Estudio termodinámico de la adsorción de parabenos desde solución acuosa sobre carbones activados modificados con sales metálicas

dc.contributor.advisorGiraldo Gutiérrez, Lilianaspa
dc.contributor.authorMoreno Marenco, Astrid Roxannaspa
dc.contributor.researchgroupGrupo de Calorimetríaspa
dc.date.accessioned2020-12-10T15:50:59Zspa
dc.date.available2020-12-10T15:50:59Zspa
dc.date.issued2020-08-03spa
dc.description.abstractLos parabenos son compuestos orgánicos utilizados como conservantes en productos de cuidado personal, productos farmacéuticos, alimenticios e industriales. Siendo considerados como contaminantes emergentes debido a su actividad estrogénica, revelando una problemática ambiental de alto impacto. En esta investigación se prepararon una serie de carbones activados a partir de cuesco de palma africana (Elaeis guineensis) por modificación química con soluciones de CaCl2 y MgCl2 variando la concentración entre 1- 2 % p/v con activación física a 973 K y 1173 K en atmósfera de CO2, con el fin de evaluar su influencia en las propiedades químicas y texturales de la adsorción de parabenos de cadena alifática desde el metil al butilparabeno desde solución acuosa. Las características fisicoquímicas de los sólidos se evaluaron en la adsorción de parabenos alifáticos lineales desde solución acuosa a 281 K y 291 K. Los carbones activados obtenidos son esencialmente microporos, los cuales desarrollaron mayores características texturales con el incremento en la temperatura de activación y la disminución en la concentración de agente activante, lo que favorece la adsorción de los parabenos encontrando capacidades de adsorción entre 76,3 y 269,2 mg.g-1. De igual forma las impregnaciones modificaron la química superficial, cambiando de esta manera las interacciones establecidas entre la superficie del carbón activado con los parabenos y el solvente. Los datos obtenidos del estudio de adsorción fueron complementados con determinaciones calorimétricas encontrando que el proceso de adsorción es de naturaleza exotérmica y física con entalpías de inmersión entre -3,59 y -52,12 J.g-1, que involucra las interacciones parabeno-carbón activado y solvente-carbón activado, mientras que la interacción específica entre el parabeno y el carbón activado es de naturaleza endotérmica que requiere de energía para el desplazamiento del solvente de la superficie del carbón activado, por lo que el proceso de adsorción se favorece con el aumento de la temperatura.spa
dc.description.abstractParabens are organic compounds used as preservatives in personal care, pharmaceutical, food, and industrial products. Being considered as emerging pollutants due to its estrogenic activity, revealing a high impact environmental problem. In this research, a series of activated carbons were prepared from African palm shell (Elaeis guineensis) by chemical modification with CaCl2 and MgCl2 solutions varying the concentration between 1-2% w/v with physical activation at 973 K and 1173 K in an atmosphere of CO2 were prepared. The physicochemical characteristics of the solids were evaluated in the adsorption of linear aliphatic parabens from aqueous solution at 281 K and 291 K. The activated carbons obtained are essentially micropores, which developed greater textural characteristics with the increase in the activation temperature and the decrease in the concentration of the activating agent, which favors the adsorption of parabens, finding adsorption capacities between 76.3 and 269.2 mg.g-1. In the same way, the impregnations modified the surface chemistry, thus changing the interactions established between the surface of activated carbon with parabens and the solvent. The data obtained from the adsorption study were complemented with calorimetric determinations, finding that the adsorption process is exothermic and physical in nature with immersion enthalpies between -3.59 and -52.12 J.g-1, which involves the interactions paraben-activated carbon and solvent-activated carbon, while the specific interaction between paraben and activated carbon is endothermic in nature, requiring energy to displace the solvent from the surface of activated carbon, so the adsorption process is favored with increasing temperature.spa
dc.description.additionalLínea de Investigación: Termodinámicaspa
dc.description.degreelevelDoctoradospa
dc.description.projectEstudio termodinámico de la adsorción de parabenos desde solución acuosa sobre carbones activados modificados con sales metálicas FP44842-135-2017spa
dc.description.sponsorshipColciencias, Convocatoria 727 de 2015spa
dc.format.extent146spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMoreno-Marenco Astrid Roxanna. Estudio termodinámico de la adsorción de parabenos desde solución acuosa sobre carbones activados modificados con sales metálicas. Universidad Nacional de Colombia. 2020spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78694
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesOW/ORD Emerging Contaminants Workgroup Aquatic life criteria for contaminants of emerging concern. Part I General challenges and recommendations; 2008.spa
dc.relation.referencesMartin, O.; Kortenkamp, A. State of the art assessment of endocrine disrupters. Comparative analysis of endpoints and assays by human health and wildlife endpoint; 2009.spa
dc.relation.referencesEuropean Environment Agency The impacts of endocrine disrupters on wildlife, people and their environments – The Weybridge+15 (1996–2011) report; 2012; Vol. 2/2012spa
dc.relation.referencesPal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K. Y. H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 2014, 71, 46–62.spa
dc.relation.referencesSchriks, M.; Heringa, M. B.; van der Kooi, M. M. E.; de Voogt, P.; van Wezel, A. P. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010, 44, 461–476.spa
dc.relation.referencesWHO (World Health Organization) Guidelines for drinking water quality. Recommendations; Geneva, Switzerland, 2006; Vol. 1.spa
dc.relation.referencesBłędzka, D.; Gromadzińska, J.; Wąsowicz, W. Parabens. From environmental studies to human health. Environ. Int. 2014, 67, 27–42.spa
dc.relation.referencesDey, S.; Bano, F.; Malik, A. Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Majeti Narasimha Vara Prasad; Meththika Vithanage; Atya Kapley, Eds.; 2019; pp. 1–26.spa
dc.relation.referencesMasten, S. a. Butylparaben. Review of toxicological literature butylparaben 2005, 1–64.spa
dc.relation.referencesRodríguez-Gómez, R.; Roldán-Pijuán, M.; Lucena, R.; Cárdenas, S.; Zafra-Gómez, A.; Ballesteros, O.; Navalón, A.; Valcárcel, M. Stir-membrane solid–liquid–liquid microextraction for the determination of parabens in human breast milk samples by ultra high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2014, 1354, 26–33.spa
dc.relation.referencesChang, H. S.; Choo, K. H.; Lee, B.; Choi, S. J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J. Hazard. Mater. 2009, 172, 1–12.spa
dc.relation.referencesGil, M. J.; Soto, A. M.; Usma, J. I.; Gutiérrez, O. D. Contaminantes emergentes en aguas, efectos y posibles tratamientos. Prod. + Limpia 2012, 7, 52–73.spa
dc.relation.referencesAndersen, D. N.; Larsen, P. B. Survey of parabens; Part of the LOUS-review Environmental Project No. 1474; Copenhagen, 2013.spa
dc.relation.referencesTay, K. S.; Rahman, N. A.; Abas, M. R. Bin Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation. Chemosphere 2010, 81, 1446–1453.spa
dc.relation.referencesCanosa, P.; Rodríguez, I.; Rubí, E.; Negreira, N.; Cela, R. Formation of halogenated by-products of parabens in chlorinated water. Anal. Chim. Acta 2006, 575, 106–113.spa
dc.relation.referencesMoreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon N. Y. 2004, 42, 83–94.spa
dc.relation.referencesQuinlivan, P. A.; Li, L.; Knappe, D. R. U. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res. 2005, 39, 1663–1673.spa
dc.relation.referencesFaria, P.; Órfão, J.; Pereira, M. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 2004, 38, 2043–2052.spa
dc.relation.referencesMendoza Colina, E. J. Remoción de Pb (II) de soluciones mediante carbón activado: experimentos en lotes, Universidad Nacional de Colombia- Universidad del Magdalena, 2007.spa
dc.relation.referencesLeyva, R.; Flores, J.; Díaz, P.; Berber, M. Adsorción de cromo (VI) en solución acuosa sobre fibra de carbón activado. Inf. Tecnológica 2008, 19, 27–36.spa
dc.relation.referencesGoel, J.; Kadirvelu, K.; Rajagopal, C.; Kumar, V. Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. J. Hazard. Mater. 2005, 125, 211–220.spa
dc.relation.referencesMailler, R.; Gasperi, J.; Coquet, Y.; Derome, C.; Buleté, A.; Vulliet, E.; Bressy, A.; Varrault, G.; Chebbo, G.; Rocher, V. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. J. Environ. Chem. Eng. 2016, 4, 1102–1109.spa
dc.relation.referencesAbo El Naga, A. O.; El Saied, M.; Shaban, S. A.; El Kady, F. Y. Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J. Mol. Liq. 2019, 285, 9–19.spa
dc.relation.referencesSophia A., C.; Lima, E. C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17.spa
dc.relation.referencesBjörklund, K.; Li, L. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge; 2016.spa
dc.relation.referencesJaramillo, G.; Zapata, L. Aprovechamiento de los residuos sólidos orgánicos en Colombia, Universidad de Antioquia, 2008.spa
dc.relation.referencesGarcía N., J. A.; Cárdenas M., M. M.; Yañez A., E. E. Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia. Rev. Palmas 2010, 31, 41–48.spa
dc.relation.referencesForero-Núñez, C.; Cediel-Ulloa, A.; Rivera-Gil, J.; Suaza-Montalvo, A.; Sierra-Vargas, F. Estudio preliminar del potencial energético de cuesco de palma y cáscara de coco en Colombia. Rev. Ing. Solidar. 2012, 8, 19–25.spa
dc.relation.referencesVassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933.spa
dc.relation.referencesTan, I.; Ahmad, A.; Hameed, B. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 2008, 225, 13–28.spa
dc.relation.referencesda Silva Lacerda, V.; López-Sotelo, J. B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L. M.; Martín-Ramos, P.; Martín-Gil, J. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J. Environ. Manage. 2015, 155, 67–76.spa
dc.relation.referencesMohammad Razi, M. A.; Al-Gheethi, A.; Al-Qaini, M.; Yousef, A. Efficiency of activated carbon from palm kernel shell for treatment of greywater. Arab J. Basic Appl. Sci. 2018, 25, 103–110.spa
dc.relation.referencesVargas, D. P.; Gutiérrez, G.; Moreno, J. C. Relación entre la entalpía de inmersión de monolitos de carbón activado y parámetros texturales. Quim. Nova 2011, 34, 196–199.spa
dc.relation.referencesNasri, N. S.; Hamza, U. D.; Ismail, S. N.; Ahmed, M. M.; Mohsin, R. Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J. Clean. Prod. 2014, 71, 148–157.spa
dc.relation.referencesRashidi, N. A.; Yusup, S. Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J. Clean. Prod. 2017, 168, 474–486.spa
dc.relation.referencesVargas Delgadillo, D. P. Preparación, caracterización y funcionalización de materiales carbonosos para la adsorción de CO2, Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesAcevedo Corredor, S. A. Activación química de cuesco de palma africana (Elaeis Guineensis) con soluciones de sales metálicas en la preparación de carbones activados para la adsorción de CO2, Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesBarceló, D. L.; López de Alda, M. J. Contaminación y calidad química del agua: el problema de los contaminantes emergentes. Panel científico técnico Seguim. la política del agua. Jorn. Present. Result. 2008, 1–27.spa
dc.relation.referencesUnited States Environmental Protection Agency (USEPA) Summary of Nominations for the Fourth Contaminant Candidate List (CCL 4); 2016; p. 75.spa
dc.relation.referencesInstituto Nacional de Salud (INS) Vigilancia de la calidad del agua para consumo Humano. Análisis comparativo Brasil y Colombia.; Bogotá, Colombia, 2014.spa
dc.relation.referencesMinisterio de la Protección Social. Ministero de Ambiente Vivienda y Desarrollo Territorial Resolución 2115 del 22 de junio de 2007. Por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano; Colombia, 2007; p. 23.spa
dc.relation.referencesArbeláez Salazar, P. A. Contaminantes emergentes en aguas residuales y de río y fangos de depuradora, Universitat Rovira I Virgili, 2015.spa
dc.relation.referencesNiemuth, N.; Klaper, R. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 2015, 135, 38–45.spa
dc.relation.referencesSanderson, H.; Fricker, C.; Brown, S.; Majury, A.; Liss, S. Antibiotic resistance genes as an emerging environmental contaminant. Environ. Rev. 2016, 24, 205–218.spa
dc.relation.referencesKalia, V. C. Pharmaceutical and personal care product contamination: a global scenario. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Vara Prasad, M. N.; Vithanage, M.; Kapley, A., Eds.; Elsevier Inc., 2019; pp. 27–61.spa
dc.relation.referencesKuster, M.; López de Alda, M.; Hernando, M.; Petrovic, M.; Martin-Alonso, J.; Barceló, D. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J. Hydrol. 2008, 358, 112–123.spa
dc.relation.referencesAngelov, T.; Vlasenko, A.; Tashkov, W. HPLC Determination of pKa of parabens and investigation on their lipophilicity parameters. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 188–197.spa
dc.relation.referencesMackay, D.; Shiu, W. Y.; Ma, K.; Lee, S. C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals; 2nd ed.; CRC Press. Taylor & Francis Group, 2006.spa
dc.relation.referencesBrand, W.; Boon, P. E.; Hessel, E. V. S.; Meesters, J. A. J.; Weda, M.; Schuur, A. G. Exposure to and toxicity of methyl-, ethyl-and propylparaben; Netherlands, 2017.spa
dc.relation.referencesYalkowsky, S. H.; He, Y.; Jain, P. Handbook Of Aqueous Solubility Data; 2nd ed.; CRC Press. Taylor & Francis Group: Boca Raton, 2010.spa
dc.relation.referencesMuñoz Peña, M. J. Eliminación de contaminantes parabenos en agua mediante procesos físicos, químicos y electroquímicos, Universidad de Extremadura, 2015.spa
dc.relation.referencesHessel, E. V. S.; Boon, P. E.; den Braver-Sewradj, S. P.; Meesters, J. A. J.; Weda, M.; Brand, W. Review on butylparaben: exposure, toxicity and risk assessment; Netherlands, 2019.spa
dc.relation.referencesDiamanti-Kandarakis, E.; Bourguignon, J.; Guidice, L.; Hauser, R.; Prins, G.; Soto, A.; Zoeller, T.; Gore, A. Endocrine-disrupting chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342.spa
dc.relation.referencesHaman, C.; Dauchy, X.; Rosin, C.; Munoz, J. F. Occurrence, fate and behavior of parabens in aquatic environments: A review. Water Res. 2015, 68, 1–11. 55. Brausch, J. M.; Rand, G. M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2015, 82, 1518–1532.spa
dc.relation.referencesLee, J.; Bang, S. H.; Kim, Y. H.; Min, J. Toxicities of four parabens and their mixtures to Daphnia magna and Aliivibrio fischeri. Environ. Heal. Toxicol. 2018, 33, e2018018.spa
dc.relation.referencesBoberg, J.; Taxvig, C.; Christiansen, S.; Hass, U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod. Toxicol. 2010, 30, 301–312.spa
dc.relation.referencesBolong, N.; Ismail, A. F.; Salim, M. R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 238, 229–246.spa
dc.relation.referencesPugazhendhi, D.; Pope, G. S.; Darbre, P. D. Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J. Appl. Toxicol. 2005, 25, 301–309.spa
dc.relation.referencesBergfeld, W. F.; Belsito, D. V; Klaassen, C. D.; Liebler, D. C.; Hill, R. A.; James, G.; Shank, R. C.; Slaga, T. J.; Snyder, P. W.; Scientific, S. Amended Safety Assessment of Parabens as Used in Cosmetics; Washington, D. C., 2018.spa
dc.relation.referencesKaur, H.; Hippargi, G.; Pophali, G. R.; Bansiwal, A. K. Treatment methods for removal of pharmaceuticals and personal care products from domestic wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Vara Prasad, M. N.; Vithanage, M.; Kapley, A., Eds.; Elsevier Inc., 2019; pp. 129–150.spa
dc.relation.referencesKwarciak-Kozłowska, A. Removal of pharmaceuticals and personal care products by ozonation, advance oxidation processes, and membrane separation. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Vara Prasad, M. N.; Vithanage, M.; Kapley, A., Eds.; Elsevier Inc., 2019; pp. 151–171.spa
dc.relation.referencesMorone, A.; Mulay, P.; Kamble, S. P. Removal of pharmaceutical and personal care products from wastewater using advanced materials. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Vara Prasad, M. N.; Vithanage, M.; Kapley, A., Eds.; Elsevier Inc., 2019; pp. 173–212.spa
dc.relation.referencesKatsigiannis, A.; Noutsopoulos, C.; Mantziaras, J.; Gioldasi, M. Removal of emerging pollutants through Granular Activated Carbon. Chem. Eng. J. 2015, 280, 49–57.spa
dc.relation.referencesRossner, A.; Snyder, S. A.; Knappe, D. R. U. Removal of emerging contaminants of concern by alternative adsorbents. Water Res. 2009, 43, 3787–3796.spa
dc.relation.referencesÁlvarez, M. A.; Ruidíaz-Martínez, M.; Cruz-Quesada, G.; López-Ramón, M. V.; Rivera-Utrilla, J.; Sánchez-Polo, M.; Mota, A. J. Removal of parabens from water by UV-driven advanced oxidation processes. Chem. Eng. J. 2020, 379, 122334.spa
dc.relation.referencesChen, Y.; Deng, P.; Xie, P.; Shang, R.; Wang, Z.; Wang, S. Heat-activated persulfate oxidation of methyl- and ethyl-parabens: Effect, kinetics, and mechanism. Chemosphere 2017, 168, 1628–1636.spa
dc.relation.referencesTay, K. S.; Rahman, N. A.; Abas, M. R. Bin Kinetic studies of the degradation of parabens in aqueous solution by ozone oxidation. Environ. Chem. Lett. 2010, 8, 331–337.spa
dc.relation.referencesHernández-Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C. J. N. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res. 2011, 45, 2887–2896.spa
dc.relation.referencesRan, J.; Li, M.; Zhang, C.; Xue, F.; Tao, M.; Zhang, W. Synergistic adsorption for parabens by an amphiphilic functionalized polypropylene fiber with tunable surface microenvironment. ACS Omega 2020, 5, 2920–2930.spa
dc.relation.referencesMashile, G. P.; Mpupa, A.; Nqombolo, A.; Dimpe, K. M.; Nomngongo, P. N. Recyclable magnetic waste tyre activated carbon-chitosan composite as an effective adsorbent rapid and simultaneous removal of methylparaben and propylparaben from aqueous solution and wastewater. J. Water Process Eng. 2020, 33, 101011.spa
dc.relation.referencesChin, Y. P.; Mohamad, S.; Abas, M. R. Bin Removal of parabens from aqueous solution using B-cyclodextrin cross-linked polymer. Int. J. Mol. Sci. 2010, 11, 3459–3471.spa
dc.relation.referencesOliveira, F. F. De; Moura, K. O.; Costa, L. S.; Vidal, C. B.; Loiola, A. R.; Nascimento, R. F. Reactive adsorption of parabens on synthesized micro- and mesoporous silica from coal fly ash: pH effect on the modification process. ACS Omega 2020, 5, 3346–3357.spa
dc.relation.referencesChen, H. W.; Chiou, C. S.; Chang, S. H. Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group. Powder Technol. 2017, 311, 426–431.spa
dc.relation.referencesMallek, M.; Chtourou, M.; Portillo, M.; Monclús, H.; Walha, K.; Salah, A. ben; Salvadó, V. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J. Environ. Manage. 2018, 223, 576–585.spa
dc.relation.referencesMailler, R.; Gasperi, J.; Coquet, Y.; Deshayes, S.; Zedek, S.; Cren-Olivé, C.; Cartiser, N.; Eudes, V.; Bressy, A.; Caupos, E.; Moilleron, R.; Chebbo, G.; Rocher, V. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res. 2014, 72, 315–330.spa
dc.relation.referencesDelgado, N. Y.; Capparelli, A. L.; Marino, D. J.; Navarro, A. F.; Peñuela, G. A.; Ronco, A. E. Adsorption of pharmaceuticals and personal care products on granular activated carbon. J. Surf. Eng. Mater. Adv. Technol. 2016, 6, 183–200.spa
dc.relation.referencesAtheba, P.; Allou, N. G. B.; Drogui, P.; Trokourey, A. Adsorption Kinetics and Thermodynamics Study of Butylparaben on Activated Carbon Coconut Based. J. Encapsulation Adsorpt. Sci. 2018, 8, 39–57.spa
dc.relation.referencesBernal-Romero del Hombre Bueno, M. de los Á.; Boluda-Botella, N.; Prats Rico, D. Removal of emerging pollutants in water treatment plants: adsorption of methyl and propylparaben onto powdered activated carbon. Adsorption 2019, 25, 983–999.spa
dc.relation.referencesBernal, V.; Giraldo, L.; Moreno-Piraján, J. C.; Balsamo, M.; Erto, A. Mechanisms of Methylparaben Adsorption onto Activated Carbons: Removal Tests Supported by a Calorimetric Study of the Adsorbent–Adsorbate Interactions. Molecules 2019, 24, 413.spa
dc.relation.referencesHúmpola, P. D. Estudio de la adsorción de compuestos biorrefractarios en soluciones acuosas, Universidad Nacional del Litoral, 2013.spa
dc.relation.referencesAylas Orejón, E. J. Estudio de la adsorción de fenol, 4-nitrofenol y 4-clorofenol utilizando carbón activado modificado con cobre, Pontificia Universidad Católica del Perú, 2018.spa
dc.relation.referencesBansal, R.; Goyal, M. Activated Carbon Adsorption from Solutions. In Activated Carbon Adsorption; CRC Press. Taylor & Francis Group: New York, 2005; pp. 145–199.spa
dc.relation.referencesMartín Martínez, J. M. Evaluación de superficies de carbones. In Adsorción física de gases y vapores por carbones; Universidad de Alicante: Alicante, 1990; pp. 5–84.spa
dc.relation.referencesMarsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier Ltd, 2006.spa
dc.relation.referencesKaur, H.; Bansiwal, A.; Hippargi, G.; Pophali, G. R. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism. Environ. Sci. Pollut. Res. 2018, 25, 20473–20485.spa
dc.relation.referencesLimousin, G.; Gaudet, J. P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochemistry 2007, 22, 249–275.spa
dc.relation.referencesKipling, J. J. Adsorption from Solutions of Non-Electrolytes; Academic Press, 1965.spa
dc.relation.referencesShahbeig, H.; Bagheri, N.; Ghorbanian, S. A.; Hallajisani, A.; Poorkarimi, S. A new adsorption isotherm model of aqueous solutions on granular activated carbon. World J. Model. Simul. 2013, 9, 243–254.spa
dc.relation.referencesDo, D. D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, 1998; Vol. 2.spa
dc.relation.referencesYang, C. hai Statistical mechanical study on the Freundlich isotherm equation. J. Colloid Interface Sci. 1998, 208, 379–387.spa
dc.relation.referencesDriss Alami, S. Ben Aprovechamiento de hueso de aceituna. Biosorción de iones metálicos, Universidad de Granada, 2010.spa
dc.relation.referencesAnnadurai, G.; Ling, L.; Lee, J. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. J. Hazard. Mater. 2008, 152, 337–346.spa
dc.relation.referencesLiu, Y. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 2008, 61, 229–242.spa
dc.relation.referencesTseng, R.; Wu, F. Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J. Hazard. Mater. 2008, 155, 277–287.spa
dc.relation.referencesÇeçen, F.; Aktas, Ö. Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment; John Wiley & Sons, 2012.spa
dc.relation.referencesHo, Y.; Ng, J.; McKay, G. Kinetics of pollutant sorption by biosorbents: Review. Sep. Purif. Methods 2000, 29, 189–232.spa
dc.relation.referencesTseng, R. L.; Wu, F. C.; Juang, R. S. Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. J. Taiwan Inst. Chem. Eng. 2010, 41, 661–669.spa
dc.relation.referencesWu, F. C.; Tseng, R. L.; Huang, S. C.; Juang, R. S. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review. Chem. Eng. J. 2009, 151, 1–9.spa
dc.relation.referencesHo, Y.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.spa
dc.relation.referencesTseng, R.; Tseng, S.; Wu, F. Preparation of high surface area carbons from corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 279, 69–78.spa
dc.relation.referencesHo, Y. S.; McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340.spa
dc.relation.referencesAvrami, M. Kinetics of phase change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112.spa
dc.relation.referencesCardoso, N. F.; Pinto, R. B.; Lima, E. C.; Calvete, T.; Amavisca, C. V.; Royer, B.; Cunha, M. L.; Fernandes, T. H. M.; Pinto, I. S. Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 2011, 269, 92–103.spa
dc.relation.referencesWu, F.; Tseng, R.; Juang, R. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res. 2001, 35, 613–618.spa
dc.relation.referencesMartín Martínez, J. M. Grafito y Carbones. In Adsorción Fisica de Gases y Vapores por Carbones; Universidad de Alicante: Alicante, 1990; pp. 1–39.spa
dc.relation.referencesStoeckli, H. F. Microporous carbons and their characterization: The present state of the art. Carbon N. Y. 1990, 28, 1–6.spa
dc.relation.referencesMartín Martínez, J. M. Generalidades Sobre Adsorción Física de Gases y Vapores en Carbones. In Adsorción Física de Gases y Vapores por Carbones; Universidad de Alicante: Alicante, 1990; pp. 5–40.spa
dc.relation.referencesDaud, W. M. A. W.; Houshamnd, A. H. Textural characteristics, surface chemistry and oxidation of activated carbon. J. Nat. Gas Chem. 2010, 19, 267–279.spa
dc.relation.referencesRodrı́guez-Reinoso, F.; Molina-Sabio, M. Textural and chemical characterization of microporous carbons. Adv. Colloid Interface Sci. 1998, 76–77, 271–294.spa
dc.relation.referencesRouquerol, F.; Rouquerol, J.; Sing, K. S. W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids; 2nd ed.; Elsevier Ltd, 2014.spa
dc.relation.referencesAburub, A.; Wurster, D. E. Phenobarbital interactions with derivatized activated carbon surfaces. J. Colloid Interface Sci. 2006, 296, 79–85.spa
dc.relation.referencesBoehm, H. Surface oxides on carbon and their analysis: A critical assessment. Carbon N. Y. 2002, 40, 145–149.spa
dc.relation.referencesBandosz, T. J.; Ania, C. O. Surface chemistry of activated carbons and its characterization. In Activated Carbon Surfaces in Environmental Remediation; Bandosz, T. J., Ed.; Elsevier Ltd, 2006; Vol. 7, pp. 159–229.spa
dc.relation.referencesIwasaki, S.; Fukuhara, T.; Abe, I.; Yanagi, J.; Mouri, M.; Iwashima, Y.; Tabuchi, T.; Shinohara, O. Adsorption of alkylphenols onto microporous carbons prepared from coconut shell. Synth. Met. 2002, 125, 207–211.spa
dc.relation.referencesTorrellas, S. Á.; García Lovera, R.; Escalona, N.; Sepúlveda, C.; Sotelo, J. L.; García, J. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem. Eng. J. 2015, 279, 788–798.spa
dc.relation.referencesAttia, A.; Girgis, B.; Fathy, N. Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dye. Pigment. 2008, 76, 282–289.spa
dc.relation.referencesGuo, Y.; Yang, S.; Fu, W.; Qi, J.; Li, R.; Wang, Z.; Xu, H. Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dye. Pigment. 2003, 56, 219–229.spa
dc.relation.referencesLópez Torres, J. M. Estudio preliminar para la producción y caracterización de carbón activado a partir del cuesco de palma africana y uso en la decoloración de aceites vegetales, Universidad de la Sabana, 2001.spa
dc.relation.referencesMejía Miranda, O. M.; Patiño Villamizar, S. R. Aprovechamiento de los residuos de la industria palmera mediante la obtención de carbón activado a escala laboratorio, Universidad Industrial de Santander, 2006.spa
dc.relation.referencesAbdullah, N.; Sulaiman, F. The Oil Palm Wastes in Malaysia. In Biomass Now - Sustainable Growth and Use; Miodrag Darko Matovic, Ed.; Queen’s University: Canada, 2013; pp. 75–100.spa
dc.relation.referencesRuiz, R.; Romero, H. M. The Growth Of The Oil Palm Industry In Colombia. 2011.spa
dc.relation.referencesRuiz, H. a; Zambrano, M. a; Giraldo, L. Production and characterisation of activated carbon from oil-palm shell for carboxylic acid. Orient. J. Chem. 2015, 31, 753–762.spa
dc.relation.referencesNizamuddin, S.; Jayakumar, N. S.; Sahu, J. N.; Ganesan, P.; Bhutto, A. W.; Mubarak, N. M. Hydrothermal carbonization of oil palm shell. Korean J. Chem. Eng. 2015, 32, 1789–1797.spa
dc.relation.referencesDaud, W. M. A. W.; Ali, W. S. W. Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresourse Technol. 2004, 93, 63–69.spa
dc.relation.referencesJung, S. H.; Oh, S. J.; Choi, G. G.; Kim, J. S. Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass. J. Anal. Appl. Pyrolysis 2014, 109, 123–131.spa
dc.relation.referencesGonzález-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414.spa
dc.relation.referencesMolina-Sabio, M.; Rodríguez-Reinoso, F. Role of chemical activation in the development of carbon porosity. Colloids Surfaces A Physicochem. Eng. Asp. 2004, 241, 15–25.spa
dc.relation.referencesErfanifar, E.; Jahanjo, V.; Kasalkhe, N.; Erfanifar, E. Acute toxicity test of Zinc Chloride (ZnCl2) in sobaity seabream (Sparidebtex hasta). Res. Mar. Sci. 2016, 47–51.spa
dc.relation.referencesLee, L. Z.; Ahmad Zaini, M. A. Metal chloride salts in the preparation of activated carbon and their hazardous outlook. Desalin. Water Treat. 2015, 57, 16078–16085.spa
dc.relation.referencesMolina-Sabio, M.; Pérez, V.; Rodríguez-Reinoso, F. Impregnation of activated carbon with chromium and copper salts: Effect of porosity and metal content. Carbon N. Y. 1994, 32, 1259–1265.spa
dc.relation.referencesGryglewicz, G.; Lorenc-Grabowska, E. Mesoporous activated carbons from Ca and Fe exchanged sub-bituminous and bituminous coals. Carbon N. Y. 2004, 42, 688–691.spa
dc.relation.referencesJuárez-Galán, J. M.; Silvestre-Albero, A.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Synthesis of activated carbon with highly developed “mesoporosity.” Microporous Mesoporous Mater. 2009, 117, 519–521.spa
dc.relation.referencesLiu, L.; Sun, J.; Cai, C.; Wang, S.; Pei, H.; Zhang, J. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour. Technol. 2009, 100, 5865–5871.spa
dc.relation.referencesMondal, P.; Majumder, C. B.; Mohanty, B. Removal of trivalent arsenic (As(III)) from contaminated water by calcium chloride (CaCl2)-impregnated rice husk carbon. Ind. Eng. Chem. Res. 2007, 46, 2550–2557.spa
dc.relation.referencesRufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q. A comparative study of chemical treatment by FeCl3, MgCl2, and ZnCl2 on microstructure, surface chemistry, and double-layer capacitance of carbons from waste biomass. J. Mater. Res. 2010, 25, 1451–1459.spa
dc.relation.referencesKirsh, Y.; Yariv, S.; Shoval, S. Kinetic analysis of thermal dehydration and hydrolysis of MgCl2.6H2O by DTA and TG. J. Therm. Anal. 1987, 32, 393–408.spa
dc.relation.referencesHuang, Q.; Lu, G.; Wang, J.; Yu, J. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. J. Anal. Appl. Pyrolysis 2011, 91, 159–164.spa
dc.relation.referencesRongti, L.; Wei, P.; Sano, M.; Li, J. Kinetics of reduction of magnesia with carbon. Thermochim. Acta 2002, 390, 145–151.spa
dc.relation.referencesAcevedo, S.; Giraldo, L.; Moreno-Piraján, J. C. Adsorption of CO2 onto activated carbons prepared by chemical activation with metallic salts. Int. J. Chem. React. Eng. 2017, 15, 1–11.spa
dc.relation.referencesRyu, Z.; Zheng, J.; Wang, M.; Zhang, B. Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods. J. Colloid Interface Sci. 2000, 230, 312–319.spa
dc.relation.referencesRios, R. V. R. A.; Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Kinetic restrictions in the characterization of narrow microporosity in carbon materials. J. Phys. Chem. C 2007, 111, 3803–3805.spa
dc.relation.referencesThommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.spa
dc.relation.referencesGregg, S. J.; Jacobs, J. An examination of the Adsorption Theory of Brunauer, Emmett and Teller and Brunauer, Deming, Deming and Teller. Trans. Faraday Soc. 1948, 574–588.spa
dc.relation.referencesChiou, C. Fundamentals of the Adsorption Theory. In Partition and Adsorption of Organic Contaminants in Environmental Systems; John Wiley & Sons, Inc, 2002; pp. 39–52.spa
dc.relation.referencesKraehenbuehl, F.; Stoeckli, H. F.; Addoun, A.; Ehrburger, P.; Donnet, J. B. The use of immersion calorimetry in the determination of micropore distribution of carbons in the course of activation. Carbon N. Y. 1986, 24, 483–488.spa
dc.relation.referencesStoeckli, F.; López-Ramón, M.; Hugi-Cleary, D.; Guillot, A. Micropore sizes in activated carbons determined from the Dubinin–Radushkevich equation. Carbon N. Y. 2001, 39, 1115–1116.spa
dc.relation.referencesRouquerol, F.; Rouquerol, J.; Lewellyn, P.; Maurin, G.; Sing, K. Adsorption by powders and porous solids: Principles, methodology and applications; Elsevier: Nertherlands, 2013.spa
dc.relation.referencesCaguiat, J. N.; Kirk, D. W.; Jia, C. Q. Uncertainties in characterization of nanoporous carbons using density functional theory-based gas physisorption. Carbon N. Y. 2014, 72, 47–56.spa
dc.relation.referencesNeimark, A. V.; Lin, Y.; Ravikovitch, P. I.; Thommes, M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon N. Y. 2009, 47, 1617–1628.spa
dc.relation.referencesGor, G. Y.; Thommes, M.; Cychosz, K. A.; Neimark, A. V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon N. Y. 2012, 50, 1583–1590.spa
dc.relation.referencesThommes, M.; Cychosz, K. A.; Neimark, A. V. Advanced Physical Adsorption Characterization of Nanoporous Carbons. In Novel Carbon Adsorbents; Elsevier, 2012; pp. 107–139.spa
dc.relation.referencesContescu, A.; Contescu, C.; Putyera, K.; Schwarz, J. Surface acidity of carbons characterized by their continuous pK distribution and Boehm titration. Carbon N. Y. 1997, 35, 83–94.spa
dc.relation.referencesGoertzen, S.; Thériault, K.; Oickle, A.; Tarasuk, A.; Andreas, H. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon N. Y. 2010, 48, 1252–1261.spa
dc.relation.referencesMenéndez, J.; Illán, M.; León, C.; Radovic, L. On the difference between the isoelectric point and the point of zero charge of carbons. Carbon N. Y. 1995, 33, 1655–1657. 156. Noh, S.; Schwarz, A. Estimation of point zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 1989, 130, 157–164.spa
dc.relation.referencesMorán, D. O. Modificación química de carbones activados con ácidos minerales, Universidad de Extremadura, 2016.spa
dc.relation.referencesRodríguez-Estupiñán, J. P. Comparación de las interacciones energéticas de SBA-15, carbones mesoporosos organizados y carbones modificados químicamente en la adsorción de metales desde solución acuosa, Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesFigueiredo, J. .; Pereira, M. F. .; Freitas, M. M. .; Órfão, J. J. . Modification of the surface chemistry of activated carbons. Carbon N. Y. 1999, 37, 1379–1389.spa
dc.relation.referencesBandosz, T. J.; Jagiello, J.; Contescu, C.; Schwarz, J. A. Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon N. Y. 1993, 31, 1193–1202.spa
dc.relation.referencesArias, J. M.; Paternina, E.; Barragán, D. Adsorción física sobre sólidos: Aspectos termodinâmicos. Quim. Nova 2009, 32, 1350–1355.spa
dc.relation.referencesLima, E. C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J. C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434.spa
dc.relation.referencesLiu, Y. Is the Free Energy Change of Adsorption Correctly Calculated ? J. Chem. Eng. Data 2009, 54, 1981–1985.spa
dc.relation.referencesGhosal, P. S.; Gupta, A. K. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 2016, 225, 137–146.spa
dc.relation.referencesErbil, H. . Surface Chemistry Of Solid and Liquid Interfaces; Blackwell Publishing Ltd.: Malden, USA, 2006.spa
dc.relation.referencesMoreno-Piraján, J. C.; Giraldo, L. Determination of the Immersion Enthalpy of Activated Carbon By Microcalorimetry of the Heat Conduction. Instrum. Sci. Technol. 2000, 28, 171–178.spa
dc.relation.referencesSilvestre-Albero, J.; Gómez de Salazar, C.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Characterization of microporous solids by immersion calorimetry. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 187, 151–165.spa
dc.relation.referencesStoeckli, F.; Centeno, T. A. On the characterization of microporous carbons by immersion calorimetry alone. Carbon N. Y. 1997, 35, 1097–1100.spa
dc.relation.referencesGiraldo, L.; Moreno-Piraján, J. C. Relation between immersion enthalpies of activated carbons in different liquids, textural properties, and phenol adsorption. J. Therm. Anal. Calorim. 2014, 117, 1517–1523.spa
dc.relation.referencesRouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K. Adsorption at the liquid-solid interface: Thermodynamics and methodology. In Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 2013; pp. 118–157.spa
dc.relation.referencesMenéndez, J. A. On the use of calorimetric techniques for the characterization of carbons: A brief review. Thermochim. Acta 1998, 312, 79–86.spa
dc.relation.referencesDenoyel, R.; Rouquerol, F.; Rouquerol, J. Porous texture and surface characterization from liquid-solid interactions: Immersion calorimetry and adsorption from solution. In Adsorption by Carbons; Elsevier Ltd, 2008; pp. 273–300.spa
dc.relation.referencesBriceño Gamba, N. O. Características de las interacciones tipo donor-aceptor en los carbones activados y su influencia en el proceso de adsorción, Universidad Nacional de Colombia, 2006.spa
dc.relation.referencesGiraldo, L.; Moreno-Piraján, J. C.; Huertas, J. I. Heat Conduction Micro-Calorimeter With Metallic Reaction Cell and Improved Heat Flux Sensing System. Instrum. Sci. Technol. 2002, 30, 177–186.spa
dc.relation.referencesVargas, D. P.; Giraldo, L.; Moreno-Piraján, J. C. Calorimetric study of the CO2 adsorption on carbon materials. J. Therm. Anal. Calorim. 2014, 117, 1299–1309.spa
dc.relation.referencesBernal Fernández, V. Adsorción de compuestos de uso farmacéutico sobre carbones activados granulares con diferente química superficial: aspectos termodinámicos de las interacciones sólido-líquido, Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesMoreno-Marenco, A. R.; Giraldo, L.; Moreno-Piraján, J. C. Relación entre la capacidad de adsorción y la entalpía de inmersión de carbones activados modificados químicamente en soluciones acuosas de metilparabeno. Afinidad LXXVI 2019, 587, 213–220.spa
dc.relation.referencesRouquerol, F.; Rouquerol, J.; Sing, K. S. W. Assessment of Mesoporosity. In Adsorption by Powders and Porous Solids; Elsevier Ltd, 2014; pp. 191–213.spa
dc.relation.referencesGuo, J.; Lua, A. C. Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Mater. Lett. 2002, 55, 334–339.spa
dc.relation.referencesSilvestre-Albero, A.; Gonçalves, M.; Itoh, T.; Kaneko, K.; Endo, M.; Thommes, M.; Rodríguez-Reinoso, F.; Silvestre-Albero, J. Well-defined mesoporosity on lignocellulosic-derived activated carbons. Carbon N. Y. 2012, 50, 66–72.spa
dc.relation.referencesParedes-Laverde, M.; Salamanca, M.; Silva-Agredo, J.; Manrique-Losada, L.; Torres-Palma, R. A. Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions. J. Environ. Chem. Eng. 2019, 7, 1–12.spa
dc.relation.referencesLua, A. C.; Yang, T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 2004, 274, 594–601.spa
dc.relation.referencesThommes, M. Physical adsorption characterization of nanoporous materials. Chemie-Ingenieur-Technik 2010, 82, 1059–1073.spa
dc.relation.referencesVargas, D. P.; Giraldo, L.; Moreno-Piraján, J. C. Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry. Adsorption 2016, 22, 717–723.spa
dc.relation.referencesCarvajal-Bernal, A. M. Estudio termodinámico de la adsorción de hidrocarburos lineales y compuestos fenólicos sobre carbones activados, Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesVargas, D. P.; Giraldo, L.; Moreno-Piraján, J. C. CO2 adsorption on activated carbon honeycomb-monoliths: A comparison of Langmuir and Tóth models. Int. J. Mol. Sci. 2012, 13, 8388–8397.spa
dc.relation.referencesVargas, D. P.; Giraldo, L.; Moreno-Piraján, J. C. Calorimetric study of activated carbons impregnated with CaCl2. Open Chem. 2015, 13, 683–688.spa
dc.relation.referencesMoreno-Marenco, A. R.; Giraldo, L.; Moreno-Piraján., J. C. Adsorption of n-butylparaben from aqueous solution on surface of modified granular activated carbons prepared from African palm shell. Thermodynamic study of interactions. J. Environ. Chem. Eng. 2020, 8, 103969.spa
dc.relation.referencesInagaki, M.; Kobayashi, S.; Kojin, F.; Tanaka, N.; Morishita, T.; Tryba, B. Pore structure of carbons coated on ceramic particles. Carbon N. Y. 2004, 42, 3153–3158.spa
dc.relation.referencesVassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C.; Morgan, T. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33.spa
dc.relation.referencesStrelko, V.; Malik, D. J.; Streat, M. Characterisation of the surface of oxidised carbon adsorbents. Carbon N. Y. 2002, 40, 95–104.spa
dc.relation.referencesSalame, I. I.; Bandosz, T. J. Surface chemistry of activated carbons: Combining the results of Temperature-Programmed Desorption, Boehm, and Potentiometric Titrations. J. Colloid Interface Sci. 2001, 240, 252–258.spa
dc.relation.referencesGorgulho, H. F.; Mesquita, J. P.; Gonçalves, F.; Pereira, M. F. R.; Figueiredo, J. L. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon N. Y. 2008, 46, 1544–1555.spa
dc.relation.referencesda Silva, W. L.; Salomão, A. A.; Vila, M. M.; Tubino, M. Influence of water and ultraviolet irradiation on the induction period of the oxidation of biodiesel. J. Braz. Chem. Soc. 2017, 28, 676–680.spa
dc.relation.referencesMontes-Morán, M. A.; Suárez, D.; Menéndez, J. A.; Fuente, E. On the nature of basic sites on carbon surfaces: An overview. Carbon N. Y. 2004, 42, 1219–1225.spa
dc.relation.referencesSahira, J.; Mandira, A.; Bhadra Prasad, P.; Raja Ram, P. Effects of activating agents on the activated carbons prepared from Lapsi Seed Stone. Res. J. Chem. Sci. 2013, 3, 19–24.spa
dc.relation.referencesMoreno-Pirajan, J. C.; Giraldo, L. Study of carbon foams synthesized by the pyrolysis of wastes coconut shells of african palm at different conditions and use of immersion calorimetry as a tool for characterization. Orient. J. Chem. 2013, 29, 877–887.spa
dc.relation.referencesWang, G.; Dou, B.; Zhang, Z.; Wang, J.; Liu, H.; Hao, Z. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon. J. Environ. Sci. (China) 2015, 30, 65–73.spa
dc.relation.referencesKiselev, A. V. Non-specific and specific interactions of molecules of different electronic structures with solid surfaces. Discuss. Faraday Soc. 1965, 40, 205–218.spa
dc.relation.referencesLopez-Ramon, M. V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon N. Y. 1999, 37, 1215–1221.spa
dc.relation.referencesLópez-Ramón, M. V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marín, F. Specific and non-specific interactions of water molecules with carbon surfaces from immersion calorimetry. Carbon N. Y. 2000, 38, 825–829.spa
dc.relation.referencesRodríguez-Reinoso, F.; Molina-Sabio, M.; González, M. T. Effect of oxygen surface groups on the immersion enthalpy of activated carbons in liquids of different polarity. Langmuir 1997, 13, 2354–2358.spa
dc.relation.referencesBarton, S. S.; Evans, M. J. B.; Halliop, E.; MacDonald, J. a. F. Acidic and basic sites on the surface of porous carbon. Carbon N. Y. 1997, 35, 1361–1366.spa
dc.relation.referencesStoeckli, F.; Lavanchy, A. The adsorption of water by active carbons, in relation to their chemical and structural properties. Carbon N. Y. 2000, 38, 475–477.spa
dc.relation.referencesNasuha, N.; Hameed, B. H.; Din, A. T. M. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J. Hazard. Mater. 2010, 175, 126–132.spa
dc.relation.referencesHamdaoui, O.; Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 2007, 147, 381–394.spa
dc.relation.referencesStoeckli, F.; López-Ramón, M. V.; Moreno-Castilla, C. Adsorption of phenolic compounds from aqueous solutions, by activated carbons, described by the Dubinin-Astakhov equation. Langmuir 2001, 17, 3301–3306.spa
dc.relation.referencesBernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J. C. Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons. Molecules 2017, 22, 1–14.spa
dc.relation.referencesChin, Y. P. Adsorption of parabens in aqueous solution onto β-cyclodextrin cross-linked polymer, University of Malaya, 2013.spa
dc.relation.referencesCarvajal-Bernal, A. M.; Gómez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. A study of the interactions of activated carbon-phenol in aqueous solution using the determination of immersion enthalpy. Appl. Sci. 2018, 8, 843.spa
dc.relation.referencesSotelo, J. L.; Rodríguez, A. R.; Mateos, M. M.; Hernández, S. D.; Torrellas, S. Á.; Rodríguez, J. G. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Heal. , Part B Pestic. Food Contam. Agric. Wastes 2012, 47, 640–652.spa
dc.relation.referencesTran, H. N.; You, S. J.; Hosseini-Bandegharaei, A.; Chao, H. P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120.spa
dc.relation.referencesForte, M.; Mita, L.; Perrone, R.; Rossi, S.; Argirò, M.; Mita, D. G.; Guida, M.; Portaccio, M.; Godievargova, T.; Ivanov, Y.; Tamer, M. T.; Omer, A. M.; Mohy Eldin, M. S. Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies. Environ. Sci. Pollut. Res. 2017, 24, 1270–1282.spa
dc.relation.referencesAmézquita-Marroquín, C. P.; Torres-Lozada, P.; Giraldo, L.; Húmpola, P. D.; Rivero, E.; Poon, P. S.; Matos, J.; Moreno-Piraján, J. C. Sustainable production of nanoporous carbons: Kinetics and equilibrium studies in the removal of atrazine. J. Colloid Interface Sci. 2020, 562, 252–267.spa
dc.relation.referencesCardoso, N.; Lima, E.; Calvete, T.; Pinto, I.; Amavisca, C.; Fernandes, T.; Pinto, R.; Alencar, W. Application of aqai stalks as biosorbents for the removal of the dyes reactive Black 5 and Reactive Orange 16 from aqueous solution. J. Chem. Eng. Data 2011, 56, 1857–1868.spa
dc.relation.referencesRoyer, B.; Cardoso, N. F.; Lima, E. C.; Vaghetti, J. C. P.; Simon, N. M.; Calvete, T.; Veses, R. C. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions-Kinetic and equilibrium study. J. Hazard. Mater. 2009, 164, 1213–1222.spa
dc.relation.referencesOladoja, N. A. A critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies. Desalin. Water Treat. 2016, 57, 15813–15825.spa
dc.relation.referencesJansson, M.; Guibal, E.; Roussy, J.; Delanghe, B.; Le Cloirec, P. Vanadium (IV) sorption by chitosan: Kinetics and equilibrium. Water Res. 1996, 30, 465–475.spa
dc.relation.referencesSrihari, V.; Das, A. The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons. Desalination 2008, 225, 220–234.spa
dc.relation.referencesFontecha-Cámara, M. A.; López-Ramón, M. V.; Álvarez-Merino, M. A.; Moreno-Castilla, C. About the endothermic nature of the adsorption of the herbicide diuron from aqueous solutions on activated carbon fiber. Carbon N. Y. 2006, 44, 2335–2338.spa
dc.relation.referencesBernal, V.; Giraldo, L.; Moreno-Piraján, J. C. Thermodynamic study of the interactions of salicylic acid and granular activated carbon in solution at different pHs. Adsorpt. Sci. Technol. 2018, 36, 833–850.spa
dc.relation.referencesSaha, P.; Chowdhury, S. Insight Into Adsorption Thermodynamics. In Thermodynamics; InTech, 2011; pp. 349–364.spa
dc.relation.referencesEmeniru, D.; Onukwuli, O.; DouyeWodu, P.; Okoro, B. The Equilibrium and Thermodynamics of Methylene Blue Uptake onto Ekowe Clay; Influence of Acid Activation and Calcination. Int. J. Eng. Appl. Sci. 2015, 2, 257933.spa
dc.relation.referencesCoughlin, R. W.; Ezra, F. S. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ. Sci. Technol. 1968, 2, 291–297.spa
dc.relation.referencesMattson, J. S.; Mark, H. B.; Malbin, M. D.; Weber, W. J.; Crittenden, J. C. Surface chemistry of active carbon: Specific adsorption of phenols. J. Colloid Interface Sci. 1969, 31, 116–130.spa
dc.relation.referencesHadi Madani, S.; Hu, C.; Silvestre-Albero, A.; Biggs, M. J.; Rodríguez-Reinoso, F.; Pendleton, P. Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: A comparative study. Carbon N. Y. 2016, 96, 1106–1113.spa
dc.relation.referencesLorenc-Grabowska, E. Effect of micropore size distribution on phenol adsorption on steam activated carbons. Adsorption 2016, 22, 599–607.spa
dc.relation.referencesNicholson, D.; Quirke, N. The role of isosteric enthalpy of adsorption in micropore characterisation: A simulation study; Elsevier Masson SAS, 2000; Vol. 128.spa
dc.relation.referencesGiraldo, L.; Rodríguez-Estupiñán, P.; Moreno-Piraján, J. C. Isosteric Heat: Comparative Study between Clausius–Clapeyron, CSK and Adsorption Calorimetry Methods. Processes 2019, 7, 203.spa
dc.relation.referencesTerzyk, A. P. Molecular properties and intermolecular forces-factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. J. Colloid Interface Sci. 2004, 275, 9–29.spa
dc.relation.referencesPodkościelny, P.; Nieszporek, K. Adsorption of phenols from aqueous solutions: Equilibria, calorimetry and kinetics of adsorption. J. Colloid Interface Sci. 2011, 354, 282–291.spa
dc.relation.referencesMestre, A. S.; Pires, J.; Nogueira, J. M. F.; Parra, J. B.; Carvalho, A. P.; Ania, C. O. Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure. Bioresour. Technol. 2009, 100, 1720–1726.spa
dc.relation.referencesEssandoh, M.; Kunwar, B.; Pittman, C. U.; Mohan, D.; Mlsna, T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 2015, 265, 219–227.spa
dc.relation.referencesMoreno-Piraján, J. C.; Giraldo, L. Immersion Calorimetry Applied to the Study of the Adsorption of Phenolic Derivatives onto Activated Carbon Obtained by Pyrolysis of Potato Peel. Mater. Express 2012, 2, 121–129.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalParabenosspa
dc.subject.proposalParabenseng
dc.subject.proposalActivated carboneng
dc.subject.proposalCarbón activadospa
dc.subject.proposalAdsorciónspa
dc.subject.proposalAdsorptioneng
dc.subject.proposalChemical activationeng
dc.subject.proposalActivación químicaspa
dc.subject.proposalImmersion calorimetryeng
dc.subject.proposalCalorimetría de inmersiónspa
dc.titleEstudio termodinámico de la adsorción de parabenos desde solución acuosa sobre carbones activados modificados con sales metálicasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52978683.2020.pdf
Tamaño:
2.5 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: