Modelamiento del espacio de signos vitales para detectar el deterioro de los pacientes en una unidad de cuidados intensivos

dc.contributor.advisorNiño Vasquez, Luis Fernando
dc.contributor.authorIzquierdo Borrero, Ledys Maria
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISIspa
dc.date.accessioned2021-06-24T20:44:19Z
dc.date.available2021-06-24T20:44:19Z
dc.date.issued2021-06-19
dc.descriptionilustracionesspa
dc.description.abstractResumen En el campo de la monitorización continua de los signos vitales en entornos de cuidados intensivos se ha observado que los signos de alerta temprana "de un deterioro fisiológico inminente” pueden no ser detectados a tiempo, hecho que se agrava no solo por la limitación de los recursos médicos, sino también por el "diluvio de datos" causado por la adquisición de información en pacientes cada vez más complejos durante la atención de rutina. El objetivo de este estudio es desarrollar un modelo probabilístico para predecir los episodios clínicos futuros de un paciente utilizando valores de signos vitales observados antes de un evento clínico. Los signos vitales (por ejemplo, frecuencia cardíaca, presión arterial) se utilizan para controlar las funciones fisiológicas de un paciente y sus cambios simultáneos indican las transiciones entre los estados de salud del paciente. Si tales cambios son anormales, puede conducir a un deterioro fisiológico grave. Se utilizó la metodología CRISP-DM (CRoss-Industry Standard Process for Data Mining) como proceso de minería de datos y luego utilizamos cadenas de Márkov para identificar los estados clínicos por los que pasa el paciente. Después, se aplicó un enfoque basado en un modelo oculto de Márkov (Hidden Márkov Model, HMM) para la clasificación y predicción del deterioro de un paciente calculando la probabilidad de estados clínicos futuros. Ambos modelos de aprendizaje fueron entrenados y evaluados utilizando seis bioseñales de 90 pacientes para un total de 94.678 instancias, recolectadas de una base de datos de pacientes reales que se encontraban en la Unidad de Cuidados Intensivos Pediátricos del Hospital Militar Central de la ciudad de Bogotá, Colombia. La técnica propuesta basada en el seguimiento de múltiples variables fisiológicas mostró resultados prometedores en la identificación precoz del deterioro de los pacientes críticos. (Texto tomado de la fuente)spa
dc.description.abstractIn the field of continuous vital-sign monitoring in critical care settings, it has been observed that the “early warning signs" of impending physiological deterioration can fail to be detected timely and sometimes by resource constrained clinical staff. This effect may be escalated by the “data deluge" caused by acquisition of more complex patient data during routine care. The objective of this study is to develop a probabilistic model for predicting the future clinical episodes of a patient using observed vital sign values prior to a clinical event. Vital signs (e.g., heart rate, blood pressure) are used to monitor a patient's physiological functions and their simultaneous changes indicate transitions between patient's health states. If such changes are abnormal then it may lead to serious physiological deterioration. The CRISP-DM (CRoss-Industry Standard Process for Data Mining) methodology was used as a data mining process and then we used Márkov chains to identify the clinical states through which the patient passes. Then, a Hidden Márkov model (HMM) based approach was applied for classification and prediction of patient's deterioration by computing the probability of future clinical states. Both learning models were trained and evaluated using six vital signs data from 94,678 records from 90 patients, collected from the database of real patients who were in the Pediatric Intensive Care Unit of the Central Military Hospital in the city of Bogota, Colombia. The proposed technique based on monitoring multiple physiological variables showed promising results in early identifying the deterioration of critically ill patients. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.methodsEstudio analítico de corte transversal. Se tomaron muestras de monitoria de signos vitales de pacientes atendidos en la UCIP del Hospital Militar Central desde enero de 2018 a enero de 2020, desde 1 mes hasta los 18 meses de edad. Se realizo una descripción de las variables demográficas y clínicas utilizando las medidas más adecuadas de tendencia central y localización según la naturaleza de la variable y su distribución. Se realizo un análisis analítico mediante técnicas basadas en inteligencia computacional, identificando un modelo de aprendizaje automático de análisis, para la descripción de eventos clínicos normales/anormales, que tenga la capacidad de usar las tendencias temporales en datos continuos para la clasificación de eventos clínicos, tomando los datos temporales como una secuencia de cambios de estado clínico, y que se pudiera saber cuál es la probabilidad de que un evento clínico no solo dependa de los valores de signos vitales actuales en el paciente, sino también de una secuencia de mediciones del pasado. Se valido la herramienta computacional empleada a partir del modelo propuesto, adaptando diferentes métricas, para medir sensibilidad, especificidad y precisión, estableciendo las diferencias significativas y estableciendo un nivel de riesgo.spa
dc.description.notesAbstract In the field of continuous vital-sign monitoring in critical care settings, it has been observed that the “early warning signs" of impending physiological deterioration can fail to be detected timely and sometimes by resource constrained clinical staff. This effect may be escalated by the “data deluge" caused by acquisition of more complex patient data during routine care. The objective of this study is to develop a probabilistic model for predicting the future clinical episodes of a patient using observed vital sign values prior to a clinical event. Vital signs (e.g., heart rate, blood pressure) are used to monitor a patient's physiological functions and their simultaneous changes indicate transitions between patient's health states. If such changes are abnormal then it may lead to serious physiological deterioration. The CRISP-DM (CRoss-Industry Standard Process for Data Mining) methodology was used as a data mining process and then we used Márkov chains to identify the clinical states through which the patient passes. Then, a Hidden Márkov model (HMM) based approach was applied for classification and prediction of patient's deterioration by computing the probability of future clinical states. Both learning models were trained and evaluated using six vital signs data from 94,678 records from 90 patients, collected from the database of real patients who were in the Pediatric Intensive Care Unit of the Central Military Hospital in the city of Bogota, Colombia. The proposed technique based on monitoring multiple physiological variables showed promising results in early identifying the deterioration of critically ill patients.eng
dc.description.researchareaAprendizaje de Máquinasspa
dc.description.researchareaSistemas inteligentesspa
dc.format.extent141 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79717
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.references1. I.Wheatley, «The nursing practice of taking level 1 patient observations, »Intensive and Critical Care Nursing, 22(2):115-21. 2006. doi: 10.1016/j.iccn.2005.08.003spa
dc.relation.references2. B. J. Idar. P. H. Lars, P. B. Pedersen. K. John y M. Brabrand, «The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review, PLOS ONE, 14(1): e0210875, pp.1-13. 2019. doi.org/10.1371/journal.pone.0210875spa
dc.relation.references3. A.C. Malcolm Elliott, «Critical care: the eight vital signs of patient monitoring, » British Journal of Nursing, 21(10):621-5. 2012. DOI: 10.12968/bjon.2012.21.10.621spa
dc.relation.references4. Glen Wright Colopy, Member, Stephen J. Roberts, Member, and David A. Clifton. Bayesian Optimization of Personalized Models for Patient Vital-Sign Monitoring, IEEE Journal of Biomedical and Health Informatics. 22(2), pp. 301-310, 2018. DOI 10.1109/JBHI.2017.2751509.spa
dc.relation.references5. K. Abdur, Rahim Mohammad Forkan. PEACE-Home: Probabilistic estimation of abnormal clinical events using vital sign correlations for reliable home-based monitoring, » Pervasive and Mobile Computing, 38(2), pp. 296-311. 2017. dx.doi.org/10.1016/j.pmcj.2016.12.009spa
dc.relation.references6. Sidney Le, Jana Hoffman, Christopher Barton, Julie C Fitzgerald, Angier Allen, Emily Pellegrini et al. Pediatric Severe Sepsis Prediction Using Machine Learning". In: Front. Pediatr 7:413. 2019. doi: 10.3389/fped.2019.0041spa
dc.relation.references7. Haoran Xu Peiyao Li, Zhicheng Yang, Xiaoli Liu, Zhao Wang, Wei Yanet al. Construction and Application of a Medical-Grade Wireless Monitoring System for Physiological Signals at General Wards". In: J Med Syst 44.10 p. 182. 2020. doi.org/10.1007/s10916-020-01653-z.spa
dc.relation.references8. Ryo Ueno, Liyuan Xu, Wataru Uegami. Hiroki Matsui, Jun Okui, Hiroshi Hayashi et al. Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective cohort study". In: PLoS One 15: (7). e0235835. 2020. doi.org/10.1371/journal.pone.0235835.spa
dc.relation.references9. Julio Frenk, Enrique Ruelas, Adriana Velázquez Guía tecnológica No.13: Monitor de signos Vitales, Cenetec, México, 2005.spa
dc.relation.references10. COFEPRIS: Comisión Federal para la protección de riesgos sanitarios [Internet]. México: Secretaría de Salud; 5 julio 2001-2020 [citado: 2020 Nov 5]-disponible: https:// www.cofepris.salud.gob.mx.spa
dc.relation.references11. IMDRF: International Medical Device Regulators Forum [Internet]. Global Harmonization Task Force 2011-2020 [citado: 2020 Nov 5]. Disponible: https://www.ghtf.org.spa
dc.relation.references12. FORTRAN: The IBM Mathematical Formula Translating System [internet] Softward Preservation Group. Computer History Museums, 13 08 2017. [citado 5 octubre 2020]. Available: http://www.softwarepreservation.org/projects/FORTRAN/.spa
dc.relation.references13. Ricardo A, Samsom MD, Stephen M et al. Pediatric Advanced Life Support Study Guide, American Heart Association. Texas 75149. Jones & Bartlett Learning, 2018. ISBN:978-1-669-623-8.spa
dc.relation.references14. J. Meera, A. Hutan, A. Lisa. K. Sadia, A. Sonal y C. Graham, Wearable sensors to improve detection of patient deterioration, Expert Review of Medical Devices. 16(2); pp. 145-154, 2019.spa
dc.relation.references15. Wongeun Song, Se Young Jung, Hyunyoung Baek, Chang Won Choi, Young Hwa Jung, Sooyoung Yoo. A Predictive Model Based on Machine Learning for the Early Detection of Late-Onset Neonatal Sepsis: Development and Observational study. JMIR Med Inform. 2020 Jul; 8(7): e15965.doi: 10.2196/15965.spa
dc.relation.references16. J. Kellett y F. Sebat. Make vital signs great again–A call for action. Eur J Intern Med, vol. 45(Supplement), nº C, p. 13–9. 2017.spa
dc.relation.references17. J. Kellett, M. De Vita, K. Hillman, R. Bellomo y D. Jones. The Assessment and Interpretation of Vital Signs. Textbook of Rapid Response Systems: Concept and Implementation, Switzerland, Springer International Publishing, 2017, p. 63–85.spa
dc.relation.references18. J. B. Cabello y V. Ruiz, «Critical Appraisal Skills Programme español, 01 01 1998. [En línea]. Available: http://www.redcaspe.org/herramientas/instrumentos. [Último acceso: 6 11 2020].spa
dc.relation.references19. Oxford Centre for Evidence-based Medicine. Levels of evidence. May 2001. Produced by Phillips B, Ball C, Sackett D, et al., since November 1998. Disponible en: http://163.1.96.10/docs/levels.html#levels. Consultado nov 1 de 2019.spa
dc.relation.references20. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews. 2015; 4(1):1. https://doi.org/10.1186/2046-4053-4-1.spa
dc.relation.references21. Chung HU, Kim BH, Lee JY, Lee J, Xie Z, Ibler EM, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science. 2019 Mar 1;363(6430): eaau0780. doi: 10.1126/science. aau0780.spa
dc.relation.references22. Kwizera A, Kissoon N, Musa N, Urayeneza O, Mujyarugamba P, Patterson AJ et al. “Sepsis in Resource-Limited Nations” Task Force of the Surviving Sepsis Campaign. A Machine Learning-Based Triage Tool for Children With Acute Infection in a Low Resource Setting. Pediatr Crit Care Med. 2019 Dec;20(12):e524-e530. doi: 10.1097/PCC.0000000000002121.spa
dc.relation.references23. Matam BR, Duncan H, Lowe D. Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit: Prediction of cardiac arrests. J Clin Monit Comput. 2019 Aug;33(4):713-724. doi: 10.1007/s10877-018-0198-0. 24. David Castiñeira, Katherine R Schlosser, Alon Geva, Amir R Rahmani, Gaston Fiore, Brian K Walsh, et al. Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of Stay After Intubation: A Data-Driven Machine Learning Approach. Respiratory Care September 2020, 65 (9) 1367-1377; DOI: https://doi.org/10.4187/respcare.07561.spa
dc.relation.references25. Dagdanpurev, Sumiyakhand Abe, Shigeto Sun, Guanghao Nishimura, Hidekazu Choimaa, Lodoiravsal Hakozaki, et al. A novel machine-learning-based infection screening system via 2013-2017 seasonal influenza patients vital signs as training datasets. Journal of Infection. 2019. 78. 10.1016/j.jinf.2019.02.008.spa
dc.relation.references26. Eytan D, Jegatheeswaran A, Mazwi ML, Assadi A, Goodwin AJ, Greer RW, et al. Temporal Variability in the Sampling of Vital Sign Data Limits the Accuracy of Patient State Estimation. Pediatr Crit Care Med. 2019 Jul;20(7): e333-e341. doi: 10.1097/PCC.0000000000001984.spa
dc.relation.references27. G. Seidel, S. Murthy, C. Peters, P. Rostalski and M. Görges. Feasibility of Automated Vital Sign Instability Detection in Children Admitted to the Pediatric Intensive Care Unit. 2019 Computing in Cardiology (CinC), Singapore, Singapore, 2019, pp. Page 1-Page 4, doi: 10.23919/CinC49843.2019.9005547.spa
dc.relation.references28. H. Singh Ravneet Kaur; Abhilash Gangadharan; Ashish Kumar Pandey; Ashray Manur; Yao Sun et al., "Neo-Bedside Monitoring Device for Integrated Neonatal Intensive Care Unit (iNICU)," in IEEE Access, vol. 7, pp. 7803-7813, 2019. doi: 10.1109/ACCESS.2018.2886879.spa
dc.relation.references29. Clark, M., Vergales, B., Paget-Brown, A., Terri J. Smoot, Douglas E. Lake, John L. et al. Predictive monitoring for respiratory decompensation leading to urgent unplanned intubation in the neonatal intensive care unit. Pediatr Res 73, 104– 110 (2013). https://doi.org/10.1038/pr.2012.155.spa
dc.relation.references30. Kim, S.Y., Kim, S., Cho, J, Young Suh Kim., In Suk Sol., Youngchul Sung, et al. A deep learning model for real-time mortality prediction in critically ill children. Crit Care 23, 279 (2019). https://doi.org/10.1186/s13054-019-2561-z.spa
dc.relation.references31. Ying Zhang, MEng. Real-Time Development of Patient-Specific Alarm Algorithms for Critical Care. Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France August 23-26, 2007.spa
dc.relation.references32. Brekke IJ, Puntervoll LH, Pedersen PB, Kellett J, Brabrand M. The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review. PLOS ONE. 2019. 14(1): e0210875. https://doi.org/10.1371/journal.pone.0210875spa
dc.relation.references33. Medic G, Kosaner Klie M, Atallah L, Louis Atallah, Jochen Weichert, Saswat Pandaet al. Evidence-based Clinical Decision Support Systems for the prediction and detection of three disease states in critical care: A systematic literature review F1000Research 2019, 8:1728 (https://doi.org/10.12688/f1000research.20498.1spa
dc.relation.references34. Sprogis, SK, Currey, J, Considine, J. Patient acceptability of wearable vital sign monitoring technologies in the acute care setting: A systematic review. J Clin Nurs. 2019; 28: 2732– 2744. https://doi.org/10.1111/jocn.14893.spa
dc.relation.references35. Muaddi Alharbi, Nicola Straiton, Sidney Smithb, Lis Neubeck, Robyn Gallagher. Data management and wearables in older adults: A systematic review. Maturitas;123 pp 100-110- 2019. https://doi.org/10.1016/j.maturitas.2019.03.012.spa
dc.relation.references36. M Harford, J Catherall, S Gerry, JD Young, P Watkinson. Availability and performance of image-based, non-contact methods of monitoring heart rate, blood pressure, respiratory rate, and oxygen saturation: a systematic review. Physiol. Meas; 40 (6). 2019. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-017-0615-3.spa
dc.relation.references37. Acharya S, William M. Mongan, Ilhaan Rasheed, Yuqiao Liu, Genevieve Dion, Adam Fontecchio, et al. Ensemble Learning Approach via Kalman Filtering for a Passive Wearable Respiratory Monitor". In: IEEE J Biomed Health Inform 23(3): 1022–1031. 2019. doi:10.1109/JBHI.2018.2857924.spa
dc.relation.references38. Heather P. Duncan, Balazs Fule, Iain Rice, Alice J. Sitch, David Lowe. Wireless monitoring and real-time adaptive predictive indicator of deterioration. In: Sci Rep 10: 11366. 2020. doi.org/10.1038/s41598-020-67835-4.spa
dc.relation.references39. Goto T, Carlos A. Camargo, Mohammad Kamal Faridi, Robert J. Freishtat, Kohei Hasegawa. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. In: JAMA Netw Open 2(1), e186937-e186937. 2019. doi:10.1001/jamanetworkopen.2018.6937-spa
dc.relation.references40. Ledys Izquierdo, Luis Fernando Niño, Jhon Sebastian Rojas. Modeling the vital sign space to detect the deterioration of patients in a pediatric intensive care unit. Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830Q (3 November 2020); doi: 10.1117/12.2579629.spa
dc.relation.references41. L.Roldán, S. Fachelli. Metodología de la Investigación Social Cuantitativa. 1,Ed Bellaterra: Universitat Autónoma de Barcelona. 2015. https://ddd.uab.cat/record/129382. [Consulta: 14 febrero 2021].spa
dc.relation.references42. S. de la fuente Fernández. Análisis de Componentes Principales. [Internet]. Escrito por S. Fernández, 2011. [citado feb 14 2021]. Disponible https://docplayer.es/74190975-Santiago-de-la-fuente-fernandez-analisis-componentes-principales.html.spa
dc.relation.references43. J.E. Briceño. Principio de las comunicaciones, Procesamiento digital de señales. 3 ed. Universidad de los Andes, Mérdia Venezuela. 2012. Disponible https://www.academia.edu/16344758/An%C3%A1lisis_de_Fourier?email_wor k_card=reading-history.spa
dc.relation.references44. P. Prandoni, M. Vetterli. Signal processing for communications. 1 Ed. Centre Midi Italy. Springer; 2008. ISBN 978-2-940222-20-9 (EPFL Press). 1-367 p.spa
dc.relation.references45. Conceptos fundamentals de series de tiempo. [Internet]. Escrito por German Aneiros. 2008-2009. [citado 14 feb 2021]. Disponible http://www.ptolomeo.unam.mx › jspui › bitstream. https://bopdf.info/edoc/3a4dc81/avohk-5k-series-2018-race-4-series-results-xlsxspa
dc.relation.references46. Brockwell, P.J, Davis, R.A. Introduction to Time Series and Forecasting. 2da Ed. Madrid: Springer; c2007. ISBN: 978-0-387-21657-7. 1-273 p.spa
dc.relation.references47. Brockwell, Peter J, Davis, Richard A. Introduction to Time Series and Forecasting. Third ed. Switzerland: Springer; 2016. ISBN 978-3-319-29852-8. 1-419p.spa
dc.relation.references48. Fournies, Aldo. Modelos ARMA y Box and Jenkins. Universidad Técnica Federico Santa María. Chile. 2015. 10.13140/RG.2.1.2907.0883.spa
dc.relation.references49. Pang Ning T, Steinbach M, Kumar B. Introduction to Data Mining. 2nd ed. Boston: Pearson Education, Inc; 2018. ISBN-10: 0321321367. 427p.spa
dc.relation.references50. S. de la fuente Fernández. Análisis conglomerados. [Internet]. Escrito por S. Fernández, 2011. [citado feb 14 2021]. Disponible https://www.academia.edu/32046069/An%C3%A1lisis_Conglomerados_Santi ago_de_la_Fuente_Fern%C3%A1ndezspa
dc.relation.references51. Orellana L. Análisis de Clúster ing K-means para la Base de Datos ZOO. [Master´s tesis]. [Chile]: Universidad Santiago de Chile; 2017. 48p.spa
dc.relation.references52. A. Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil; Albert Y. Zomaya et al A Survey of Clúster ing Algorithms for Big Data: Taxonomy and Empirical Analysis. IEEE Transactions on Emerging Topics in Computing; 2(3): pp. 267-279, 2014. doi: 10.1109/TETC.2014.2330519.spa
dc.relation.references53. Mangudo C. Two Step Clúster en SPSS y técnicas relacionadas. [Master´s tesis]. [Salamaca]: Universidad de Salamanca; 2015. 161p.spa
dc.relation.references54. Gen Li, Lu Sun. Characterizing Heterogeneity in Drivers Merging Maneuvers Using Two-Step Clúster Analysis. Journal of Advanced Transportation, vol. 2018, Article ID 5604375, 15 pages, 2018. https://doi.org/10.1155/2018/5604375.spa
dc.relation.references55. Orellana L. Análisis de Redes Neuronales para la Base de Datos ZOO Utilizando la Herramienta de Software “WEKA”. [Master´s tesis]. [Chile]: Universidad Santiago de Chile; 2017. 38p.spa
dc.relation.references56. H: Rivera, S. Zuñiga, L. Vera, L. Meneses, A. Escudero. Métodos de clasificación; minería de datos; datos meteorológicos, Número 20, Vol.2: 2018) Perfiles Revista Científica. ISSN 2477-9105. http://dspace.espoch.edu.ec/handle/123456789/9395.spa
dc.relation.references57. Ocaña-Riola, R. Modelos de Márkov aplicados a la investigación en ciencias de la salud. Interciencia 34(2009):157-162. 58. Lindsey JK. Statistical analysis of stochastic processes in time. Cambridge University Press. Cambridge, 2004. RU. 338 pp.spa
dc.relation.references59. Karatzas I, Schreve SE. Brownian Motion and Stochastic Calculus, 2a ed. Springer. Nueva York, NY, EEUU. 1991. 470 pp. 60. Ocaña-Riola R. Márkov processes for biomedical data analysis. En Conn M (Ed.) Source Book of Models for Biomedical Research. Humana. Nueva Cork, NY, EEUU. 2008. pp. 739-745.spa
dc.relation.references61. GEO tutoriales: Gestión de Operaciones [Internet]. Ejercicios cadenas de Márkov; 2011-2020 [citado: Noviembre 6 2020] Disponible https://www.gestiondeoperaciones.net/cadenas-de-Márkov/cadenas-de-Márkov-ejercicios-resueltos/.spa
dc.relation.references62. Juan Tornero Lucas. Machine Learning: Modelos Ocultos de Márkov (HMM) y Redes Neuronales Artificiales (ANN). [Master´s tesis]. [Barcelona]. Universitat de Barcelona; 2017. 53p.spa
dc.relation.references63. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, Ca, USA. Morgan Kaufmann Publishers Inc: San Mateo. 1988. 552p. ISBN:978-1-55860-479-7.spa
dc.relation.references64. Rabiner, L.R. 1989. A tutorial on hidden Márkov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2): 257-286. Doi:10.1109/5.18626.spa
dc.relation.references65. Toolbox for Matlab: Hidden Márkov Model (HMM) Toolbox for Matlab [Internet]. Written by Kevin Murphy, 1998. 2005-2020 [citado nov 6 2020]. Disponible: www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html.spa
dc.relation.references66. F. Hernando. Técnicas de procesado y representación de la señal de voz para el reconocimiento del habla en ambientes ruidosos con técnicas de Modelos Ocultos de Márkov. [internet] [Master´s tesis]. [Barcelona]: Universidad Politécnica de Cataluña 1993. P203.spa
dc.relation.references67. Sayandeep Acharya, William M. Mongan, Ilhaan Rasheed, Yuqiao Liu, Endla Anday, Genevieve Dion et al. Ensemble Learning Approach via a Kalman Filtered Márkov Model for a Passive Wearable Respiratory Monitor. IEEE J Biomed Health Inform. 23(3): 1022–1031. 2019. doi:10.1109/JBHI.2018.2857924.spa
dc.relation.references68. Aditya Nagori, Lovedeep Dhingra, Ambika Bhatnagar, Rakesh Lodha. Tavpritesh Sethi. Predicting Hemodynamic Shock from Thermal Images using Machine Learning. Scientific reports. 9:91. 2019. DOI:10.1038/s41598-018-36586-8.spa
dc.relation.references69. Ioan Stanculescu, Christopher K. I. Williams, and Yvonne Freer Autoregressive Hidden Márkov Models for the Early Detection of Neonatal Sepsis. IEEE journal of Biomedical and Health Informatics; 18(5)2014. Doi: 10.1109/JBHI.2013.2294692.spa
dc.relation.references70. Guoxian Yu, Xianxue Yu, Jun Wang. Network-aided Bi-Clúster ing for discovering cancer subtypes. Scientific Reports. 7: 1046. 2017. DOI:10.1038/s41598-017-01064-0.spa
dc.relation.references71. G. Tzortzis, A. Likas. The Global Kernel k-Means Clúster ing Algorithm. IEEE world congress on computational intelligence, neural networks. 2008. July 8. Hong Kong, c2008. pp1977 - 1984. 10.1109/IJCNN.2008.4634069.spa
dc.relation.references72. B. Said, A. Al-Sad, M. Tlili, M. Abdellatif, A. Mohamed, A. El-Fouly, et al. A deep learning approach for vital signs compression and energy efficient delivery in mHealth systems. IEEE Access. PP. 1-1. 2018. 10.1109/ACCESS.2018.2844308. 73. U. Acharya, P.Joseph, N. Kannathal, C. Min Lim, J. S. Suri. Heart rate variability: a review. Med Bio Eng Comput; 44:1031–1051. 2006. DOI 10.1007/s11517-006-0119-0.spa
dc.relation.references74. B. Yi Hao Wee, J. H. Lee, Y. H. Mok, S-L. Chong. A narrative review of heart rate and variability in sepsis. Ann Transl Med;8(12):768. 2020. dx.doi.org/10.21037/atm-20-148.spa
dc.relation.references75. l.Badke, L. Marsillio, D. Weese-Mayer, L. Sanchez-Pinto. Autonomic Nervous System Dysfunction in Pediatric Sepsis. Frontiers in Pediatrics; 6:280. 2018.doi: 10.3389/fped.2018.00280spa
dc.relation.references76. IBM Watson Machine Learning. [Internet]. U.S.: IBM Corporation 1994, [Last Updated: October 2020; cited Nov 6 2020] disponible: https://www.ibm.com/co-es/cloud/machine-learning/pricingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsCuidados Intensivos
dc.subject.decsCritical Care
dc.subject.decsPediatría
dc.subject.decsPediatrics
dc.subject.proposalSignos vitalesspa
dc.subject.proposalmodelo oculto de Márkovspa
dc.subject.proposalcuidado intensivo pediátrico.spa
dc.subject.proposalinteligencia artificialspa
dc.subject.proposalVital signseng
dc.subject.proposalHidden Márkov modeleng
dc.subject.proposalpediatric critical careeng
dc.subject.proposalArtificial Intelligenceeng
dc.titleModelamiento del espacio de signos vitales para detectar el deterioro de los pacientes en una unidad de cuidados intensivosspa
dc.title.translatedModeling the vital sign space to detect the deterioration of patients in a pediatric intensive care uniteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Modelamiento del espacio de signos vitales ledys izquierdo.pdf
Tamaño:
2.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en ingeniería Biomédica
Cargando...
Miniatura
Nombre:
32754316.2021.pdf.modeling the vital sign space.pdf
Tamaño:
604.06 KB
Formato:
Adobe Portable Document Format
Descripción:
Anexo: Ponencia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: