Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon

dc.contributor.advisorFernandes Carrijo, Tiago
dc.contributor.advisorSerna Cardona, Francisco Javier
dc.contributor.authorCastro Torres, Jose Daniel
dc.coverage.countryColombia
dc.date.accessioned2021-10-08T20:17:18Z
dc.date.available2021-10-08T20:17:18Z
dc.date.issued2021-09-28
dc.descriptionilustraciones, fotografías a color, gráficas, tablasspa
dc.description.abstractLivestock production extension in Amazon has caused deforestation and soil degradation, with negative consequences on biodiversity and environmental services. While the rubber plantations establishment has arisen as a productive and restoration alternative degraded livestock soils. This study evaluated differences in termite assemblage and functional structure in three different rubber crop systems as an indirect way of evaluating soil diversity restoring. Three rubber crop systems were sampled: clonal fields (CF), traditional commercial rubber plantations (CR), and mixed plantations (MX). Additionally, livestock pastures (PA) and natural forest relicts (NF) were compared to rubber crop systems, to serve as reference habitats. Termites were sampled using the transect method. From 80 species collected, 3.8% corresponded to Rhinotermitidae family, and 96.2% to Termitidae family. The natural forest was the land use with the highest richness (54 species) and species occurrence (437 occurrences). Species richness in rubber crop systems were 39% higher than in pastures and included 72% of the termite species found in natural forests. The land uses were clustered according to their diversity: group I of high diversity (CR and NF) and group II of low diversity (CF, MX and PA). Among the 14 soil variables that were evaluated, organic carbon, bulk density and electrical conductivity were the variables that most influenced the termite communities. Soil-feeders termites were associated with less diverse land uses and wood-feeders were associated with high diverse land uses. Pastures and MX presented the lowest values in diversity, but each functional structure was different. Elseways, functional structure of CR was similar to the natural forests. Our results demonstrate that termite diversity and functional structure recovery is possible and will depend on the rubber crop system selected.eng
dc.description.abstractLa ganadería extensiva en la amazonia ha causado deforestación y degradación en el suelo, con consecuencias negativas en la biodiversidad y servicios ambientales. Mientras el establecimiento de plantaciones de caucho ha surgido como una alternativa productiva y de restauración para suelos degradados por la ganadería. Este estudio evaluó las diferencias en los ensamblajes y la estructura funcional de las termitas en tres diferentes cultivos de caucho como una forma indirecta de evaluar la restauración de la diversidad del suelo. Tres sistemas de cultivos de caucho fueron muestreados: campos clonales (CF), plantaciones comerciales (CR) y plantaciones mixtas (MX). Adicionalmente, pasturas ganaderas (PA) y bosques naturales (NF) sirvieron como ecosistemas de referencia. Las termitas se muestrearon usando el método de transecto. De las 80 especies colectadas, 3.8% correspondía a la familia Rhinotermitidae y el 96.2% a la familia Termitidae. El bosque natural fue el uso de la tierra con mayor riqueza (54 especies) y ocurrencia de especies (437 ocurrencias). En los sistemas de cultivo de caucho fue 39% mayor que en pasturas e incluyeron el 72% del total de especies encontradas en los bosques naturales. Los usos de suelo fueron agrupados de acuerdo con su diversidad: grupo I de alta diversidad (CR y NF) y grupo II de baja diversidad (CF, MX y PA). Dentro de las 14 variables de suelo que se evaluaron, carbón orgánico, densidad aparente y conductividad eléctrica fueron las variables que más influenciaron sobre las comunidades de termitas. Las termitas consumidoras de suelo estuvieron asociadas con usos de suelo de baja diversidad y las xilófagas estuvieron asociados con usos de suelo de alta diversidad. Pasturas y MX presentaron la diversidad más baja, pero sus estructuras funcionales fueron diferentes en sí. Por otro lado, la estructura funcional de CR fue similar a la de NF. Nuestros resultados demostraron que recuperar la diversidad y la estructura funcional de las termitas es posible y dependerá de las prácticas de manejo del cultivo de caucho. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaEntomologíaspa
dc.format.extentx, 102 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80457
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbadía., J.C., Arcila, Á.M. & Chacón, P. (2013) Incidencia y distribución de termitas (Isoptera) en cultivos de cítricos de la costa caribe de Colombia. Revista Colombiana de Entomologia 39, 1–8.spa
dc.relation.referencesAbadía, J.C. & Arcila, A. (2009) Termitas en cultivos de limón en los departamentos del Atlántico y Magdalena, Colombia. Boletin del Museo de Entomologia de la Universidad del Valle 10, 36–46.spa
dc.relation.referencesAbe, T. (1987) Evolution of life types in termites. In: S. Kawano, J. Connel, and T. Hidata (Eds), Evolution and Coadaptation in Biotic Communities. University of Tokyo Press, Tokyo, Japan, pp. 126–148.spa
dc.relation.referencesAckerman, I.L., Constantino, R., Gauch, H.G., Lehmann, J., Riha, S.J. & Fernandes, E.C.M. (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in central Amazonia. Biotropica 41, 226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.xspa
dc.relation.referencesAli, M.F., Akber, M.A., Smith, C. & Aziz, A.A. (2021) The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions. Forest Policy and Economics 127, 102449. https://doi.org/10.1016/j.forpol.2021.102449spa
dc.relation.referencesArcila, A., Abadia, J., Achury, R., Carrascal, F. & Yacomelo, M. (2013) Manual para la identificación y manejo de termitas y otros insectos plagas de los cítricos en la Región Caribe de Colombia Manual para la identificación y manejo de termitas y otros insectos plagas de los cítricos en la Región Caribe de Colombia. Corpoica, Bogotá D.C., 68 pp.spa
dc.relation.referencesArévalo-Gardini, E., Canto, M., Alegre, J., Loli, O., Julca, A. & Baligar, V. (2015) Changes in soil hysical and chemical properties in long term improved natural and traditional agroforestry management systems of Cacao genotypes in Peruvian Amazon. PLoS ONE 10, 132147. https://doi.org/10.1371/journal.pone.0132147spa
dc.relation.referencesAshton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K., Hasan, F., Teh, Y.A., Tin, H.S., Vairappan, C.S. & Eggleton, P. (2019) Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177. https://doi.org/10.1126/science.aau9565spa
dc.relation.referencesAttignon, S.E., Lachat, T., Sinsin, B., Nagel, P. & Peveling, R. (2005) Termite assemblages in a West-African semi-deciduous forest and teak plantations. Agriculture, Ecosystems and Environment 110, 318–326. https://doi.org/10.1016/j.agee.2005.04.020spa
dc.relation.referencesBandeira, A.G. (1989) Analise da termitofauna (Insecta: Isoptera) de uma Floresta primária e de uma pastagem na Amazônia oriental, Brasil. Bol. Mus. Para. Emílio Goeldi, sér. Zool 5, 225–241.spa
dc.relation.referencesBandeira, A.G., Vasconcellos, A., Silva, M.P. & Constantino, R. (2003) Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga Domain, Brazil. Sociobiology 42, 1–11.spa
dc.relation.referencesBarros, E., Grimaldi, M., Sarrazin, M., Chauvel, A., Mitja, D., Desjardins, T. & Lavelle, P. (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Applied Soil Ecology 26, 157–168. https://doi.org/10.1016/j.apsoil.2003.10.012spa
dc.relation.referencesBarros, E., Mathieu, J., Tapia-Coral, S., Nascimentol, A.R.L. & Lavelle, P. (2006) Soil macrofauna communities in Brazilian Amazonia. In: F. Moreira, J. Siqueira, and L. Brussaard (Eds), Soil Biodiversity in Amazonian and other Brazilian Ecosystems. CABI Publishing, pp. 43–55.spa
dc.relation.referencesBarros, E., Neves, A., Blanchart, E., Fernandes, E.C.M., Wandelli, E. & Lavelle, P. (2003) Development of the soil macrofauna community under silvopastoral and agrosilvicultural systems in Amazonia. Pedobiologia 47, 273–280. https://doi.org/10.1078/0031-4056-00190spa
dc.relation.referencesBarros, E., Pashanasi, B., Constantino, R. & Lavelle, P. (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biology and Fertility of Soils 35, 338–347. https://doi.org/10.1007/s00374-002-0479-zspa
dc.relation.referencesBegon, M., Townsend, C. & Harper, J. (2007) Ecologia de Indivíduos a Ecossistemas. 4th ed. Artmed, Porto Alegre, 752 pp. Available from: https://www.editoraufv.com.br/produto/ecologia-de-individuos-a-ecossistemas-4-edicao/1109570 (April 25, 2021)spa
dc.relation.referencesBeketov, M.A., Kefford, B.J., Schäfer, R.B. & Liess, M. (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of the United States of America 110, 11039–11043. https://doi.org/10.1073/pnas.1305618110spa
dc.relation.referencesBellamy, A.S., Svensson, O., van den Brink, P.J., Gunnarsson, J. & Tedengren, M. (2018) Insect community composition and functional roles along a tropical agricultural production gradient. Environmental Science and Pollution Research 25, 13426–13438. https://doi.org/10.1007/s11356-018-1818-4spa
dc.relation.referencesBeltrán-Díaz, M.A. & Pinzón-Florián, O.P. (2018) Termites (Isoptera: Termitidae, rhinotermitidae) in <i>Pinus caribaea<i> plantations in the Colombian orinoco basin. Revista Colombiana de Entomologia 44, 61–71. https://doi.org/10.25100/socolen.v44i1.6544spa
dc.relation.referencesBenito, N.P., Brossard, M., Pasini, A., Guimarães, M.D.F. & Bobillier, B. (2004) Transformations of soil macroinvertebrate populations after native vegetation conversion to pasture cultivation (Brazilian Cerrado). European Journal of Soil Biology 40, 147–154. https://doi.org/10.1016/j.ejsobi.2005.02.002spa
dc.relation.referencesBignell, D.E. (2005) Termites as soil engineers and soil processors. In: K. H. and V. A. (Eds), Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg, pp. 183–220.spa
dc.relation.referencesBizuti, D.T.G., Casagrande, J.C., Soares, M.R., Sartorio, S.D., Brugnaro, C. & César, R.G. (2018) The effect of calcium on the growth of native species in a tropical forest hotspot. IForest 11, 221–226. https://doi.org/10.3832/ifor2074-010spa
dc.relation.referencesBourguignon, T., Drouet, T., Šobotník, J., Hanus, R. & Roisin, Y. (2015) Influence of Soil Properties on Soldierless Termite Distribution N. Chaline (Ed). PLOS ONE 10, e0135341. https://doi.org/10.1371/journal.pone.0135341spa
dc.relation.referencesBourguignon, T., Leponce, M. & Roisin, Y. (2011a) Beta-Diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43, 473–479. https://doi.org/10.1111/j.1744-7429.2010.00729.xspa
dc.relation.referencesBourguignon, T., Scheffrahn, R.H., Krecek, J., Nagy, Z.T., Sonet, G. & Roisin, Y. (2010) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov. Invertebrate Systematics 24, 357–370. https://doi.org/10.1111/zoj.12305spa
dc.relation.referencesBourguignon, T., Scheffrahn, R.H., Nagy, Z.T., Sonet, G., Host, B. & Roisin, Y. (2016a) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): Redescription of the genus Grigiotermes Mathews and description of five new genera. Zoological Journal of the Linnean Society 176, 15–35. https://doi.org/10.1111/zoj.12305spa
dc.relation.referencesBourguignon, T., Sobotnik, J., Dahlsjo, C.A.L. & Roisin, Y. (2016b) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insectes Sociaux 63, 39–50. https://doi.org/10.1007/s00040-015-0446-yspa
dc.relation.referencesBourguignon, T., Šobotník, J., Lepoint, G., Martin, J.M., Hardy, O.J., Dejean, A. & Roisin, Y. (2011b) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology 36, 261–269. https://doi.org/10.1111/j.1365-2311.2011.01265.xspa
dc.relation.referencesBourguignon, T., Sobotník, J., Lepoint, G., Martin, J.M. & Roisin, Y. (2009) Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biology & Biochemistry 41, 2038–2043. https://doi.org/10.1016/j.soilbio.2009.07.005spa
dc.relation.referencesBouyoucos, G.. (1936) Directions for Making Mechanical Analysis of Soils by the Hydrometer Method. Soil Science 4, 225–228.spa
dc.relation.referencesBraak, C.J.F. ter & Smilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). www.canoco.com.spa
dc.relation.referencesBrauman, A. (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. Eur. J. Soil Biol. 36, 117–125. https://doi.org/https://doi.org/10.1016/S1164-5563(00)01058-Xspa
dc.relation.referencesDe Cáceres, M., Jansen, F. & Dell, N. (2020) Package “indicspecies” Type Package Title Relationship Between Species and Groups of Sites. Package Version 1.7.9.spa
dc.relation.referencesDe Cáceres, M. & Legendre, P. (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1spa
dc.relation.referencesDe Cáceres, M., Legendre, P., Wiser, S.K. & Brotons, L. (2012) Using species combinations in indicator value analyses R. B. O’Hara (Ed). Methods in Ecology and Evolution 3, 973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.xspa
dc.relation.referencesCancello, E.M. & Cuezzo, C. (2007) A new species of Ereymatermes Constantino (Isoptera, Termitidae, Nasutitermitinae) from the northeastern Atlantic Forest, Brazil. Papeis Avulsos de Zoologia 47, 283–288. https://doi.org/10.1590/S0031-10492007002300001spa
dc.relation.referencesCancello, E.M., Silva, R.R., Vasconcellos, A., Reis, Y.T. & Oliveira, L.M. (2014) Latitudinal variation in termite species richness and abundance along the brazilian atlantic forest hotspot. Biotropica 46, 441–450. https://doi.org/10.1111/btp.12120spa
dc.relation.referencesCarneiro, M.A.C., de Souza, E.D., dos Reis, E.F., Pereira, H.S. & de Azevedo, W.R. (2009) Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciencia do Solo 33, 147–157. https://doi.org/10.1590/s0100-06832009000100016spa
dc.relation.referencesCarrijo, T.F., Brandão, D., Oliveira, D.E., Costa, D.A. & Santos, T. (2009) Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation 13, 575–581. https://doi.org/10.1007/s10841-008-9205-yspa
dc.relation.referencesCasalla, R. & Korb, J. (2019a) Phylogenetic community structure and niche differentiation in termites of the tropical dry forests of colombia. Insects 10. https://doi.org/10.3390/insects10040103spa
dc.relation.referencesCasalla, R. & Korb, J. (2019b) Termite diversity in Neotropical dry forests of Colombia and the potential role of rainfall in structuring termite diversity. Biotropica 2019, 1–13. https://doi.org/10.1111/btp.12626spa
dc.relation.referencesCasalla, R., Scheffrahn, R.H. & Korb, J. (2016) Proneotermes macondianus, a new drywood termite from Colombia and expanded distribution of Proneotermes in the Neotropics (Isoptera, Kalotermitidae). ZooKeys 2016, 43–60. https://doi.org/10.3897/zookeys.623.9677spa
dc.relation.referencesCastellanos, D., Fonseca, R. & Barón, N. (2009) Agenda prospectiva de investigación y desarrollo Tecnológico para la cadena Productiva de caucho natural y su industria en Colombia. Ministerio de Agricultura y Desarrollo Rural, Bogotá D.C., 208 pp.spa
dc.relation.referencesCastro, D., Constantini, J.P., Scheffrahn, R.H., Carrijo, T.F. & Cancello, E.M. (2020) Rustitermes boteroi, a new genus and species of soldierless termites (Blattodea, Isoptera, Apicotermitinae) from South America. ZooKeys 922, 35–49. https://doi.org/10.3897/zookeys.922.47347spa
dc.relation.referencesCastro, D. & Scheffrahn, R.H. (2019) A new species of Acorhinotermes Emerson , 1949 ( Blattodea , Isoptera , Rhinotermitidae ) from Colombia , with a key to Neotropical Rhinotermitinae species based on minor soldiers. ZooKeys 891, 61–70. https://doi.org/https://doi.org/10.3897/zookeys.891.37523spa
dc.relation.referencesCastro, D., Scheffrahn, R.H. & Carrijo, T.F. (2018) Echinotermes biriba, a new genus and species of soldierless termite from the Colombian and Peruvian Amazon (Termitidae, Apicotermitinae). ZooKeys 2018, 21–30. https://doi.org/10.3897/zookeys.748.24253spa
dc.relation.referencesCCC - Confederación Cauchera Colombiana (2016) Informe de resultados censo de plantaciones de caucho natural (Hevea brasiliensis) a año 2015. Bogotá D.C.spa
dc.relation.referencesChao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67.spa
dc.relation.referencesCharity, S., Dudley, N., Oliveira, D. & Stolon, S. (2016) Living Amazon Report 2016: A regional approach to conservation in the Amazon. WWF Living Amazon Initiative, Basilia & Quito, 113 pp.spa
dc.relation.referencesCherubin, M.R., Chavarro-Bermeo, J.P. & Silva-Olaya, A.M. (2019) Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agroforestry Systems 93, 1741–1753. https://doi.org/10.1007/s10457-018-0282-yspa
dc.relation.referencesCompagnon, P. (1998) El caucho natural, biología, cultivo, producción. Consejo Mexicano del Hule y CIRAD, México, DF, 701 pp.spa
dc.relation.referencesConstantini, J.P. & Cancello, E.M. (2016) A taxonomic revision of the Neotropical termite genus Rhynchotermes (Isoptera, Termitidae, Syntermitinae). Zootaxa 4109, 501. https://doi.org/10.11646/zootaxa.4109.5.1spa
dc.relation.referencesConstantino, R. (1991) Termites (Isoptera) from the lower Japurá River, Amazonas State, Brazil. Boletim do Museu Paraense Emílio Goeldi, série Zoologia 7, 189–224.spa
dc.relation.referencesConstantino, R. (1992) Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24, 420–430. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesConstantino, R. (1995) Revision of the neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). The University of Kansas science bulletin 55, 455–518.spa
dc.relation.referencesConstantino, R. (1998) Description of a New Planicapritermes from Central Amazonia, with Notes on the Morphology of the Digestive Tube of the Neocapritermes-Planicapritermes Group (Isoptera: Termitidae: Termitinae). Sociobiology 32, 109–118.spa
dc.relation.referencesConstantino, R. (2000) Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Systematics and Evolution 31, 463–472.spa
dc.relation.referencesConstantino, R. (2002a) An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 40, 1–40.spa
dc.relation.referencesConstantino, R. (2002b) The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126, 355–365.spa
dc.relation.referencesConstantino, R. (2021) Termite Database. University of Brasília. Available from: http://164.41.140.9/catal/about.php (March 25, 2021)spa
dc.relation.referencesConstantino, R., Acioli, A.N.S., Schmidt, K., Cuezzo, C., Carvalho, S.H.C. & Vasconcellos, A. (2006) A taxonomic revision of the Neotropical termite genera Labiotermes Holmgren and Paracornitermes Emerson (Isoptera: Termitidae: Nasutitermitinae). Zootaxa 1340, 1–44.spa
dc.relation.referencesConstantino, R. & Cancello, E.M. (1992) Cupins (Insecta, Isoptera) da Amazônia Brasileira : distribuição e esforço de coleta. Revista Brasileira de Biologia 52, 401–413.spa
dc.relation.referencesConstantino, R. & De Souza, O.F.F. (1997) Key to the soldiers of Atlantitermes Fontes 1979, with a new species from Brazil (Isoptera Termitidae Nasutitermitinae). Tropical Zoology 10, 205–213.spa
dc.relation.referencesCorwin, D.L. & Yemoto, K. (2017) Salinity: electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. Soil Science Society of America, Madison, WI, p. 16.spa
dc.relation.referencesCostanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P. & Van Den Belt, M. (1997) The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0spa
dc.relation.referencesCoulibaly, T., Akpesse, A.A.M., Boga, J.P., Yapi, A., Kouassi, K.P. & Roisin, Y. (2016) Change in termite communities along a chronosequence of mango tree orchards in the north of Côte d’Ivoire. Journal of Insect Conservation 20, 1011–1019. https://doi.org/10.1007/s10841-016-9935-1spa
dc.relation.referencesCrespo-Pérez, V., Kazakou, E., Roubik, D.W. & Cárdenas, R.E. (2020) The importance of insects on land and in water: a tropical view. Current opinion in insect science 40, 31–38.spa
dc.relation.referencesCulliney, T. (2013) Role of arthropods in maintaining soil fertility. Agriculture 3, 629–659. https://doi.org/10.3390/agriculture3040629spa
dc.relation.referencesCunha, H.F., Costa, D.A., Silva, A.P.T., Nicacio, J. & Abot, A.R. (2020) Termite functional diversity along an elevational gradient in the Cerrado of Mato Grosso do Sul. International Journal of Tropical Insect Science. https://doi.org/10.1007/s42690-020-00240-6spa
dc.relation.referencesda Cunha, H.F. & Orlando, T.Y. da S. (2011) Functional composition of termite species in areas of abandoned pasture and in secondary succession of the Parque Estadual Altamiro de Moura Pacheco, GoiáS, Brazil. Bioscience Journal 27, 986–992.spa
dc.relation.referencesDahlsjö, C. AL, Parr, C.L., Malhi, Y., Rahman, H., Meir, P., Jones, D.T., Eggleton Journal, P. & Eggleton, P. (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. Journal of Tropical Ecology 30, 143–152. https://doi.org/10.1017/S0266467413000898spa
dc.relation.referencesDambros, C. de S., da Silva, V.N.V., Azevedo, R. & de Morais, J.W. (2013) Road-associated edge effects in Amazonia change termite community composition by modifying environmental conditions. Journal for Nature Conservation 21, 279–285. https://doi.org/10.1016/j.jnc.2013.02.003spa
dc.relation.referencesDangles, O. & Casas, J. (2019) Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services 35, 109–115.spa
dc.relation.referencesDavies, R.G. (2002) Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133, 233–242. https://doi.org/10.1007/s00442-002-1011-8spa
dc.relation.referencesDavies, R.G., Hernández, L.M., Eggleton, P., Didham, R.K., Fagan, L.L. & Winchester, N.N. (2003) Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. Journal of Tropical Ecology 19, 509–524. https://doi.org/10.1017/S0266467403003560spa
dc.relation.referencesDecaëns, T., Jiménez, J.J., Barros, E., Chauvel, A., Blanchart, E., Fragoso, C. & Lavelle, P. (2004) Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agriculture, Ecosystems & Environment 103, 301–312. https://doi.org/10.1016/J.AGEE.2003.12.005spa
dc.relation.referencesDecaëns, T., Lavelle, P., Jimenez, J., Rippstein, G. & Escobar, G. (1994) Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. 30, 157–168.spa
dc.relation.referencesDecaëns, T., Mariani, L. & Lavelle, P. (1999) Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia. Applied Soil Ecology 13, 87–100. https://doi.org/10.1016/S0929-1393(99)00024-4spa
dc.relation.referencesDonovan, S.E., Eggleton, P. & Bignell, D.E. (2001) Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26, 356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.xspa
dc.relation.referencesDosso, K., Deligne, J., Yéo, K., Konaté, S. & Linsenmair, K.E. (2013) Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto Reserve in central Côte d’Ivoire. Journal of Insect Conservation 17, 1047–1057. https://doi.org/10.1007/s10841-013-9588-2spa
dc.relation.referencesDuran-Bautista, E.H., Armbrecht, I., Acioli, A.N.S., Suárez, J.C., Romero, M., Quintero, M. & Lavelle, P. (2020a) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecological Indicators 117, 106550. https://doi.org/10.1016/j.ecolind.2020.106550spa
dc.relation.referencesDuran-Bautista, E.H., Muñoz, Y., Galindo, J.D., Ortiz, T. & Bermúdez, M. (2020b) Soil physical quality and relationship to changes in termite community in northwestern Colombian Amazon. Frontiers in Ecology and Evolution 8:598134. https://doi.org/10.3389/fevo.2020.598134spa
dc.relation.referencesEggleton, P. (2011) An introduction to termites: Biology, taxonomy and functional morphology. In: Biology of Termites: A Modern Synthesis. Springer Netherlands, pp. 1–26.spa
dc.relation.referencesEggleton, P., Bignell, D.E., Sands, W.A., Mawdsley, N.A., Lawton, J.H., Wood, T.G. & Bignell, N.C. (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Fores Reserve, southern Cameroon. Phil.Trans.R.Soc.Lond.B. 351, 51–68.spa
dc.relation.referencesEggleton, P., Bignell, D.E., Sands, W.A., Waite, B., Wood, T.G. & Lawton, J.H. (1995) The species richness of Termites under differing levels of forest disturbance in the Mbalmayo Forest Reserve, Camerron. Journal of Tropical Ecology 11, 85–98.spa
dc.relation.referencesEggleton, P., Eggleton, P., Homathevi, R., Homathevi, R., Jeeva, D., Jeeva, D., Jones, D.T., Jones, D.T., Davies, R.G., Davies, R.G., Maryati, M. & Maryati, M. (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3, 119–128.spa
dc.relation.referencesEggleton, P., Hauser, S., Norgrove, L., Eggletona, P., Bignellb, D.E., Hauserc, S., Diboga, L., Norgrovec, L. & Madonge, B. (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems & Environment 90, 189–202. https://doi.org/10.1016/S0167-8809(01)00206-7spa
dc.relation.referencesEggleton, P. & Tayasu, I. (2001) Feeding groups, lifetypes and the global ecology of termites. Ecological Research 16, 941–960.spa
dc.relation.referencesEmerson, A.E. (1925) The Termites of Kartabo, Bartica District, British Guiana. Zoologica : scientific contributions of the New York Zoological Society 6, 291–459.spa
dc.relation.referencesEvans, T.A., Dawes, T.Z., Ward, P.R. & Lo, N. (2011) Ants and termites increase crop yield in a dry climate. Nature Communications 2, 262–267. https://doi.org/10.1038/ncomms1257spa
dc.relation.referencesFallah, M., Farzam, M., Hosseini, V., Moravej, G. & Eldridge, D.J. (2017) Termite effects on soils and plants are generally consistent along a gradient in livestock grazing. Arid Land Research and Management 31, 159–168. https://doi.org/10.1080/15324982.2017.1288177spa
dc.relation.referencesFernández, F. (2003) Introducción a las hormigas de la región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humbold, Bogotá, 398 pp.spa
dc.relation.referencesFernández, F., Guerrero Flórez, R.J. & Delsinne, T. (2019) Hormigas de Colombia Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá D.C., 1200 pp.spa
dc.relation.referencesFittkau, E.J. & Klinge, H. (1973) On Biomass and Trophic Structure of the Central Amazonian Rain Forest Ecosystem. Biotropica 5, 2. https://doi.org/10.2307/2989676spa
dc.relation.referencesFox, J. & Castella, J.C. (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? Journal of Peasant Studies 40, 155–170. https://doi.org/10.1080/03066150.2012.750605spa
dc.relation.referencesGalili, T. (2015) dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720. https://doi.org/10.1093/bioinformatics/btv428spa
dc.relation.referencesGalvis, C. (1984) Termites del valle geográfico del río Cauca y su impacto sobre la economía del departamento del Valle. Cespedesia 13, 257–276.spa
dc.relation.referencesGalvis, C. & Flórez, E. (1991) Zoogeografía de termites (comejenes - Isópteros) en Colombia y sus repercusiones en la Economía Nacional, Provincia Zoogeográfica de San Andrés y Providencia. Cespedesia 18, 161–163.spa
dc.relation.referencesGalvis, C., Flórez, E. & Ríos, O. (1991) Zoogeografía de termites (comejenes) en Colombia y sus repercusiones en la Economía nacional Provincia Zoogeográfica Pacífico-Centro Americana. Cespedesia 18, 157–159.spa
dc.relation.referencesGasparotto, L.., Ferreira, F.A.., dos Santo, A.F.., Rezende, P.J.C.. & Furtado, E.. (2012) Capítulo 3: Doenças das folha. In: L. Gasparotto and R. . Pereira (Eds), Doenças da seringueira no Brasil. EMBRAPA Amazônia Occidental, Brasilia. D.F., p. 255.spa
dc.relation.referencesGhosal, A. & Hati, A. (2019) Impact of some new generation insecticides on soil arthropods in rice maize cropping system. The Journal of Basic and Applied Zoology 80, 1–8. https://doi.org/10.1186/s41936-019-0077-3spa
dc.relation.referencesGuillaume, T., Holtkamp, A.M., Damris, M., Brümmer, B. & Kuzyakov, Y. (2016) Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture, Ecosystems and Environment 232, 110–118. https://doi.org/10.1016/j.agee.2016.07.002spa
dc.relation.referencesGutierrez-Sarmiento, M.C. & Cardona, C.M. (2014) Caracterización ecológica de las lombrices (Pontoscolex corethrurus) como bioindicadoras de suelos compactados bajo condiciones de alta humedad del suelo con diferentes coberturas vegetales (Zipacón, Cundinamarca). Revista científica 2, 55. https://doi.org/10.14483/23448350.6493spa
dc.relation.referencesGutiérrez, A.I., Uribe, S. & Quiroz, J. (2004) Termitas asociadas a plantaciones de Eucalyptus spp. en una reforestadora en Magdalena, Colombia. Manejo Integrado de Plagas y Agroecología, 54–59.spa
dc.relation.referencesGutierrez, F., Acosta, L.E. & Salazar, C.A. (2003) Perfiles urbanos en la Amazonía Colombiana: un enfoque para el desarrollo sostenible. Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá, Colombia, 260 pp.spa
dc.relation.referencesHidayat, M.R., Endris, W.M. & Dwiyanti, Y. (2018) Effect of a rubber plantation on termite diversity in Melawi, West Kalimantan, Indonesia. Agriculture and Natural Resources 52, 439–444. https://doi.org/10.1016/j.anres.2018.10.016spa
dc.relation.referencesHigashi, M., Abe, T. & Burns, T.P. (1992) Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society B: Biological Sciences 249, 303–308. https://doi.org/10.1098/rspb.1992.0119spa
dc.relation.referencesHölldobler, B. & Wilson, W.. (1990) The Ants . Springer, 746 pp. Available from: https://www.hup.harvard.edu/catalog.php?isbn=9780674040755 (March 31, 2021)spa
dc.relation.referencesHouston, W.A., Wormington, K.R. & Black, R.L. (2015) Termite (Isoptera) diversity of riparian forests, adjacent woodlands and cleared pastures in tropical eastern Australia. Austral Entomology 54, 221–230. https://doi.org/10.1111/aen.12115spa
dc.relation.referencesHsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613spa
dc.relation.referencesHusson, F., Josse, J., Le, S. & Maintainer, J.M. (2020) Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining. Version 2.3.spa
dc.relation.referencesICONTEC (2007) Calidad de suelo. Determinacion de micronutrientes disponibles: cobre, zinc, hierro y manganeso. Bogotá D.C.spa
dc.relation.referencesICONTEC (2016a) Calidad de suelo. Determinación de las bases cambiables: método del acetato amonio 1m, ph 7,0. Bogotá D.C.spa
dc.relation.referencesICONTEC (2016b) NTC 5350. Calidad de suelo. Determinacion de fósforo disponible. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá D.C., 19 pp.spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP & CANCILLERÍA (2016) Inventario nacional y departamental de gases de efecto invernadero. Tercera comunicación nacional de Cambio Climático. Bogotá D.C.spa
dc.relation.referencesInoue, T., Takematsu, Y., Yamada, A., Hongoh, Y., Johjima, T., Moriya, S., Sornnuwat, Y., Vongkaluang, C., Ohkuma, M. & Kudo, T. (2006) Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. Journal of Tropical Ecology 22, 609. https://doi.org/10.1017/S0266467406003403spa
dc.relation.referencesInward, D.J.G., Vogler, A.P. & Eggleton, P. (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44, 953–967. https://doi.org/10.1016/j.ympev.2007.05.014spa
dc.relation.referencesJankielsohn, A. (2018) The Importance of Insects in Agricultural Ecosystems. Advances in Entomology 06, 62–73. https://doi.org/10.4236/ae.2018.62006spa
dc.relation.referencesJones, C.G., Lawton, J.H. & Shachak, M. (1994) Organisms as Ecosystem Engineers. Oikos 69, 373. https://doi.org/10.2307/3545850spa
dc.relation.referencesJones, D.T. & Eggleton, P. (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37, 191–203.spa
dc.relation.referencesJones, D.T., Susilo, F.X., Bignell, D.E., Hardiwinoto, S., Gillison, A.N. & Eggleton, P. (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40, 380–391.spa
dc.relation.referencesJones, J.A. (1990) Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. Journal of Tropical Ecology 6, 291–305. https://doi.org/10.1017/S0266467400004533spa
dc.relation.referencesJouquet, P., Blanchart, E. & Capowiez, Y. (2014) Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology 73, 34–40. https://doi.org/10.1016/j.apsoil.2013.08.004spa
dc.relation.referencesJouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology 47, 215–222. https://doi.org/10.1016/j.ejsobi.2011.05.005spa
dc.relation.referencesJunqueira, L.K., Diehl, E. & Filho, E.B. (2009) Termite (isoptera) diversity in eucalyptus-growth areas and in forest fragments. Sociobiology 53, 805–828.spa
dc.relation.referencesKassambara, A. (2020) ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0.spa
dc.relation.referencesKassambara, A. & Mundt, F. (2020) factoextra: extract and visualize the results of multivariate data analyses. Package Version 1.0.7.spa
dc.relation.referencesKeenan, R.J., Lamb, D., Parrotta, J. & Kikkawa, & J. (1999) Ecosystem management in tropical timber plantations. Journal of Sustainable Forestry 9, 1–2. https://doi.org/10.1300/J091v09n01_10spa
dc.relation.referencesKönig, H., Li, L. & Fröhlich, J. (2013) The cellulolytic system of the termite gut. Applied Microbiology and Biotechnology 97, 7943–7962. https://doi.org/10.1007/s00253-013-5119-zspa
dc.relation.referencesKrishna, K. (2003) A new species, Cavitermes rozeni (Isoptera: Termitidae: Termitinae), from Brazil. Journal of the Kansas Entomological Society 76, 92–95. https://doi.org/10.2307/25086093spa
dc.relation.referencesKrishna, K. & Araujo, R.L. (1968) A revision of the Neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bulletin of the American Museum of Natural History 138, 83–130.spa
dc.relation.referencesKrishna, K. & Emerson, A.E. (1962) New species of the genus Glyptotermes Froggatt from the Papuan, Oriental, Ethiopian, and Neotropical regions (Isoptera, Kalotermitidae). American Museum Novitates 2089, 1–66.spa
dc.relation.referencesKrishna, K., Grimaldi, D.A. & Krishna, V. (2014) Treatise on the Isoptera of the world. Vol 1. Bulletin of the American Museum of Natural History 377, 200.spa
dc.relation.referencesLamarre, G.P.A., Erault, B.H., Fine, P.V.A., Vedel, V., Lupoli, R., Mesones, I. & Baraloto, C. (2016) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology 85, 227–239. https://doi.org/10.1111/1365-2656.12445spa
dc.relation.referencesLamb, D. (1998) Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restoration Ecology 6, 271–279. https://doi.org/10.1046/j.1526-100X.1998.00632.xspa
dc.relation.referencesLavelle, P. (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27, 93–132. https://doi.org/10.1016/S0065-2504(08)60007-0spa
dc.relation.referencesLavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutiérrez, A., Hurtado, M. del P., Loaiza, S., Pullido, S.X., Rodríguez, E., Sanabria, C., Velásquez, E. & Fonte, S.J. (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020spa
dc.relation.referencesLê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, 1–18. https://doi.org/10.18637/jss.v025.i01spa
dc.relation.referencesLeClare, S.K., Mdluli, M., Wisely, S.M. & Stevens, N. (2020) Land-use diversity within an agricultural landscape promotes termite nutrient cycling services in a southern African savanna. Global Ecology and Conservation 21, e00885. https://doi.org/10.1016/j.gecco.2019.e00885spa
dc.relation.referencesLegendre, F., Nel, A., Svenson, G.J., Robillard, T., Pellens, R. & Grandcolas, P. (2015) Phylogeny of dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE 10, 1–27. https://doi.org/10.1371/journal.pone.0130127spa
dc.relation.referencesLegendre, F., Whiting, M.F., Bordereau, C., Cancello, E.M., Evans, T.A. & Grandcolas, P. (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution 48, 615–627. https://doi.org/10.1016/j.ympev.2008.04.017spa
dc.relation.referencesLegendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. https://doi.org/10.1007/s004420100716spa
dc.relation.referencesLegendre, P. & Legendre, L. (2012) Numerical Ecology. 3rd ed. Elsevier, 1006 pp. Available from: https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-53868-0 (April 17, 2021)spa
dc.relation.referencesLemos, L.N., Pedrinho, A., Vasconcelos, A.T.R. de, Tsai, S.M. & Mendes, L.W. (2021) Amazon deforestation enriches antibiotic resistance genes. Soil Biology and Biochemistry 153, 108110. https://doi.org/10.1016/J.SOILBIO.2020.108110spa
dc.relation.referencesLeon, G., Martinez, A., Molina, J. & Zuluaga, J. (2009) Manejo de termitas o comejenes en el cultivo del caucho Manejo de termitas o comejenes en el cultivo del caucho. Corpoica, Colombia, 1–20 pp.spa
dc.relation.referencesLetourneau, D.K. & Altieri, M.A. (1999) Environmental Management to Enhance Biological Control in Agroecosystems. Handbook of Biological Control, 319–354. https://doi.org/10.1016/B978-012257305-7/50061-8spa
dc.relation.referencesLima, J.T. & Costa-Leonardo, A.M. (2007) Recursos alimentares explorados pelos cupins (Insecta: Isoptera). Biota Neotropica 7, 243–250. https://doi.org/10.1590/s1676-06032007000200027spa
dc.relation.referencesLima, S.S., Pereira, M.G., Pereira, R.N., Pontes, R.M. & Rossi, C.Q. (2018) Termite mounds effects on soil properties in the atlantic forest biome. Revista Brasileira de Ciencia do Solo 42, e0160564. https://doi.org/10.1590/18069657rbcs20160564spa
dc.relation.referencesLiu, S., Lin, X., Behm, J.E., Yuan, H., Stiblik, P., Šobotník, J., Gan, J., Xia, S. & Yang, X. (2019) Comparative responses of termite functional and taxonomic diversity to land-use change. Ecological Entomology 44, 762–770. https://doi.org/10.1111/een.12755spa
dc.relation.referencesLosey, J.E. & Vaughan, M. (2006) The Economic value of ecological services provided by insects. BioScience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56spa
dc.relation.referencesLu, X., Taylor, A.E., Myrold, D.D. & Neufeld, J.D. (2020) Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Science Society of America Journal 84, 287–302. https://doi.org/10.1002/SAJ2.20029spa
dc.relation.referencesLuke, S.H., Fayle, T.M., Eggleton, P., Turner, E.C. & Davies, R.G. (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation 23, 2817–2832. https://doi.org/10.1007/s10531-014-0750-2spa
dc.relation.referencesMando, A. & Miedena, R. (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology 6, 241–249.spa
dc.relation.referencesMando, A., Stroosnijder, L. & Brussaard, L. (1996) Effects of termites on infiltration into crusted soil. Geoderma 74, 107–113. https://doi.org/10.1016/S0016-7061(96)00058-4spa
dc.relation.referencesMarichal, R., Grimaldi, M., Feijoo, M.A., Oszwald, J., Praxedes, C., Ruiz Cobo, D.H., del Pilar Hurtado, M., Desjardins, T., da Silva Junior, M.L., da Silva Costa, L.G., Miranda, I.S., Delgado Oliveira, M.N., Brown, G.G., Tsélouiko, S., Martins, M.B., Decaëns, T., Velasquez, E. & Lavelle, P. (2014) Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology 83, 177–185. https://doi.org/10.1016/j.apsoil.2014.05.006spa
dc.relation.referencesMarichal, R., Martinez, A.F., Praxedes, C., Ruiz, D., Carvajal, A.F., Oszwald, J., del Pilar Hurtado, M., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., Decaëns, T., Velasquez, E. & Lavelle, P. (2010) Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology 46, 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001spa
dc.relation.referencesMathews, A.G.A. (1977) Academia Brasileira de Ciências Studies on termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de Janeiro, 267 pp.spa
dc.relation.referencesMathieu, J., Rossi, J.-P., Mora, P., Lavelle, P., Martins, P.F.D.S., Rouland, C. & Grimaldi, M. (2005) Recovery of Soil Macrofauna Communities after Forest Clearance in Eastern Amazonia, Brazil. Conservation Biology 19, 1598–1605. https://doi.org/10.1111/j.1523-1739.2005.00200.xspa
dc.relation.referencesMill, A.E. (1992) Termites as Agricultural Pests in Amazônia, Brazil. Outlook on Agriculture 21, 41–46. https://doi.org/10.1177/003072709202100107spa
dc.relation.referencesMoreira, F.M. de S., Nóbrega, R.S.A., Jesus, E. da C., Ferreira, D.F. & Pérez, D.V. (2009) Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon. Science of The Total Environment 408, 349–355. https://doi.org/10.1016/J.SCITOTENV.2009.09.007spa
dc.relation.referencesMurcia, U., Medina, R., Rodriguez, J., Hernández, A., Herrera, A., Herrera, E. & Castellanos, H. (2014) Monitoreo de los bosques y otras coberturas de la Amazonia Colombiana, a escala 1:100.000. U. Murcia (Ed). Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá D.C., 144 pp.spa
dc.relation.referencesMurtagh, F. & Legendre, P. (2014) Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification 31, 274–295. https://doi.org/10.1007/s00357-014-9161-zspa
dc.relation.referencesNdiaye, D., Lepage, M., Sall, C.E. & Brauman, A. (2004) Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant and Soil 265, 189–196. https://doi.org/10.1007/s11104-005-0892-9spa
dc.relation.referencesNeoh, K.B., Nguyen, M.T., Nguyen, V.T., Itoh, M., Kozan, O. & Yoshimura, T. (2018) Intermediate disturbance promotes termite functional diversity in intensively managed Vietnamese coffee agroecosystems. Journal of Insect Conservation 22, 197–208. https://doi.org/10.1007/s10841-018-0053-0spa
dc.relation.referencesNoriega, J.A., Hortal, J., Azcárate, F.M., Berg, M.P., Bonada, N., Briones, M.J.I., Del Toro, I., Goulson, D., Ibanez, S., Landis, D.A., Moretti, M., Potts, S.G., Slade, E.M., Stout, J.C., Ulyshen, M.D., Wackers, F.L., Woodcock, B.A. & Santos, A.M.C. (2018) Research trends in ecosystem services provided by insects. Basic and Applied Ecology 26, 8–23.spa
dc.relation.referencesOfficer, S.J., Kravchenko, A., Bollero, G.A., Sudduth, K.A., Kitchen, N.R., Wiebold, W.J., Palm, H.L. & Bullock, & D.G. (2004) 258 Plant and Soil Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values.spa
dc.relation.referencesOksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Maintainer, H.W. (2019) Package “vegan” Title Community Ecology Package Version 2.5-6.spa
dc.relation.referencesOliveira, D.E., Carrijo, T.F. & Brandão, D. (2013) Species composition of termites (Isoptera) in different Cerrado vegetation physiognomies. Sociobiology 60, 190–197. https://doi.org/10.13102/sociobiology.v60i2.190-197spa
dc.relation.referencesPalin, O.F., Eggleton, P., Malhi, Y., Girardin, C.A.J., Rozas-Dávila, A. & Parr, C.L. (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43, 100–107. https://doi.org/10.1111/j.1744-7429.2010.00650.xspa
dc.relation.referencesde Paula, R.C., de Moraes Lima Silveira, R., da Rocha, M.M. & Izzo, T.J. (2016) The restoration of termite diversity in different reforestated forests. Agroforestry Systems 90, 395–404. https://doi.org/10.1007/s10457-015-9862-2spa
dc.relation.referencesPeña-Venegas, C., Mendoza, E., Rodríguez, C., Cardona, G., Betancurt, B. & Garzón, M. (2015) Carbon fixing capacity of Amazonian soils in relation to its degradation conditions. Revista EIA, 47–53. https://doi.org/10.14508/reia.2014.11.E2.47-53spa
dc.relation.referencesPeña-Venegas, C.P., Cardona, G.I., Mazorra, A., Arguellez, J. & Arcos, A. (2006) Micorrizas arbusculares de la Amazonia colombiana Catálogo ilustrado. Instituto Amazónico de Investigaciones Científicas, SINCHI, Bogotá D.C., 90 pp.spa
dc.relation.referencesPeña-Venegas, C.P., Kuyper, T.W., Davison, J., Jairus, T., Vasar, M., Stomph, T.J., Struik, P.C. & Öpik, M. (2019) Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza 29, 263–275. https://doi.org/10.1007/s00572-019-00891-5spa
dc.relation.referencesPinzón, O.P., Baquero, L.S. & Beltran, M.A. (2017) Termite (isoptera) diversity in a gallery forest relict in the Colombian eastern plains. Sociobiology 64, 92–100. https://doi.org/10.13102/sociobiology.v64i1.1184spa
dc.relation.referencesPinzón, O.P. & Castro, J.D. (2018) New records of termites (Blattodea: Termitidae: Syntermitinae) from Colombia. Journal of Threatened Taxa 10. https://doi.org/10.11609/jot.3909.10.9.12218-12225spa
dc.relation.referencesPinzón, O.P., Hernández, A.M. & Malagón, L.A. (2012) Diversidad de termitas (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de caucho en Puerto López (Meta, Colombia). Revista Colombiana de Entomologia 38, 291–298.spa
dc.relation.referencesPinzón, O.P., Scheffrahn, R.H. & Carrijo, T.F. (2019) Aparatermes thornatus (Isoptera: Termitidae: Apicotermitinae), a New Species of Soldierless Termite from Northern Amazonia. Florida Entomologist 102, 141. https://doi.org/10.1653/024.102.0123spa
dc.relation.referencesPiotto, D., Flesher, K., Nunes, A.C.P., Rolim, S., Ashton, M. & Montagnini, F. (2020) Restoration plantings of non-pioneer tree species in open fields, young secondary forests, and rubber plantations in Bahia, Brazil. Forest Ecology and Management 474, 118389. https://doi.org/10.1016/j.foreco.2020.118389spa
dc.relation.referencesPisco, R.R., María, ;, Guzmán Álvarez, E., Ivonne, E. & Rojas, L. (2013) Population dynamics of earthworms in an andisol under different soil use systems. Rev.Fac.Nal.Agr.Medellín, 7045–7055.spa
dc.relation.referencesQuesada, C.A., Lloyd, J., Schwarz, M., Patiño, S., Patiño, P., Baker, T.R., Czimczik, C., Fyllas, N.M., Martinelli, L., Nardoto, G.B., Schmerler, J., Santos, A.J.B., Hodnett, M.G., Herrera, R., Luizão, F.J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W.A., Geilmann, H., Filho, J.O.M., Carvalho, F.P., Filho, R.N.A., Chaves, J.E., Cruz Junior, O.F., Pimentel, T.P. & Paiva, R. (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541. https://doi.org/10.5194/bg-7-1515-2010spa
dc.relation.referencesR Development Core Team (2021) R: A language and environment for statistical computing.spa
dc.relation.referencesRamírez, U., Charry, A., Jäger, M., Hurtado, J., Rosas, G., Sterling, A., Romero, M., Sierra, L. & Quintero, M. (2018) Estrategia Sectorial de la Cadena de Caucho en Caquetá, con Enfoque Agroambiental y Cero Deforestación. Publicación CIAT No. 451. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 82 pp. Available from: http://bit.ly/2tnFv7R (April 22, 2020)spa
dc.relation.referencesRocha, M.M., Cancello, E.M. & Carrijo, T.F. (2012) Neotropical termites: Revision of Armitermes Wasmann (Isoptera, Termitidae, Syntermitinae) and phylogeny of the Syntermitinae. Systematic Entomology 37, 793–827. https://doi.org/10.1111/j.1365-3113.2012.00645.xspa
dc.relation.referencesRocha, M.M., Cuezzo, C., Constantini, J.P., Oliveira, D.E., Santos, R.G., Carrijo, T.F. & Cancello, E.M. (2019) Overview of the morphology of Neotropical termite workers: history and practice. Sociobiology 66, 1–32. https://doi.org/10.13102/sociobiology.v66i1.2067spa
dc.relation.referencesRocha, M.M. Da & Cancello, E.M. (2007) Estudo taxonômico de Cylindrotermes Holmegren (Isoptera, Termitidae Termitinae). Papéis Avulsos de Zoologia da Universidade de São Paulo 47, 137–152.spa
dc.relation.referencesRocha, M.M. Da & Cancello, E.M. (2009) Revision of the Neotropical termite genus Orthognathotermes Holmgren ( Isoptera : Termitidae : Termitinae ). Zootaxa 2280, 1–26.spa
dc.relation.referencesRoisin, Y. (1996) Castes in humivorous and litter-dwelling neotropical nasute termites (Isoptera, Termitidae). Insectes Sociaux 43, 375–389. https://doi.org/10.1007/BF01258410spa
dc.relation.referencesRoisin, Y., Dejean, A., Corbara, B., Orivel, J., Samaniego, M. & Leponce, M. (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia 149, 301–311. https://doi.org/10.1007/s00442-006-0449-5spa
dc.relation.referencesRossi, J.P., Mathieu, J., Cooper, M. & Grimaldi, M. (2006) Soil macrofaunal biodiversity in Amazonian pastures: Matching sampling with patterns. Soil Biology and Biochemistry 38, 2178–2187. https://doi.org/10.1016/j.soilbio.2006.01.020spa
dc.relation.referencesSanabria, C., Dubs, F., Lavelle, P., Fonte, S.J. & Barot, S. (2016) Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal of Soil Biology 74, 81–92. https://doi.org/10.1016/j.ejsobi.2016.03.008spa
dc.relation.referencesSánchez-Cuervo, A.M., Aide, T.M., Clark, M.L. & Etter, A. (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010 B. Bond-Lamberty (Ed). PLoS ONE 7, e43943. https://doi.org/10.1371/journal.pone.0043943spa
dc.relation.referencesSanjeeva Rao, P., Saraswathyamma, C.K. & Sethuraj, M.R. (1998) Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agricultural and Forest Meteorology 90, 235–245. https://doi.org/10.1016/S0168-1923(98)00051-3spa
dc.relation.referencesSchaefer, C., Marins, A., Redende, G., De Souza, O.F.F. & Nunes, J. (2016) Termite role in soil nutrient cycling in ironstone rupestrian grasslands (Canga) in Carajás, Brazilian Amazonia. In: G. Fernandes (Ed), Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer, pp. 1–567.spa
dc.relation.referencesScheffrahn, R.H. (2013) Compositermes vindai (Isoptera: Termitidae: Apicotermitinae), a new genus and species of soldierless termite from the Neotropics. Zootaxa 3652, 381–391. https://doi.org/10.11646/zootaxa.3652.3.6spa
dc.relation.referencesScheffrahn, R.H., Carrijo, T.F., Postle, A.C. & Tonini, F. (2017) Disjunctitermes insularis, a new soldierless termite genus and species (Isoptera, Termitidae, Apicotermitinae) from Guadeloupe and Peru. ZooKeys 665, 71–84. https://doi.org/10.3897/zookeys.665.11599spa
dc.relation.referencesSchroth, G. (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agroforestry systems 43, 5–34.spa
dc.relation.referencesScudder, G.G.E. (2017) The Importance of Insects. In: Insect Biodiversity. John Wiley & Sons, Ltd, Chichester, UK, pp. 9–43.spa
dc.relation.referencesShigematsu, A., Mizoue, N., Kakada, K., Muthavy, P., Kajisa, T. & Yoshida, S. (2013) Financial potential of rubber plantations considering rubberwood production: Wood and crop production nexus. Biomass and Bioenergy 49, 131–142. https://doi.org/10.1016/j.biombioe.2012.12.011spa
dc.relation.referencesSiebers, N., Martius, C., Eckhardt, K.U., Garcia, M.V.B., Leinweber, P. & Amelung, W. (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS ONE 10, e0123790. https://doi.org/10.1371/journal.pone.0123790spa
dc.relation.referencesSierra, G. (2011) La fiebre del caucho en Colombia. Revista Credencial.spa
dc.relation.referencesSnyder, T.E. (1924) Descriptions of new species and hitherto unknown castes of termites from America and Hawaii. Proceedings of the U.S. National Museum 64, 1–45.spa
dc.relation.referencesSnyder, T.E. (1949) Catalog of the termites (Isoptera) of the world. Smithsonian Miscellaneous Collections 112, 9–378.spa
dc.relation.referencesSouty-Grosset, C. & Faberi, A. (2018) Effect of agricultural practices on terrestrial isopods: a review. ZooKeys 2018, 63. https://doi.org/10.3897/ZOOKEYS.801.24680spa
dc.relation.referencesDe Souza, O.F.F. & Brown, V.K. (1994) Effects of habitat fagmentation on amazonian termite communities effects of habitat fragmentation on Amazonian termite communities. Journal ofTropical Ecology 10, 197–206.spa
dc.relation.referencesDe Souza, S.T., Cassol, P., Baretta, D., Bartz, M., Klauberg Filho, O., Mafra, Á. & da Rosa, M. (2016) Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Revista Brasileira de Ciencia do Solo 40, e0150248. https://doi.org/10.1590/18069657rbcs20150248spa
dc.relation.referencesSterling, A., Gómez, C.A. & Campo, A.A. (2011a) Patogenicidad de Metarhizium anisopliae (Deuteromycota: Hyphomycetes) sobre Heterotermes tenuis (Isoptera: Rhinotermitidae) en Hevea brasiliensis. Revista Colombiana de Entomologia 37, 36–42.spa
dc.relation.referencesSterling, A., Pimentel-Parra, G.A., Virguez-Díaz, Y.R., Suárez-Córdoba, Y.D., Hoyos-Duarte, J.D. & Fonseca-Restrepo, J.A. (2021) Long-term resistance in promising rubber tree genotypes as a breeding source for improving South American leaf blight management under high disease incidence in the Colombian Amazon. Crop Protection 150, 105817. https://doi.org/10.1016/J.CROPRO.2021.105817spa
dc.relation.referencesSterling, A., Rodriguez-León, C.H., Betancurt, B., Dussan, I., Bonilla, N., Mazorra, A., Ossa, E., Gamboa, A., Caicedo, D. & Lllanos, H. (2011b) Bases técnicas para la identificación y selección de árboles elite-francos de caucho natural en el Departamento del Caquetá. In: A. Sterling and C. H. Rodriguez-León (Eds), Nuevos clones de caucho natural para la Amazonia colombiana: énfasis en la resistencia al mal suramericano de las hojas (Microcyclus ulei). Instituto Amazonico de Investigaciones Cientificas SINCHI, Bogotá D.C., p. 195.spa
dc.relation.referencesSterling, A. & Rodríguez, C.H. (2012) Ampliación de la base genética de caucho natural con proyección para la Amazonia colombiana : fase de evaluación en periodo improductivo a gran escala. Instituto Amazónico de Investigaciones Científicas- Sinchi, Bogotá D.C., 147 pp.spa
dc.relation.referencesSterling Cuéllar, A. & Rodríguez León, C.H. (2014) Agroforestería en el Caquetá : clones promisorios de caucho en asocio con copoazú y pátano hartón con potencial para la Amazonia colombiana. Instituto Amazónico de Investigaciones Científicas - SINCHI, Bogotá, D.C., 220 pp.spa
dc.relation.referencesTokuda, G. & Watanabe, H. (2007) Hidden cellulases in termites: Revision of an old hypothesis. Biology Letters 3, 336–339. https://doi.org/10.1098/rsbl.2007.0073spa
dc.relation.referencesTokuda, G., Watanabe, H., Matsumoto, T. & Noda, H. (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-glucanase. Zoological sciense 14, 83–93.spa
dc.relation.referencesVargas-Niño, a. P., Sánchez-Muñoz, O.D. & Serna-Cardona, F.J. (2005) Lista de los géneros de Termitidae (Insecta: Isoptera) de Colombia. Biota Colombiana 6, 181–190.spa
dc.relation.referencesVeresoglou, S.D., Chen, B. & Rillig, M.C. (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry 46, 53–62. https://doi.org/10.1016/J.SOILBIO.2011.11.018spa
dc.relation.referencesViana, A.B., Souza, V.B., Reis, Y.T. & Marques-Costa, A.P. (2014) Termite assemblages in dry tropical forests of Northeastern Brazil: Are termites bioindicators of environmental disturbances? Sociobiology 61, 324–331. https://doi.org/10.13102/sociobiology.v61i3.324-331spa
dc.relation.referencesWalkley, A. & Black, I.A. (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003spa
dc.relation.referencesWei, T. & Simko, V. (2017) R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available from: https://github.com/taiyun/corrplotspa
dc.relation.referencesWeidner, H. (1980) Termiten aus Kolumbien nach Beobachtungen von German O. Valenzuela und Fritz Schremmer. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 53, 65–69. https://doi.org/10.1007/BF01965892spa
dc.relation.referencesWhite, P.J. (1998) Calcium channels in the plasma membrane of root cells. Annals of Botany 81, 173–183.spa
dc.relation.referencesYamada, A., Inoue, T., Wiwatwitaya, D., Ohkuma, M., Kudo, T. & Sugimoto, A. (2006) Nitrogen fixation by termites in tropical forests, Thailand. Ecosystems 9, 75–83. https://doi.org/10.1007/s10021-005-0024-7spa
dc.relation.referencesZaller, J.G. & Brühl, C.A. (2019) Non-target effects of pesticides on organisms inhabiting agroecosystems. Frontiers in Environmental Science 7, 75. https://doi.org/10.3389/fenvs.2019.00075spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.lembRubber plantseng
dc.subject.lembReclamation of landeng
dc.subject.lembTermitesspa
dc.subject.lembComejenesspa
dc.subject.lembPlantas caucherasspa
dc.subject.lembRecuperación de tierrasspa
dc.subject.proposalClonal fieldeng
dc.subject.proposalIndicator specieseng
dc.subject.proposalLand useseng
dc.subject.proposalOrganic carboneng
dc.subject.proposalSoil-feederseng
dc.subject.proposalCampo clonalspa
dc.subject.proposalCarbón orgánicospa
dc.subject.proposalConsumidores de suelospa
dc.subject.proposalEspecies indicadorasspa
dc.subject.proposalUsos del suelospa
dc.titleFunctional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazoneng
dc.title.translatedEstructura funcional de los ensamblajes de termitas asociados con sistemas productivos de caucho en el noroeste de la amazonía colombianaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto Amazónico de Investigaciones Científicas SINCHIspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015428889.2021.pdf
Tamaño:
3.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: