Appreciated Defense against an Old Foe? J Biol Chem. 2015 Jul 31;290(31):18962–6. | spa |
dc.relation.references | Palmgren MG, Nissen P. P-Type ATPases. Annu Rev Biophys. 2011 Jun 9;40(1):243–66. | spa |
dc.relation.references | Palmgren M. P-type ATPases: Many more enigmas left to solve. Journal of Biological Chemistry. 2023 Nov 1;299(11):105352. | spa |
dc.relation.references | Bublitz M, Morth JP, Nissen P. P-type ATPases at a glance. J Cell Sci. 2011 Nov 15;124(22):3917. | spa |
dc.relation.references | Kühlbrandt W. Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol. 2004 Apr;5(4):282–95. | spa |
dc.relation.references | Huang CS, Pedersen BP, Stokes DL. Crystal Structure of the Potassium Importing KdpFABC Membrane Complex. Nature. 2017 Jun 29;546(7660):681–5. | spa |
dc.relation.references | Smith AT, Smith KP, Rosenzweig AC. Diversity of the metal-transporting P1B-type ATPases. Journal of Biological Inorganic Chemistry. 2014;19(6):947–60. | spa |
dc.relation.references | Zielazinski EL, González-Guerrero M, Subramanian P, Stemmler TL, Argüello JM, Rosenzweig AC. Sinorhizobium meliloti Nia is a P1B-5-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport. Metallomics. 2013;5(12):1614–23. | spa |
dc.relation.references | Cohen Y, Megyeri M, Chen OCW, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM, Futerman AH, Schuldiner M. The yeast P5 Type-ATPase, Spf1, Regulates Manganese Transport into the Endoplasmic Reticulum. PLoS One. 2013 Dec 31;8(12):e85519. | spa |
dc.relation.references | Argüello JM, González-Guerrero M, Raimunda D. Bacterial Transition Metal P 1B -ATPases: Transport Mechanism and Roles in Virulence. Biochemistry. 2011 Nov 22;50(46):9940–9. | spa |
dc.relation.references | Gupta HK, Shrivastava S, Sharma R. A Novel Calcium Uptake Transporter of Uncharacterized P-type ATPase Family supplies Calcium for Cell Surface Integrity in Mycobacterium smegmatis. mBio. 2017 Sep 26;8(5). | spa |
dc.relation.references | Agranoff D, Krishna S. Metal ion transport and regulation in Mycobacterium tuberculosis. Frontiers in Bioscience. 2004;9:2996–3006. | spa |
dc.relation.references | Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell. 2019 Sep 5;178(6):1344–61. | spa |
dc.relation.references | Instituto Nacional de Salud. Boletín epidemiológico semanal 11 de 2023. Boletín epidemiológico semanal. 2023 Mar 10;11:1–31. | spa |
dc.relation.references | Hernandez-Pando R, Shin SJ, Clark S, Casonato S, Becerril-Zambrano M, Kim H, Boldrin F, Mata-Espinoza D, Provvedi R, Arbues A, Marquina-Castillo B, Mazzabò LC, Barrios-Payan J, Martin C, Cho SN, Williams A, Manganelli R. Construction and Characterization of the Mycobacterium tuberculosis sigE fadD26 Unmarked Double Mutant as a Vaccine Candidate. Infect Immun. 2020 Dec 17;88(1):e00496-19. | spa |
dc.relation.references | Hernández-Pando R, Aguilar LD, Infante E, Cataldi A, Bigi F, Martin C, Gicquel B. The use of mutant mycobacteria as new vaccines to prevent Tuberculosis. Tuberculosis. 2006 May;86(3–4):203–10. | spa |
dc.relation.references | Martín C, Marinova D, Aguiló N, Gonzalo-Asensio J. MTBVAC, a live TB vaccine poised to initiate efficacy trials 100 years after BCG. Vaccine. 2021 Dec 8;39(50):7277–85. | spa |
dc.relation.references | Maya Hoyos M. ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis [Doctorado]. Universidad Nacional de Colombia (UNAL); 2021. | spa |
dc.relation.references | van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages. Nat Rev Microbiol. 2008;6(11):851–7. | spa |
dc.relation.references | van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods. 2007 Feb;4(2):147–52. | spa |
dc.relation.references | Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs Jr WR, Bloom BR. New use of BCG for recombinant vaccines. Nature. 1991;351(6326):456–60. | spa |
dc.relation.references | Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012 Aug;40(15):e115–e115. | spa |
dc.relation.references | Buquicchio F, Spruyt M. Gene Runner Engineer your Data. geneRunner; 2019. | spa |
dc.relation.references | Davis MW, Jorgensen EM. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualization Program. Frontiers in Bioinformatics. 2022 Feb 4;2. | spa |
dc.relation.references | van Helden PD, Victor TC, Warren RM, van Helden EG. Isolation of DNA from Mycobacterium tuberculosis. In: Parish T, Stoker NG, editors. Mycobacterium tuberculosis protocols Methods in Molecular Medicine. Humana Press Inc.; 2001. p. 19–30. | spa |
dc.relation.references | Hong Lee M, Pascopella L, Jacobs Jr. WR, Hatfull GF. Site-specific integration of mycobacteriophage L5: Integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci USA. 1991 Apr 15;88(8):3111–5. | spa |
dc.relation.references | Huff J, Czyz A, Landick R, Niederweis M. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene. 2010 Nov;468(1–2):8–19. | spa |
dc.relation.references | Chomczynski P, Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal Biochem. 1987;162(1):156–9. | spa |
dc.relation.references | Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):2002–7. | spa |
dc.relation.references | Padwal P, Bandyopadhyaya R, Mehra S. Biocompatible citric acid-coated iron oxide nanoparticles to enhance the activity of first-line anti-TB drugs in Mycobacterium smegmatis. Journal of Chemical Technology and Biotechnology. 2015 Oct 1;90(10):1773–81. | spa |
dc.relation.references | Bradford MM. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 1976;72:248–54. | spa |
dc.relation.references | Forni LG, Mora-Arellano VO, Packer JE, Willson RL. Nitrogen dioxide and related free radicals: electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. Journal of the Chemical Society, Perkin Transactions 2. 1986;(1):1–6. | spa |
dc.relation.references | Kim C, Lorenz WW, Hoopes JT, Dean JFD. Oxidation of Phenolate Siderophores by the Multicopper Oxidase encoded by the Escherichia coli yacK gene. J Bacteriol. 2001;183(16):4866–75. | spa |
dc.relation.references | Mbawuike IN, Herscowitz HB. MH-S, a Murine Alveolar Macrophage Cell Line: Morphological, Cytochemical, and Functional Characteristics. J Leukoc Biol. 1989 Aug 1;46(2):119–27. | spa |
dc.relation.references | Promega Corporation. CellTiter 96 ® AQ ueous One Solution Cell Proliferation Assay Instructions for Use of Products G3580, G3581 and G3582. Technical Bulletin [Internet]. 2001;245:1–9. Available from: www.promega.com | spa |
dc.relation.references | Hernandez-Pando R, Aguilar LD, Smith I, Manganelli R. Immunogenicity and Protection Induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c Mouse Model of Progressive Pulmonary Tuberculosis. Infect Immun. 2010 Jul;78(7):3168–76. | spa |
dc.relation.references | Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, Liang Y, Fan J, Luo H, He Z. Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol. 2017 Aug 18;17(1):177. | spa |
dc.relation.references | Helfinger V, Palfi K, Weigert A, Schröder K. The NADPH oxidase Nox4 controls macrophage polarization in an NFκB-dependent manner. Oxid Med Cell Longev. 2019;2019:3264858. | spa |
dc.relation.references | Sim Choi H, Woo Kim J, Cha YN, Kim C. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem. 2006;27(1):31–44. | spa |
dc.relation.references | Rook GAW, Steele J, Umar S, Dockrell HM. A Simple Method for the Solubilisation of Reduced NBT, and Its Use as a Colorimetric Assay for Activation of Human Macrophages by y-Interferon. Journal of lmmunological Methods. 1985;82:161–7. | spa |
dc.relation.references | Sun J, Zhang X, Broderick M, Fein H. Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors. 2003 Aug 22;3:276–84. | spa |
dc.relation.references | Hernandez-Pando R, Orozcoe H, Sampieri A, Pavon L, Velasquillo C, Larriva-Sahd J, Alcocer JM, Madrid M V. Correlation between the kinetics of Th1/Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology. 1996 Apr;89(1):26–33. | spa |
dc.relation.references | Marquina-Castillo B, García-García L, Ponce-De-León A, Jimenez-Corona ME, Bobadilla-Del Valle M, Cano-Arellano B, Canizales-Quintero S, Martinez-Gamboa A, Kato-Maeda M, Robertson B, Young D, Small P, Schoolnik G, Sifuentes-Osornio J, Hernandez-Pando R. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model. Immunology. 2009 Sep;128(1):123–33. | spa |
dc.relation.references | Lamrabet O, Drancourt M. Genetic engineering of Mycobacterium tuberculosis: A review. Tuberculosis. 2012 Sep;92(5):365–76. | spa |
dc.relation.references | Choudhary E, Lunge A, Agarwal N. Strategies of genome editing in mycobacteria: Achievements and challenges. Tuberculosis. 2016 May 1;98:132–8. | spa |
dc.relation.references | Borgers K, Vandewalle K, Festjens N, Callewaert N. A guide to Mycobacterium mutagenesis. FEBS Journal. 2019 Oct 1;286(19):3757–74. | spa |
dc.relation.references | Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs, WR. Genetic Manipulation of Mycobacterium tuberculosis. In: Current Protocols in Microbiology. Wiley Online Library; 2007. p. 10A.2.1-10A.2.21. | spa |
dc.relation.references | Pavelka MSJr. Allelic Exchange of Unmarked Mutations in Mycobacterium Tuberculosis. In: Davis GD, Kayser KJ, editors. Chromosomal Mutagenesis Methods in Molecular Biology. Humana Press; 2008. p. 191–201. | spa |
dc.relation.references | Campo-Pérez V, Cendra M del M, Julián E, Torrents E. Easily applicable modifications to electroporation conditions improve the transformation efficiency rates for rough morphotypes of fast-growing mycobacteria. N Biotechnol. 2021 Jul 25;63:10–8. | spa |
dc.relation.references | Zein-Eddine R, Refrégier G, Cervantes J, Yokobori NK. The future of CRISPR in Mycobacterium tuberculosis infection. J Biomed Sci. 2023 Dec 1;30(1):34. | spa |
dc.relation.references | Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC. CRISPR-Cas12a-Assisted Recombineering in Bacteria. Appl Environ Microbiol. 2017;83(17):e00947-17. | spa |
dc.relation.references | Murphy KC, Papavinasasundaram K, Sassetti CM. Mycobacterial Recombineering. In: Parish T, Roberts DM, editors. Methods in Molecular Biology. Humana Press Inc.; 2015. p. 177–99. | spa |
dc.relation.references | Chen L, Liu H, Wang L, Tan X, Yang S. Synthetic counter-selection markers and their application in genetic modification of Synechococcus elongatus UTEX2973. APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY. 2021;105(12):5077–86. | spa |
dc.relation.references | Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol. 2022 Sep 1;20(9):529–41. | spa |
dc.relation.references | Collins DM. New tuberculosis vaccines based on attenuated strains of the Mycobacterium tuberculosis complex. Immunol Cell Biol. 2000 Aug;78(4):342–8. | spa |
dc.relation.references | Murphy KC, Nelson SJ, Nambi S, Papavinasasundaram K, Baer CE, Sassetti CM. Orbit: A New Paradigm for Genetic Engineering of Mycobacterial Chromosomes. mBio. 2018;9(6):10–1128. | spa |
dc.relation.references | Tufariello JM, Malek AA, Vilchèze C, Cole LE, Ratner HK, González PA, Jain P, Hatfull GF, Larsen MH, Jacobs WR. Enhanced Specialized Transduction Using Recombineering in Mycobacterium tuberculosis. mBio. 2014 Jul;5(3):e01179-14. | spa |
dc.relation.references | Yan MY, Li SS, Ding XY, Guo XP, Jin Q, Sun YC. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio. 2020 Jan 1;11(1):e02364-19. | spa |
dc.relation.references | Garg R, Borbora SM, Bansia H, Rao S, Singh P, Verma R, Balaji KN, Nagaraja V. Mycobacterium tuberculosis Calcium Pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner. Front Cell Infect Microbiol. 2020 Sep 16;10:461. | spa |
dc.relation.references | Raimunda D, González-Guerrero M, Leeber BW, Argüello JM. The transport mechanism of bacterial Cu+-ATPases: Distinct efflux rates adapted to different function. BioMetals. 2011 Jun;24(3):467–75. | spa |
dc.relation.references | Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes “multicopper oxidases and superoxide dismutases.” Int J Biol Macromol. 2023 Apr 1;233:123534. | spa |
dc.relation.references | Broxton CN, Culotta VC. SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection. PLoS Pathog. 2016 Jan 7;12:1–6. | spa |
dc.relation.references | Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol. 2020 Nov 23;10:589318. | spa |
dc.relation.references | Megehee JA, Hosler JP, Lundrigan MD. Evidence for a cytochrome bcc-aa3 interaction in the respiratory chain of Mycobacterium smegmatis. Microbiology (N Y). 2006 Mar;152(3):823–9. | spa |
dc.relation.references | Matsoso LG, Kana BD, Crellin PK, Lea-Smith DJ, Pelosi A, Powell D, Dawes SS, Rubin H, Coppel RL, Mizrahi V. Function of the Cytochrome bc1-aa3 Branch of the Respiratory Network in Mycobacteria and Network Adaptation Occurring in Response to Its Disruption. J Bacteriol. 2005 Sep;187(18):6300–8. | spa |
dc.relation.references | Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS Omega. 2022 Feb 1;7(4):3470–82. | spa |
dc.relation.references | Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol. 2011;2(5):105. | spa |
dc.relation.references | Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chem Rev. 1996;96(7):2563–606. | spa |
dc.relation.references | Quintanar L, Stoj C, Taylor AB, Hart PJ, Kosman DJ, Solomon EI. Shall we dance? How a Multicopper Oxidase chooses its electron transfer partner. Acc Chem Res. 2007 Jun;40(6):445–52. | spa |
dc.relation.references | Galli I, Musci G, Bonaccorsi Di Patti MC. Sequential reconstitution of copper sites in the multicopper oxidase CueO. Journal of Biological Inorganic Chemistry. 2004 Jan;9(1):90–5. | spa |
dc.relation.references | Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, Kan A, Jagannath C, Komatsu M, Eissa NT. Autophagy Regulates Phagocytosis by Modulating the Expression of Scavenger Receptors. Immunity. 2013 Sep;39(3):537–47. | spa |
dc.relation.references | White C, Lee J, Kambe T, Fritsche K, Petris MJ. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. Journal of Biological Chemistry. 2009 Dec 4;284(49):33949–56. | spa |
dc.relation.references | Achard MES, Stafford SL, Bokil NJ, Chartres J, Bernhardt PV, Schembri MA, Sweet MJ, McEwan AG. Copper redistribution in murine macrophages in response to Salmonella infection. Biochemical Journal. 2012 May 15;444(1):51–7. | spa |
dc.relation.references | Silvério D, Gonçalves R, Appelberg R, Saraiva M. Advances on the Role and Applications of Interleukin-1 in Tuberculosis. mBio. 2021 Dec 1;12(6):e03134-21. | spa |
dc.relation.references | Dorhoi A, Kaufmann SHE. Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol. 2014;26(3):203–9. | spa |
dc.relation.references | Fontán PA, Aris V, Alvarez ME, Ghanny S, Cheng J, Soteropoulos P, Trevani A, Pine R, Smith I. Mycobacterium tuberculosis Sigma factor E regulon Modulates the Host Inflammatory Response. Journal of Infectious Diseases. 2008 Sep 15;198(6):877–85. | spa |
dc.relation.references | Olsen A, Chen Y, Ji Q, Zhu G, De Silva AD, Vilchèze C, Weisbrod T, Li W, Xu J, Larsen M, Zhang J, Porcelli SA, Jacobs WR, Chan J. Targeting Mycobacterium tuberculosis Tumor Necrosis Factor alpha-downregulating genes for the development of antituberculous vaccines. mBio. 2016;7(3):e01023-15. | spa |
dc.relation.references | Infante E, Aguilar LD, Gicquel B, Hernandez Pando R. Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clin Exp Immunol. 2005 Jul;141(1):21–8. | spa |
dc.relation.references | Aguilar D, Infante E, Martin C, Gormley E, Gicquel B, Hernandez Pando R. Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain. Clin Exp Immunol. 2007 Feb;147(2):330–8. | spa |
dc.relation.references | Martin C, Williams A, Hernandez-Pando R, Cardona PJ, Gormley E, Bordat Y, Soto CY, Clark SO, Hatch GJ, Aguilar D, Ausina V, Gicquel B. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine. 2006 Apr 24;24(17):3408–19. | spa |
dc.relation.references | Díez-Tercero L, Delgado LM, Bosch-Rué E, Perez RA. Evaluation of the immunomodulatory effects of cobalt, copper and magnesium ions in a pro inflammatory environment. Sci Rep. 2021 Dec 1;11(1):11707. | spa |
dc.relation.references | Shanmuganathan G, Orujyan D, Narinyan W, Poladian N, Dhama S, Parthasarathy A, Ha A, Tran D, Velpuri P, Nguyen KH, Venketaraman V. Role of Interferons in Mycobacterium tuberculosis Infection. Clin Pract. 2022 Oct 1;12(5):788–96. | spa |
dc.relation.references | Darwich L, Coma G, Peña R, Bellido R, Blanco EJJ, Este JA, Borras FE, Clotet B, Ruiz L, Rosell A, Andreo F, Parkhouse RME, Bofill M. Secretion of interferon-γ by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18. Immunology. 2009 Mar;126(3):386–93. | spa |
dc.relation.references | Bedard K, Krause KH. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol Rev [Internet]. 2007;87(1):245–313. Available from: www.prv.org | spa |
dc.relation.references | Figueroa Castillo MO. Complementación de mutantes de Mycobacterium tuberculosis defectivos en ATPasas tipo P: Construcción de plásmidos integrativos con promotores autoinducibles [Maestría]. Universidad Nacional de Colombia(UNAL); 2023. | spa |
dc.relation.references | Lv J, He X, Wang H, Wang Z, Kelly GT, Wang X, Chen Y, Wang T, Qian Z. TLR4-NOX2 axis regulates the phagocytosis and killing of Mycobacterium tuberculosis by macrophages. BMC Pulm Med. 2017 Dec 12;17(1):194. | spa |
dc.relation.references | Silva ID, Jain NC. Phagocytic and Nitroblue Tetrazolium Reductive Properties of Bovine Neutrophils for Mammary Pathogens. J Dairy Sci. 1988;71(6):1625–31. | spa |
dc.relation.references | Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, Adcock IM, Garssen J. Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. Front Microbiol. 2017 Oct 12;8(10):2008. | spa |
dc.relation.references | Kuo HP, Wang CH, Huang KS, Lin HC, Yu CT, Liu CY, Lu LC. Nitric Oxide Modulates Interleukin-1  and Tumor Necrosis Factor-α Synthesis by Alveolar Macrophages in Pulmonary Tuberculosis. Am J Respir Crit Care Med. 2000;161(1):192–9. | spa |
dc.relation.references | Schmölz L, Wallert M, Lorkowski S. Optimized incubation regime for nitric oxide measurements in murine macrophages using the Griess assay. J Immunol Methods. 2017 Oct 1;449:68–70. | spa |
dc.relation.references | Santos P, Salazar LM, Maya-Hoyos M, Soto CY. Specific targeting to the Mycobacterium tuberculosis P-type ATPase Membrane Transporter, CtpF, of antituberculous compounds obtained by structure-based design. Int J Mycobacteriol. 2023 Oct 1;12(4):459–62. | spa |
dc.relation.references | Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic Biol Med. 2015 Jul 1;84:344–54. | spa |
dc.relation.references | Flores-Valdez MA, Segura-Cerda CA, Gaona-Bernal J. Modulation of autophagy as a strategy for development of new vaccine candidates against tuberculosis. Mol Immunol. 2018 Mar 7;97:16–9. | spa |
dc.relation.references | Vásquez Godoy V. Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P [Maestría]. Universidad Nacional de Colombia; 2021. | spa |
dc.relation.references | Lacámara S, Martin C. MTBVAC: A Tuberculosis Vaccine Candidate Advancing Towards Clinical Efficacy Trials in TB Prevention. Arch Bronconeumol. 2023 Dec 1;59(12):821–8. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Proteínas de Transporte de Membrana | spa |
dc.subject.decs | Membrane Transport Proteins | eng |
dc.subject.decs | Mycobacterium tuberculosis/efectos de los fármacos | spa |
dc.subject.decs | Mycobacterium tuberculosis/drug effects | eng |
dc.subject.decs | Virulencia | spa |
dc.subject.decs | Virulence | eng |
dc.subject.proposal | Mycobacterium tuberculosis | lat |
dc.subject.proposal | Vacunas de cepas vivas atenuadas | spa |
dc.subject.proposal | ATPasas tipo P1B | spa |
dc.subject.proposal | CtpA | spa |
dc.subject.proposal | Estrés redox | spa |
dc.subject.proposal | Mutantes atenuados de Mtb | spa |
dc.subject.proposal | Mecanismos de evasión inmune de Mtb | spa |
dc.subject.proposal | Live attenuated whole-cell Mtb vaccine | eng |
dc.subject.proposal | Redox stress | eng |
dc.subject.proposal | P1B-type ATPase | eng |
dc.subject.proposal | Immune evasion | eng |
dc.title | Evaluación de la virulencia de un mutante de Mycobacterium tuberculosis defectivo en el transporte iónico mediado por una ATPasa tipo P, en modelos experimentales de infección | spa |
dc.title.translated | Virulence assessment of a Mycobacterium tuberculosis mutant defective in P-type ATPase-mediated ion transport in experimental models of infection | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Dirección Nacional de Investigación y Laboratorios de la Vicerrectoría de Investigación | spa |
oaire.fundername | División de Investigación de Bogotá-DIB | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014199227.2025.pdf
- Tamaño:
- 21.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: