Desarrollo de sistema experto para análisis de fallas en ejes basado en redes neuronales
dc.contributor.advisor | Espejo Mora, Edgar | |
dc.contributor.author | Adame Escobar, Mario Alberto | |
dc.contributor.researchgroup | Grupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies) | |
dc.date.accessioned | 2025-09-02T15:07:09Z | |
dc.date.available | 2025-09-02T15:07:09Z | |
dc.date.issued | 2025-04 | |
dc.description | ilustraciones (principalmente a color), diagramas | |
dc.description.abstract | El presente trabajo se trata sobre el desarrollo de un sistema experto basado en redes neuronales para clasificar modos de falla. En su contenido, menciona los aspectos preliminares básicos de antecedentes nacionales e internacionales sobre sistemas expertos para análisis de fallas. Además, presenta unos aspectos básicos relacionados con análisis de fallas post mortem para ejes de maquinaria, y con redes neuronales. Posteriormente incorpora una metodología propuesta para la construcción de tres motores de inferencia basados en redes neuronales de perceptrón multicapa, redes neuronales profundas, y redes neuronales recurrentes con capas de memoria de corto y largo plazo. Dichos motores de inferencia para ser implementados en un sistema experto para diagnóstico de modos de falla en ejes. Posteriormente, se presentan los resultados obtenidos de dichos motores de inferencia, al ser probados con unos casos reales. Un análisis de resultados, donde se analiza el desempeño de estos motores y una comparación de los mismos; entre ellos mismos, y los resultados obtenidos en los trabajos previos desarrollados en la universidad nacional qué fueron implementados con motores de inferencia bayesiana, inferencia clásica y lógica difusa. Donde se encontró un impacto negativo relacionado con la creación de casos sintéticos en el desempeño global de los modelos programados. Esto en comparación con el desempeño de trabajos previos desarrollados en la Universidad Nacional de Colombia donde se usaron datos reales para el entrenamiento. Esto siendo particularmente relevante para casos de modos de falla con bajas frecuencias de aparición. En general, los modelos programados presentaron una tasa de aciertos comprendida en un rango del 40% hasta un máximo de 63%. Sin embargo, si se identificó una diferencia en la calidad de las predicciones basado en la probabilidad promedio de coincidencia con los modos de falla correctos valorados por el criterio humano experto, obteniendo mejoras absolutas cercanas en algunos casos al 10%. Sobre el desempeño de los modelos, puede decirse que tuvieron un mejor comportamiento global que las redes bayesianas de tipo enumeración, eliminación de variables, y “Metropolis-Hastings” del documento [3], pero inferiores a la red bayesiana implementada en el documento [2] considerando las cuatro familias de modos de falla: fractura, deformación, corrosión, y desgaste. Finalmente, se presentan unas conclusiones, y recomendaciones, en relación con la metodología desarrollada, el análisis de resultados, y los recursos computacionales. Así mismo, unos anexos donde se listan las librerías de Python con las cuales se desarrolló este proyecto. (Texto tomado de la fuente) | spa |
dc.description.abstract | This study focuses on the development of an expert system based on neural networks for fault mode classification. It begins by addressing fundamental preliminary aspects, including national and international background on expert systems for failure analysis. Additionally, it covers basic concepts related to post-mortem failure analysis in machinery shafts and neural networks. Subsequently, a proposed methodology is introduced for constructing three inference engines based on multilayer perceptron neural networks, deep neural networks, and recurrent neural networks with long short-term memory layers. These inference engines are designed to be implemented in an expert system for diagnosing fault modes in shafts. Following this, the results obtained from these inference engines are presented, tested using real-world cases. A results analysis is conducted, evaluating the performance of these engines and comparing them among themselves, as well as against previous studies conducted at the National University, which employed Bayesian inference engines, classical inference, and fuzzy logic. A negative impact was identified concerning the use of synthetic cases on the overall performance of the programmed models, particularly when compared to previous studies at the National University of Colombia that utilized real training data. This was especially relevant for fault modes with low occurrence frequencies. Overall, the programmed models achieved an accuracy rate ranging from 40% to a maximum of 63%. However, a difference in prediction quality was observed based on the average probability of matching the correct fault modes, as assessed by expert human judgment, with absolute improvements in some cases nearing 10%. Regarding model performance, the neural networks exhibited better overall behavior than the enumeration-based, variable elimination, and Metropolis-Hastings Bayesian networks from reference [3], but underperformed compared to the Bayesian network implemented in reference [2], considering the four families of fault modes: fracture, deformation, corrosion, and wear. Finally, conclusions and recommendations are provided concerning the developed methodology, results analysis, and computational resources. Appendices are also included, listing the Python libraries used in this project. | eng |
dc.description.curriculararea | Ingeniería Mecánica y Mecatrónica.Sede Bogotá | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en ingeniería mecánica | |
dc.description.researcharea | Análisis de fallas en componentes mecánicos | |
dc.format.extent | xvi, 111 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88532 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.relation.references | Mora, E., & Hernández, H. (2017). Análisis de fallas de estructuras y elementos mecánicos. Editorial Universidad Nacional de Colombia | |
dc.relation.references | Moreno, C. (2013). Diseño, implementación y evaluación de un sistema experto para análisis de fallas en elementos de máquinas | |
dc.relation.references | Mappe, K. (2019). Evaluación del desempeño de tres algoritmos de inferencia bayesiana, implementados como sistema experto para la identificación de modos de falla en ejes | |
dc.relation.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press | |
dc.relation.references | Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press | |
dc.relation.references | LeCun, Y., Bengio, Y., & Hinton, G. (2015). "Deep learning". Nature, 521(7553), 436-444 | |
dc.relation.references | Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson | |
dc.relation.references | Tegmark, M. (2017). Life 3.0: Being Human in the Age of Artificial Intelligence. Knopf | |
dc.relation.references | Hassoun, M. (1995). Fundamentas of Artificial Neural networks. MIT Press | |
dc.relation.references | (2016). Book Artificial Neural Network Modelling | |
dc.relation.references | Koprinkova-Hristova, P., Mladenov, V., & Kasabov, N. K. (Eds.). (2015). Artificial Neural Networks: Methods and Applications in Bio-/Neuroinformatics | |
dc.relation.references | Chen, Z. (2014). Fault diagnosis based on comprehensive geometric characteristic and probability neural network | |
dc.relation.references | Faußer, S., & Schwenker, F. (2015). Selective neural network ensembles in reinforcement learning: Taking the advantage of many agents | |
dc.relation.references | Elmasry, M. I. (Ed.). (1994). VLSI Artificial Neural Networks Engineering. Springer US | |
dc.relation.references | (2018). International Journal of Fatigue, 113 | |
dc.relation.references | Mohammed, O., & Neilson, R. (2013). Crack detection in a rotating shaft using artificial neural networks and PSD characterisation | |
dc.relation.references | Rafiee, J., & Tse, P. (2009). A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system | |
dc.relation.references | Muhammad, A., & Jong, M. (2013). Reliable fault diagnosis of rotary machine bearings using a stacked sparse autoencoder-based deep neural network | |
dc.relation.references | Haiping, Z., & Jainmin, L. (2018). Fault diagnosis for machinery based on feature extraction and general regression neural network | |
dc.relation.references | Samanta, B., & Balushi, K. (2005). Artificial neural networks and genetic algorithm for bearing fault detection | |
dc.relation.references | Sun, W., & Xiao, H. (2016). Automatic multi-fault recognition in TFDS based on convolutional neural network | |
dc.relation.references | Saravan, N. (2010). Fault diagnosis of spur bevel gear box using artificial neural network (ANN) and proximal support vector machine (PSVM) | |
dc.relation.references | Liu, R., & Zhou, J. (2018). Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders | |
dc.relation.references | Hu, Q., & Bo, L. (2017). Intelligent fault diagnosis of the high-speed train with big data based on deep neural networks | |
dc.relation.references | Zhu, J., & Peng, Z. (2019). A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis | |
dc.relation.references | Hoang, D., & Kang, H. (2019). Rolling element bearing fault diagnosis using convolutional neural network and vibration image. | |
dc.relation.references | Wu, J., & Jiang, Z. (2019). Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network | |
dc.relation.references | Liang, X., & Qin, Y. (2018). Convolutional recurrent neural network for fault diagnosis of high-speed train bogie | |
dc.relation.references | Zhao, R., & Wang, J. (2019). Deep convolutional neural network based planet bearing fault classification | |
dc.relation.references | Wu, X., & Jin, Y. (2019). A multi-perspective architecture for high-speed train fault diagnosis based on variational mode decomposition and enhanced multi-scale structure | |
dc.relation.references | Wang, B., & Lu, N. (2017). Fault diagnosis for rotary machinery with selective ensemble neural networks | |
dc.relation.references | Hang, J., & Chen, X. (2015). Neural network-based fault detection method for aileron actuator | |
dc.relation.references | Feng, Z., & Zuo, M. (2013). Fault diagnosis of planetary gearboxes via torsional vibration signal analysis | |
dc.relation.references | Du, J., & Jin, W. (2016). A new feature evaluation algorithm and its application to fault of high-speed railway | |
dc.relation.references | Huang, N., & Baddour, N. (2018). Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction | |
dc.relation.references | Janssens, O., & Slavkovikj, V. (2016). Convolutional neural network based fault detection for rotating machinery | |
dc.relation.references | Jia, F., & Lei, Y. (2016). Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data | |
dc.relation.references | Li, Z., & Jiang, Y. (2016). Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: A review | |
dc.relation.references | Zheng, J., & Pan, H. (2017). Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines | |
dc.relation.references | Song, L., & Wang, H. (2018). Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery | |
dc.relation.references | Wang, Y., & Ananya, M. (2017). Virtualization and deep recognition for system fault classification | |
dc.relation.references | Zhou, J., & Chen, X. (2016). Multi-domain description method for bearing fault recognition in varying speed condition | |
dc.relation.references | Pandas Development Team. (s.f.). Intro to data structures. Pandas Documentation. Disponible en: https://pandas.pydata.org/docs/user_guide/dsintro.html | |
dc.relation.references | NumPy Community. (s.f.). NumPy User Guide. NumPy Documentation. Disponible en: https://numpy.org/doc/stable/user/index.html#user | |
dc.relation.references | TensorFlow Developers. (s.f.). TensorFlow Python API Documentation. TensorFlow Documentation. Disponible en: https://www.tensorflow.org/api_docs/python/tf/all_symbols | |
dc.relation.references | Keras Team. (s.f.). Keras API Reference (v2.18). Keras Documentation. Disponible en: https://keras.io/2.18/api/ | |
dc.relation.references | Scikit-learn Developers. (2019). User Guide — scikit-learn 0.21. Scikit-learn Documentation. Disponible en: https://scikit-learn.org/0.21/user_guide.html | |
dc.relation.references | Python Software Foundation. (s.f.). random — Generate pseudo-random numbers. Python Documentation. Disponible en: https://docs.python.org/3/library/random.html | |
dc.relation.references | Python Software Foundation. (s.f.). Python 3 Documentation. Python Documentation. Disponible en: https://docs.python.org/3/index.html | |
dc.relation.references | Palma, J., & Marín, R. (2008). Inteligencia Artificial: Métodos, técnicas y aplicaciones. Mc Graw Hill | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.subject.bne | Sistemas expertos (Informática) | spa |
dc.subject.bne | Expert systems (Computer science) | eng |
dc.subject.bne | Redes neuronales artificiales | spa |
dc.subject.bne | Neural networks (Computer science) | eng |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
dc.subject.lcc | Fallas en el sistema (Ingeniería) | spa |
dc.subject.lcc | System failures (Engineering) | eng |
dc.subject.proposal | Análisis de fallas | spa |
dc.subject.proposal | Redes neuronales | spa |
dc.subject.proposal | Perceptrón multicapa | spa |
dc.subject.proposal | Redes neuronales profundas | spa |
dc.subject.proposal | Redes neuronales recurrentes | spa |
dc.subject.proposal | Sistema experto | spa |
dc.subject.proposal | Failure analysis | eng |
dc.subject.proposal | Neural networks | eng |
dc.subject.proposal | Multilayer perceptron | eng |
dc.subject.proposal | Deep neural networks | eng |
dc.subject.proposal | Recurrent neural networks | eng |
dc.subject.proposal | Expert system | eng |
dc.subject.wikidata | Perceptrón multicapa | spa |
dc.subject.wikidata | Multilayer perceptron | eng |
dc.title | Desarrollo de sistema experto para análisis de fallas en ejes basado en redes neuronales | spa |
dc.title.translated | Development of a neural network-based expert system for shaft failure analysis | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018450396.2025.pdf
- Tamaño:
- 5.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: