Desarrollo de sistema experto para análisis de fallas en ejes basado en redes neuronales

dc.contributor.advisorEspejo Mora, Edgar
dc.contributor.authorAdame Escobar, Mario Alberto
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)
dc.date.accessioned2025-09-02T15:07:09Z
dc.date.available2025-09-02T15:07:09Z
dc.date.issued2025-04
dc.descriptionilustraciones (principalmente a color), diagramas
dc.description.abstractEl presente trabajo se trata sobre el desarrollo de un sistema experto basado en redes neuronales para clasificar modos de falla. En su contenido, menciona los aspectos preliminares básicos de antecedentes nacionales e internacionales sobre sistemas expertos para análisis de fallas. Además, presenta unos aspectos básicos relacionados con análisis de fallas post mortem para ejes de maquinaria, y con redes neuronales. Posteriormente incorpora una metodología propuesta para la construcción de tres motores de inferencia basados en redes neuronales de perceptrón multicapa, redes neuronales profundas, y redes neuronales recurrentes con capas de memoria de corto y largo plazo. Dichos motores de inferencia para ser implementados en un sistema experto para diagnóstico de modos de falla en ejes. Posteriormente, se presentan los resultados obtenidos de dichos motores de inferencia, al ser probados con unos casos reales. Un análisis de resultados, donde se analiza el desempeño de estos motores y una comparación de los mismos; entre ellos mismos, y los resultados obtenidos en los trabajos previos desarrollados en la universidad nacional qué fueron implementados con motores de inferencia bayesiana, inferencia clásica y lógica difusa. Donde se encontró un impacto negativo relacionado con la creación de casos sintéticos en el desempeño global de los modelos programados. Esto en comparación con el desempeño de trabajos previos desarrollados en la Universidad Nacional de Colombia donde se usaron datos reales para el entrenamiento. Esto siendo particularmente relevante para casos de modos de falla con bajas frecuencias de aparición. En general, los modelos programados presentaron una tasa de aciertos comprendida en un rango del 40% hasta un máximo de 63%. Sin embargo, si se identificó una diferencia en la calidad de las predicciones basado en la probabilidad promedio de coincidencia con los modos de falla correctos valorados por el criterio humano experto, obteniendo mejoras absolutas cercanas en algunos casos al 10%. Sobre el desempeño de los modelos, puede decirse que tuvieron un mejor comportamiento global que las redes bayesianas de tipo enumeración, eliminación de variables, y “Metropolis-Hastings” del documento [3], pero inferiores a la red bayesiana implementada en el documento [2] considerando las cuatro familias de modos de falla: fractura, deformación, corrosión, y desgaste. Finalmente, se presentan unas conclusiones, y recomendaciones, en relación con la metodología desarrollada, el análisis de resultados, y los recursos computacionales. Así mismo, unos anexos donde se listan las librerías de Python con las cuales se desarrolló este proyecto. (Texto tomado de la fuente)spa
dc.description.abstractThis study focuses on the development of an expert system based on neural networks for fault mode classification. It begins by addressing fundamental preliminary aspects, including national and international background on expert systems for failure analysis. Additionally, it covers basic concepts related to post-mortem failure analysis in machinery shafts and neural networks. Subsequently, a proposed methodology is introduced for constructing three inference engines based on multilayer perceptron neural networks, deep neural networks, and recurrent neural networks with long short-term memory layers. These inference engines are designed to be implemented in an expert system for diagnosing fault modes in shafts. Following this, the results obtained from these inference engines are presented, tested using real-world cases. A results analysis is conducted, evaluating the performance of these engines and comparing them among themselves, as well as against previous studies conducted at the National University, which employed Bayesian inference engines, classical inference, and fuzzy logic. A negative impact was identified concerning the use of synthetic cases on the overall performance of the programmed models, particularly when compared to previous studies at the National University of Colombia that utilized real training data. This was especially relevant for fault modes with low occurrence frequencies. Overall, the programmed models achieved an accuracy rate ranging from 40% to a maximum of 63%. However, a difference in prediction quality was observed based on the average probability of matching the correct fault modes, as assessed by expert human judgment, with absolute improvements in some cases nearing 10%. Regarding model performance, the neural networks exhibited better overall behavior than the enumeration-based, variable elimination, and Metropolis-Hastings Bayesian networks from reference [3], but underperformed compared to the Bayesian network implemented in reference [2], considering the four families of fault modes: fracture, deformation, corrosion, and wear. Finally, conclusions and recommendations are provided concerning the developed methodology, results analysis, and computational resources. Appendices are also included, listing the Python libraries used in this project.eng
dc.description.curricularareaIngeniería Mecánica y Mecatrónica.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagister en ingeniería mecánica
dc.description.researchareaAnálisis de fallas en componentes mecánicos
dc.format.extentxvi, 111 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88532
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.relation.referencesMora, E., & Hernández, H. (2017). Análisis de fallas de estructuras y elementos mecánicos. Editorial Universidad Nacional de Colombia
dc.relation.referencesMoreno, C. (2013). Diseño, implementación y evaluación de un sistema experto para análisis de fallas en elementos de máquinas
dc.relation.referencesMappe, K. (2019). Evaluación del desempeño de tres algoritmos de inferencia bayesiana, implementados como sistema experto para la identificación de modos de falla en ejes
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press
dc.relation.referencesSutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press
dc.relation.referencesLeCun, Y., Bengio, Y., & Hinton, G. (2015). "Deep learning". Nature, 521(7553), 436-444
dc.relation.referencesRussell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson
dc.relation.referencesTegmark, M. (2017). Life 3.0: Being Human in the Age of Artificial Intelligence. Knopf
dc.relation.referencesHassoun, M. (1995). Fundamentas of Artificial Neural networks. MIT Press
dc.relation.references(2016). Book Artificial Neural Network Modelling
dc.relation.referencesKoprinkova-Hristova, P., Mladenov, V., & Kasabov, N. K. (Eds.). (2015). Artificial Neural Networks: Methods and Applications in Bio-/Neuroinformatics
dc.relation.referencesChen, Z. (2014). Fault diagnosis based on comprehensive geometric characteristic and probability neural network
dc.relation.referencesFaußer, S., & Schwenker, F. (2015). Selective neural network ensembles in reinforcement learning: Taking the advantage of many agents
dc.relation.referencesElmasry, M. I. (Ed.). (1994). VLSI Artificial Neural Networks Engineering. Springer US
dc.relation.references(2018). International Journal of Fatigue, 113
dc.relation.referencesMohammed, O., & Neilson, R. (2013). Crack detection in a rotating shaft using artificial neural networks and PSD characterisation
dc.relation.referencesRafiee, J., & Tse, P. (2009). A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system
dc.relation.referencesMuhammad, A., & Jong, M. (2013). Reliable fault diagnosis of rotary machine bearings using a stacked sparse autoencoder-based deep neural network
dc.relation.referencesHaiping, Z., & Jainmin, L. (2018). Fault diagnosis for machinery based on feature extraction and general regression neural network
dc.relation.referencesSamanta, B., & Balushi, K. (2005). Artificial neural networks and genetic algorithm for bearing fault detection
dc.relation.referencesSun, W., & Xiao, H. (2016). Automatic multi-fault recognition in TFDS based on convolutional neural network
dc.relation.referencesSaravan, N. (2010). Fault diagnosis of spur bevel gear box using artificial neural network (ANN) and proximal support vector machine (PSVM)
dc.relation.referencesLiu, R., & Zhou, J. (2018). Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
dc.relation.referencesHu, Q., & Bo, L. (2017). Intelligent fault diagnosis of the high-speed train with big data based on deep neural networks
dc.relation.referencesZhu, J., & Peng, Z. (2019). A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
dc.relation.referencesHoang, D., & Kang, H. (2019). Rolling element bearing fault diagnosis using convolutional neural network and vibration image.
dc.relation.referencesWu, J., & Jiang, Z. (2019). Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
dc.relation.referencesLiang, X., & Qin, Y. (2018). Convolutional recurrent neural network for fault diagnosis of high-speed train bogie
dc.relation.referencesZhao, R., & Wang, J. (2019). Deep convolutional neural network based planet bearing fault classification
dc.relation.referencesWu, X., & Jin, Y. (2019). A multi-perspective architecture for high-speed train fault diagnosis based on variational mode decomposition and enhanced multi-scale structure
dc.relation.referencesWang, B., & Lu, N. (2017). Fault diagnosis for rotary machinery with selective ensemble neural networks
dc.relation.referencesHang, J., & Chen, X. (2015). Neural network-based fault detection method for aileron actuator
dc.relation.referencesFeng, Z., & Zuo, M. (2013). Fault diagnosis of planetary gearboxes via torsional vibration signal analysis
dc.relation.referencesDu, J., & Jin, W. (2016). A new feature evaluation algorithm and its application to fault of high-speed railway
dc.relation.referencesHuang, N., & Baddour, N. (2018). Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction
dc.relation.referencesJanssens, O., & Slavkovikj, V. (2016). Convolutional neural network based fault detection for rotating machinery
dc.relation.referencesJia, F., & Lei, Y. (2016). Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
dc.relation.referencesLi, Z., & Jiang, Y. (2016). Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: A review
dc.relation.referencesZheng, J., & Pan, H. (2017). Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
dc.relation.referencesSong, L., & Wang, H. (2018). Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery
dc.relation.referencesWang, Y., & Ananya, M. (2017). Virtualization and deep recognition for system fault classification
dc.relation.referencesZhou, J., & Chen, X. (2016). Multi-domain description method for bearing fault recognition in varying speed condition
dc.relation.referencesPandas Development Team. (s.f.). Intro to data structures. Pandas Documentation. Disponible en: https://pandas.pydata.org/docs/user_guide/dsintro.html
dc.relation.referencesNumPy Community. (s.f.). NumPy User Guide. NumPy Documentation. Disponible en: https://numpy.org/doc/stable/user/index.html#user
dc.relation.referencesTensorFlow Developers. (s.f.). TensorFlow Python API Documentation. TensorFlow Documentation. Disponible en: https://www.tensorflow.org/api_docs/python/tf/all_symbols
dc.relation.referencesKeras Team. (s.f.). Keras API Reference (v2.18). Keras Documentation. Disponible en: https://keras.io/2.18/api/
dc.relation.referencesScikit-learn Developers. (2019). User Guide — scikit-learn 0.21. Scikit-learn Documentation. Disponible en: https://scikit-learn.org/0.21/user_guide.html
dc.relation.referencesPython Software Foundation. (s.f.). random — Generate pseudo-random numbers. Python Documentation. Disponible en: https://docs.python.org/3/library/random.html
dc.relation.referencesPython Software Foundation. (s.f.). Python 3 Documentation. Python Documentation. Disponible en: https://docs.python.org/3/index.html
dc.relation.referencesPalma, J., & Marín, R. (2008). Inteligencia Artificial: Métodos, técnicas y aplicaciones. Mc Graw Hill
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.subject.bneSistemas expertos (Informática)spa
dc.subject.bneExpert systems (Computer science)eng
dc.subject.bneRedes neuronales artificialesspa
dc.subject.bneNeural networks (Computer science)eng
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.lccFallas en el sistema (Ingeniería)spa
dc.subject.lccSystem failures (Engineering)eng
dc.subject.proposalAnálisis de fallasspa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalPerceptrón multicapaspa
dc.subject.proposalRedes neuronales profundasspa
dc.subject.proposalRedes neuronales recurrentesspa
dc.subject.proposalSistema expertospa
dc.subject.proposalFailure analysiseng
dc.subject.proposalNeural networkseng
dc.subject.proposalMultilayer perceptroneng
dc.subject.proposalDeep neural networkseng
dc.subject.proposalRecurrent neural networkseng
dc.subject.proposalExpert systemeng
dc.subject.wikidataPerceptrón multicapaspa
dc.subject.wikidataMultilayer perceptroneng
dc.titleDesarrollo de sistema experto para análisis de fallas en ejes basado en redes neuronalesspa
dc.title.translatedDevelopment of a neural network-based expert system for shaft failure analysiseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018450396.2025.pdf
Tamaño:
5.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: