Etching fı́sico en fibras naturales y artificiales

dc.contributor.advisorMariño Camargo, Álvaro
dc.contributor.authorMosquera Gómez, Sergio
dc.contributor.researchgroupGrupo de Superconductividad y Nuevos Materialesspa
dc.date.accessioned2023-08-09T14:01:00Z
dc.date.available2023-08-09T14:01:00Z
dc.date.issued2023-08-08
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractHoy en dı́a, las fibras naturales y sintéticas se están convirtiendo en un recurso valioso para la industria de los compuestos. El uso de fibras naturales y sintéticas como refuerzo de matrices poliméricas tiene muchas ventajas: mejora las propiedades mecánicas por unidad de peso, disminuye el costo de fabricación por unidad de volumen y, entre otras cosas, es amigable con el medio ambiente. A pesar de todo esto, la baja compatibilidad entre los componentes puede resultar en un mal comportamiento mecánico. Sin embargo, los tratamientos con plasma pueden modificar la superficie de las fibras utilizadas como refuerzo, mejorando las uniones entre las diferentes fases del composito. En este trabajo se presentan los resultados de los efectos producidos por los tratamientos con Etching Fı́sico sobre el módulo de Young, ductilidad, resistencia máxima a la tensión y la morfologı́a superficial de las fibras de Guadua angustifolia, Fique y Nylon. Las fibras naturales y sintéticas fueron expuestas a bombardeos fı́sicos con iones de argón durante diferentes intervalos de tiempo y diferentes potencias. El análisis de microscopı́a electrónica de barrido (SEM) mostró que todas las fibras tratadas exhiben superficies rugosas y que la rugosidad de las superficies aumentaba con el tiempo de bombardeo. Los resultados del módulo de Young en función del tiempo de bombardeo y de la energı́a de los iones incidentes mostraron un incremento significativo en las fibras de Guadua y Fique, pero no cambiaron significativamente en las fibras de Nylon. La ductilidad de las fibras de Guadua, Fique y Nylon no se vio afectada apreciablemente en función de la potencia y del tiempo de bombardeo. La resistencia máxima a la tensión se afecto en las fibras de Guadua y Fique y permanecio aproximadamente sin modificaciones en las fibras de Nylon. Los daños producidos en las fibras naturales por el bombardeo de iones según lo determinado por el análisis SEM podrı́an considerarse como una causa importante del aumento observado en el módulo de Young y la resistencia máxima a la tensión. Por otra parte, si bien los daños producidos en las superficies de las fibras tratadas (aumento de la rugosidad), como consecuencia del bombardeo iónico, pueden considerarse como una de las causas del aumento observado en el módulo de Young y en la resistencia máxima a la tensión de las fibras naturales, otros efectos como la alteración del contenido de hemicelulosa y lignina, no pueden descartarse como causas probables del cambio en las propiedades mecánicas de las fibras naturales y el efecto casi nulo observado en las fibras sintéticas (Nylon), a pesar de los daños producidos en su superficie. (Texto tomado de la fuente)spa
dc.description.abstractNowdays, natural and synthetic fibers are becoming a valuable resource for composite industry. The use of natural and synthetic fibers as reinforcement of polymeric matrices has many advantages: it betters mechanical properties per unit of weight, decreases the cost of manufacturing per unit of volume and, among other things, it is environmentally friendly. Despite all of this, the low compatibility between the constituents can result in a poor mechanical behavior. However, plasma treatments can modify the surface of the fibers used as reinforcement, improving the joints between the different phases of the composite. This work present the results of the effects produced by dry etching plasma treatments on the Young’s modulus, ductility, maximum tensile strength and surface morphology of Guadua angustifolia, Fique and Nylon fibers. Natural and synthetic fibers were exposed to physical bombardment with argon ions during different time intervals and different powers. Scanning electron microscopy (SEM) analysis showed that all treated fibers exhibited rough surfaces and that the surfaces roughness increased with the bombardment time. The results of Young’s modulus as a function of bombardment time and the energy of the incident ions displayed a significant increment in Guadua and Fique fibers but did not change significantly in Nylon fibers. The ductility of the Guadua, Fique and Nylon fibers was not appreciably affected in function of power and bombardment time. The maximum tensile strength affected the fibers of Guadua and Fique and remained approximately unchanged in the nylon fibers. The damages produced in the natural fibers by ion bombardment as determined by SEM analysis could be considered as an important cause of the observed increase in Young’s modulus and maximum tensile strength. On the other hand, although the damage caused on the surfaces of the treated fibers (increased roughness), as a consequence of ion bombardment, can be considered as one of the causes of the observed increase in Young’s modulus and the maximum tensile strength of natural fibers, other effects such as altered hemicellulose and lignin content can not be ruled out as probable causes of the change in the mechanical properties of natural fibers and the almost zero effect observed in synthetic fibers (Nylon), despite the damage produced on its surface.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaNuevos Materialesspa
dc.description.researchareaMateriales del Futurospa
dc.format.extentxvi, 84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84503
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAlbella, J. M., editor (2003). Láminas Delgadas y Recubrimientos, Preparación Propiedades y Aplicaciones. Consejo superior de investigaciones cientı́ficas, Madrid, 1 edition.spa
dc.relation.referencesASTM-C1557 (2020). Standard test method for tensile strength and young’s modulus of fibers.spa
dc.relation.referencesBarkoula, N., Alcock, B., Cabrera, N., and Peijs, T. (2008). Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. 16.spa
dc.relation.referencesBarra, B., Bergo, S. S. P., AlvesJr, C., K.Ghavamid, and SavastanoJr., H. (2015). Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material. Industrial Crops and Products, 77:691–702.spa
dc.relation.referencesBledzki, A. and Gassan, J. (1999). Composites reinforced with cellulose based fibres. Profress in Polymer Science, 24:221–274.spa
dc.relation.referencesBledzki, A., Reihmane, S., and Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 59, 1329-1336.spa
dc.relation.referencesBresin, M. (2015). [illinois] an introduction to scanning electron microscopy and focused ion beam.spa
dc.relation.referencesCenteno-Mesa, N., Lombana-Toro, O., Correa-Aguirre, J. P., and Hidalgo-Salazar, M. A. (2022). Effect of fique fibers and its processing by-products on morphology, thermal and mechanical properties of epoxy based biocomposites. Nature-Scientific Reports.spa
dc.relation.referencesChampman, B., editor (1980). Glow Discharge Processes, Sputtering and Plasma Etching. John Wiley & Sons, New York, 1 edition.spa
dc.relation.referencesDaniel, I. M. and Ishai, O., editors (2006). Engineering Mechanics of Composite Materials. Oxford University Press, USA, 2 edition.spa
dc.relation.referencesDeshpande, A. P., Rao, M. B., and Rao, C. L. (2000). Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science, 76:83–92.spa
dc.relation.referencesEcheverri, R. D. E., Montoya, L. M. F., and Velásquez, M. R. G. (2015). Fique en Colombia. Fondo Editorial ITM.spa
dc.relation.referencesEgerton, R. F., editor (2016). Physical Principles of Electron Microscopy - An Introduction to TEM, SEM and AEM. Springer, Canada, 2 edition.spa
dc.relation.referencesElseify, L., Midani, M., El-Badawy, A., and Jawaid, M., editors (2021). Manufacturing Automotive components fron sustainable natural fibers composites. Springer briefs in Materials, SBN 978-3-030-83025-0.spa
dc.relation.referencesFaruk, O., Bledzki, A., and Fink, H. (2013). Progress report on natural fiber reinforced composites. Macromol Mater Eng, 19.spa
dc.relation.referencesFeynman, R. P. (1999). The Feynman Lectures on Physics Vol II: Electromagnetism and Matter. Addison-Wesley Iberoamericana.spa
dc.relation.referencesGrieseler, R. (2020). Microscopı́o electrónico de barrido.spa
dc.relation.referencesHunt, M. S. (2019). Scanning electron microscopy (sem) concepts.spa
dc.relation.referencesHutchison, I. (2001). Introduction to plasma physics.spa
dc.relation.referencesImage-J (2020). Programa de procesamiento de imagen digital. https://imagej.net/software/fiji/.spa
dc.relation.referencesKushwaha, P., Kumar, R., Yu, X., Wang, C., Wei, W., and Zhang, S. (2010). Studies on performance of acrylonitrile-pretreated bamboo- reinforced thermosetting resin composites. Journal of Reinforced Plastics and Composites, 29.spa
dc.relation.referencesLuna, P. (2019). Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibers. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesLuna, P., Lizarazo-Marriaga, J., and Mariño, A. (2016). Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: An exploratory study. Construction and Building Materials, 116:93–97.spa
dc.relation.referencesLuna, P., Mariño, A., and Lizarazo-Marriaga, J. M. (2018). Dry etching plasma applied to guadua angustifolia bamboo fibers: Influence on their mechanical properties and surface appearance. Non-Conventional Materials and Technologies, 7:332–340.spa
dc.relation.referencesManos, D. M. and Flamm, D. L., editors (1989). Plasma Etching and Introduction. Academic Press, United Kingdom, 1 edition.spa
dc.relation.referencesMohanty, A., Misra, M., and Drzal, L. (2002). Sustainable biocomposites from renewable resources : Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10:19–26.spa
dc.relation.referencesNorhidayah, M. H., Hambali, A., Yuhazri, Y., Marjom, Z., Taufik, and Saifuddin, H. (2014). A review of current development in natural fiber composites in automotive applications. Applied Mechanics and Materials, 564.spa
dc.relation.referencesOliveira, M. S., da Costa Garcia Filho, F., da Luz, F. S., da Cruz Demosthenes, L. C., Pereira, A. C., Colorado, H. A., Nascimento, L. F. C., and Monteiro, S. N. (2019). Evaluation of dynamic mechanical properties of fique fabric/epoxy composites.spa
dc.relation.referencesRebelo, R., Fernandes, M., and Fangueiro, R. (2017). Biopolymers in medical implants: A brief review. Procedia Engineering, 200:236–243.spa
dc.relation.referencesRijswijk, K., Brouwer, W., and Beukers, A. (2001). Application of natural fibre composites in the development of rural societies.spa
dc.relation.referencesRodrı́guez, L., Fangueiro, R., and Orrego, C. (2015). Effect of chemical and plasma dbd treatments on pseudostem plantain fiber properties. Rev. LatinAm. Metal. Mat, 35:295–304.spa
dc.relation.referencesSong, W. and Zhao, F. (2015). Interfacial characterization and optimal preparation of novel bamboo plastic composite engineering materials. Bioresources, pages 5049–5070.spa
dc.relation.referencesSteffens, F., Steffens, H., and Oliveira, F. R. (2017). Applications of natural fibers on architecture. Procedia Engineering, 200:317–324.spa
dc.relation.referencesStokke, D. D., Wu, Q., and Han, G. (2013). Introduction to Wood and Natural Fiber Composites. Wiley series in renewable resource, ISBN 978-0-470-71091-3.spa
dc.relation.referencesSuddell, B. C. and Rosemaund, A. (2015). Industrial fibres: Recent and current developments.spa
dc.relation.referencesBiodegradable Green Composites Cáp 2: Surface Modification of Natural Fibers Using Plasma Treatment. 1 edition.spa
dc.relation.referencesSun, D. and Stylios, K. (2005). Investigating the plasma modification of natural fiber fabrics-the effect on fabric surface and mechanical properties. Textile Research Journal, 75:639–644.spa
dc.relation.referencesSánchez-Cruz, M. L., Patiño-Castro, W. A., and Cárdenas-Pulido, J. W. (2020). Methods of surface treatment and its effect on the physical and mechanical properties of guadua fibers métodos de tratamiento superficial y su efecto en las propiedades fı́sico mecánicas de fibras de guadua. Scientia et Technica Año XXV, 25.spa
dc.relation.referencesUpadhye, N. Y. (2021). Synthetic fibers: Types, properties and uses https: //textilelearner.net/synthetic-fibers-types-properties/.spa
dc.relation.referencesValdés, O., Tejero, J., Valle, A., and Gamboa, M. (2014). Determinación de las curvas esfuerzo-deformación sobre cargas axiales de una raı́z tropical.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembIndustriaspa
dc.subject.lembIndustryeng
dc.subject.lembPolímerosspa
dc.subject.lembPolymerseng
dc.subject.lembPlásticosspa
dc.subject.lembPlasticseng
dc.subject.proposalTensile Strengtheng
dc.subject.proposalDuctilityeng
dc.subject.proposalSEMeng
dc.subject.proposalEconomı́a Circularspa
dc.subject.proposalCircular Economyeng
dc.subject.proposalGuadua angustifolia Fibereng
dc.subject.proposalGuaduaspa
dc.subject.proposalFiquespa
dc.subject.proposalNylonspa
dc.titleEtching fı́sico en fibras naturales y artificialesspa
dc.title.translatedPlasma etching applied to natural and synthetic fiberseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022325415.2023.pdf
Tamaño:
106.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: