Conectores de cortante para secciones compuestas de concreto y perfiles de acero formados en frío

dc.contributor.advisorMolina Herrera, Maritzabelspa
dc.contributor.authorHurtado Amézquita, Xavier Fernandospa
dc.contributor.cvlacHurtado Amézquita, Xavier Fernando [https://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/inicio.do]spa
dc.contributor.googlescholarHurtado Amézquita, Xavier Fernando [https://scholar.google.es/citations?user=OgNZJaEAAAAJ&hl=es]spa
dc.contributor.orcidHurtado Amézquita, Xavier Fernando [0000-0002-2950-6019]spa
dc.contributor.researchgroupAnálisis, Diseño y Materiales Giesspa
dc.date.accessioned2024-09-27T01:04:03Z
dc.date.available2024-09-27T01:04:03Z
dc.date.issued2024-09-25
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractDesde finales de los años 50’s, hay evidencia del uso de secciones compuestas en edificaciones, siendo Suiza el país pionero en aplicar esta alternativa constructiva. Dadas las ventajas de combinar los perfiles metálicos y elementos de concreto eficientemente, su implementación se difundió rápidamente en Europa y los Estados Unidos, siendo las principales potencias industriales de producción de acero. El adecuado desempeño de los sistemas compuestos depende, en parte, del mecanismo de transferencia de esfuerzos en la interfaz de los componentes, principalmente atribuido a los conectores de cortante. De acuerdo con la normatividad vigente, los únicos dispositivos avalados para tal fin son los espigos, canales, tornillos y placas perforadas, empleando fijación soldada en perfilería laminada en caliente (HRS), sin que esta sea una opción eficiente para perfiles de lámina delgada (CFS), dado que la aplicación de la soldadura puede afectar el perfil con quemaduras y/o perforaciones, reduciendo su capacidad estructural. Aun así, a la fecha, no existe ninguna referencia dentro de las normativas, que especifique el uso de un tipo de conector de cortante en secciones compuestas donde se incluyan perfiles CFS. Los perfiles CFS, provenientes de un proceso de doblado de láminas en frío, potencian la eficiencia de sistemas compuestos debido a su relación resistencia Vs. peso, facilidad de transporte e instalación, considerándose una alternativa sostenible en la construcción. En esta investigación se proponen los conectores de cortante tipo CSC (Confined Shear Connectors), para la adecuada transferencia de esfuerzos en sistemas de entrepiso compuestos, empleando losas de concreto y perfiles en lámina delgada CFS. La configuración del conector CSC propuesta, es el resultado de un análisis de optimización geométrica, basada en el comportamiento mecánico de la sección compuesta, así como la facilidad tanto en la fabricación e instalación del conector como en la construcción del sistema compuesto. El comportamiento del sistema con perfiles CFS y conectores tipo CSC, fue caracterizado a través de los ensayos experimentales alternativos de corte directo (Pry-Out), y ensayos de vigas a flexión, donde se tuvieron como principales variables de estudio la resistencia del concreto, altura de la losa, espesores de los perfiles metálicos y espaciamiento entre conectores. Paralelamente, el comportamiento no lineal del sistema compuesto fue evaluado analíticamente por medio de simulaciones numéricas de los ensayos realizados por el método de elementos finitos (MEF), con las cuales se logró obtener información complementaria del comportamiento de los elementos componentes del sistema, y sus mecanismos de falla. Por último, por medio de análisis estadístico, se plantean las formulaciones de diseño que permiten estimar tanto la resistencia nominal de los conectores de cortante tipo CSC, como el grado de acción compuesta del sistema, condiciones a ser tenidas en cuenta en ámbitos normativos para el diseño entrepisos en sección compuesta por losas de concreto y perfilería CFS. (Texto tomado de la fuente).spa
dc.description.abstractSince the late 1950's, evidence of the use of composite sections in buildings was made, with Switzerland as the pioneer country to apply this construction alternative. Because of the advantages of efficiently combining steel sections with concrete elements, the application of steel-concrete composite structures was extended in Europe and the United States, becoming leaders in world steel industry at that time. The performance of composite systems depends on the stress transfer mechanism at the interface of the components, directed to the shear connectors. According to current design codes, studs, steel channels, screws, and perfobond plates are approved to act as shear connectors, by applying welding to join to Hot-Rolled Steel sections (HRS), without having a proposal for their use in Cold-Formed Steel sections (CFS). Thus, welding can burn and/or perforate the steel plates, by reducing their structural load-bearing capacity. Even so, nowadays, there is no normative that reference any type of shear connector for CFS-concrete composite systems. The efficiency of CFS-concrete composite systems is improved because of the resistance vs. weight ratio, ease of transport and installation, becoming a sustainable alternative in green construction. In this research, the CSC-Type shear connectors (Confined Shear Connectors) are proposed to transfer forces in composite flooring systems, by including concrete slabs and CFS steel sections in the composite system. The configuration of the CSC connector was obtained because of a geometric optimization analysis, based on the mechanical behavior of the composite section, as well as the ease of both the manufacture and installation of the shear connector. The behavior of the composite system was characterized through alternative experimental shear tests (Pry-Out), and full-scale beam tests. The main parameters studied were the compressive strength of the concrete, the thickness of the concrete slab, the thickness of steel shapes, and the spacing between connectors. Numerical simulations of the experimental tests were carried out, by applying the Finite Element Method (MEF), to evaluate the nonlinear behavior of the composite system. In this way, it was possible to tracking and assessment of the failure mechanisms in the system and to visualize the evolution of behavior of their components. Finally, design formulations were proposed, supported by statistical analysis, which allowed estimating both the nominal load resistance of the CSC-type shear connectors and the degree of composite action in the system.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaMateriales compuestosspa
dc.description.sponsorshipCOMPORTAMIENTO DE CONECTORES DE CORTANTE PARA SECCIONES COMPUESTAS DE CONCRETO Y PERFILES DE ACERO DE LÁMINA DELGADA ANTE SOLICITACIONES DE CORTE DIRECTO de la CONVOCATORIA PARA EL APOYO A PROYECTOS DE INVESTIGACIÓN Y CREACIÓN ARTÍSTICA DE LA SEDE BOGOTÁ DE LA UNIVERSIDAD NACIONAL DE COLOMBIA – 2019 (Código QUIPU (203010027173) en el marco de la CONVOCATORIA PARA EL APOYO A PROYECTOS DE INVESTIGACIÓN Y CREACIÓN ARTÍSTICA DE LA SEDE BOGOTÁ DE LA UNIVERSIDAD NACIONAL DE COLOMBIA – 2019.spa
dc.description.sponsorshipDISPOSITIVO DE INTERACCIÓN MECÁNICA EN ELEMENTOS COMPUESTOS DE CONCRETO Y PERFILES ESTRUCTURALES DE ACERO DE LÁMINA DELGADA: CONECTOR DE CORTANTE TIPO CSC (Código QUIPU (208010035635) en el marco de la modalidad de propuestas de escalamiento de prototipos UN INNOVA: CONVOCATORIA DE PROYECTOS PARA EL FORTALECIMIENTO DE LA INNOVACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA A PARTIR DEL DESARROLLO DE PROTOTIPOS Y EXPERIENCIAS PILOTO 2019-2021 (SEGUNDA COHORTE).spa
dc.description.technicalinfoSistema de conexión de elementos para implementar en sistemas de entrepisosspa
dc.format.extentxxxi, 229 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86873
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.references[1]. Ahn, J., Kim, S., Choi, K. & Jung, C. (2010). EXPERIMENTAL EVALUATION OF THE SHEAR RESISTANCE OF CORRUGATED PERFOBOND RIB SHEAR CONNECTIONS. Advances in Structural Engineering, Vol.14 (2), 249-263.spa
dc.relation.references[2]. Al-Darzi, S.Y.K., Chen, A.R. & Liu, Y.Q. (2007). FINITE ELEMENT SIMULATION AND PARAMETRIC STUDIES OF PERFOBOND RIB CONNECTOR. American Journal of Applied Science, 4 (3), 122-127.spa
dc.relation.references[3]. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC 360-16). SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS. USA.spa
dc.relation.references[4]. AMERICAN IRON AND STEEL INSTITUTE (AISI S100-16). NORTH AMERICAN SPECFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS. USA.spa
dc.relation.references[5]. Alenezi, K., Tahir, M., Alhajri, T., Badr, M., & Mirza, J. (2015). BEHAVIOR OF SHEAR CONNECTORS IN COMPOSITE COLUMN OF COLD-FORMED STEEL WITH LIPPED C-CHANNEL ASSEMBLED WITH FERRO-CEMENT JACKET. Construction and Building Materials, 84, 39-45.spa
dc.relation.references[6]. Alenezi, K., Tahir, M., Alhajri, T., Badr, M., Mirza, J., Lawan, M., & Hosseinpour, E. (2015). PUSH-OUT TESTS OF INNOVATIVE SHEAR CONNECTORS BETWEEN COLD-FORMED STEEL SECTION INTEGRATED WITH FERROCEMENT JACKET. Jurnal Teknologi, 74(4, SI), 67–72.spa
dc.relation.references[7]. Alhajri, T., Tahir, M., Azimi, M., Mirza, J., Lawan, M., Alenezi, K., & Ragaee, M. (2016). BEHAVIOR OF PRE-CAST U-SHAPED COMPOSITE BEAM INTEGRATING COLD-FORMED STEEL WITH FERRO-CEMENT SLAB. Thin-Walled Structures, 102, 18–29.spa
dc.relation.references[8]. Anderson, N. & Meinheit, D. (2000). DESIGN CRITERIA FOR HEADED STUDS GROUPS IN SHEAR. PCI Journal 46-75.spa
dc.relation.references[9]. Anderson, N. & Meinheit, D. (2005). PRY-OUT CAPACITY OF CAST-IN HEADED STUDS ANCHORS. PCI Journal 90-112.spa
dc.relation.references[10]. Arroyo, R. & Jullien, J. (1997). A NEW SHEAR STUD CONNECTOR PROPOSAL. In ASCE conference. 298-311.spa
dc.relation.references[11]. ASOCIACIÓN DE INGENIERIA SÍSMICA (NSR10). NORMA COLOMBIANA DE DISEÑO Y CNSTRUCCIÓN ISMO RESISTENTE. Bogotá.spa
dc.relation.references[12]. ASSOCIAḈAO BRASILEIRA DE NORMAS TECNICAS (NBR 8800/2008). NORMA BRASILEIRA – PROJETO DE ESTRUTURAS DE AḈO E CONCRETO DE EDIFICIOS. Brasil.spa
dc.relation.references[13]. Avelar, I., Beck, A. & Malite, M. (2010). RELIABILITY-BASED EVATUALTION OF DESIGN GUIDELINES FOR COLD-FORMED STEEL-CONCRETE COMPOSITE BEAMS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol XXXII No. 5, 442-449.spa
dc.relation.references[14]. Bamaga, S., Tahir, M., Tan, T., Mohammad, S., Yahya, N., Saleh, A., Rahman, A. (2013). FEASIBILITY OF DEVELOPING COMPOSITE ACTION BETWEEN CONCRETE AND COLD-FORMED STEEL BEAM. Journal Of Central South University, 20(12), 3689–3696.spa
dc.relation.references[15]. Bamaga, S., Tahir, M., & Tan, C. S. (2012). PUSH TESTS ON INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construction, 325–337.spa
dc.relation.references[16]. Bamaga, S., & Tahir, M. (2013). TOWARDS LIGHT-WEIGHT COMPOSITE CONSTRUCTION: INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAMS. Applied Mechanics and Materials, 351–352, 427–433.spa
dc.relation.references[17]. BRITISH STANDARDS (BS 5950-3-1/2010). BRITISH STANDARD – STRUCTURAL USE OF STEELWORK IN BUILDING. Inglaterra.spa
dc.relation.references[18]. CANADIAN STÁNDARDS ASSOCIATION. (CSA-S136/07). NORTH AMERICAN SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS. Canadá.spa
dc.relation.references[19]. Candido-Martins, J., Costa-Neves, L. & da S.Vellasco, P. (2010). EXPERIMENTAL EVALUATION OF THE STRUCTURAL RESPONSE OF PERFOBOND SHEAR CONNECTORS. Engineering Structures, 32, 1976-1985.spa
dc.relation.references[20]. Chinn, J. (1965). PUSH-OUT TESTS ON LIGHTWEIGHT COMPOSITE SLABS. Engineering Journal AISC, 129-134.spa
dc.relation.references[21]. Costa-Neves, L.F., Figueiredo, J.P., da S. Vellasco, P.C.G. & da Cruz, J. (2013). PERFORATED SHEAR CONNECTORS ON COMPOSITE GIRDERS UNDER MONOTONIC LOADING: AN EXPERIMENTAL APPROACH. Engineering Structures, 56, 721-737.spa
dc.relation.references[22]. Crisinel, Michel. (1990). PARTIAL-INTERACTION ANALYSIS OF COMPOSITE BEAMS WITH PROFILED SHEETING AND NON-WELDED SHEAR CONNECTORS. Journal of Constructional Steel Research, 15, 65-98.spa
dc.relation.references[23]. Derlatka, A., Lacki, P., Nawrot, J. & Winowiecka J. (2019). NUMERICAL AND EXPERIMENTAL TEST OF STEEL-CONCRETE COMPOSITE BEAM WITH THE CONNECTOR MADE OF TOP-HAT PROFILE. Composite Structures, 211, 244-253.spa
dc.relation.references[24]. Dubey, A., Nayak, A., & Bhattacharyya, S. (1999). STRENGTH OF THIN-WALLED STEEL-CONCRETE COMPOSITE BEAMS: EXPERIMENTAL STUDY. Journal of the Institution of Engineers (India): Civil Engineering Division, 80(1), 37-41.spa
dc.relation.references[25]. Easterling, W. (2005). NEW SHEAR STUD PROVISIONS FOR COMPOSITE BEAM DESIGN. In Proceedings of the Structures Congress and Exposition, 1211-1212.spa
dc.relation.references[26]. Eom, T.S., Chung, L., Lim, J.J. & Hwang, H.J. (2016). REVIEW OF DESIGN FLEXURAL STRENGTHS OF STEEL-CONCRETE COMPOSITE BEAMS FOR BUILDINGS STRUCTURES. International Journal of Concrete Structures and Materials, Vol. 10(3), 109-121.spa
dc.relation.references[27]. Erazo, L. & Molina, M. (2017). COMPORTAMIENTO DE CONECTORES DE CORTANTE TIPO TORNILLO EN SECCIONES COMPUESTAS CON LÁMINA COLABORANTE. Tesis de maestría Universidad Nacional de Colombia.spa
dc.relation.references[28]. Erdélyi, S., & Dunai, L. (2004). BEHAVIOUR OF A NEW TYPE OF COMPOSITE CONNECTION. Periodica Polytechnica Civil Engineering, 48(1–2), 89–100.spa
dc.relation.references[29]. EUROPEAN COMMITTEE FOR STANDARIZATION. EUROCÓDIGO 2. (1992). DESIGN OF CONCRETE STRUCTURES – CONCRETE BRIDGES – DESIGN AND DETAILING RULES.spa
dc.relation.references[30]. EUROPEAN COMMITTEE FOR STANDARIZATION. EUROCÓDIGO 4. (1994). DESIGN OF COMPOSITE STEEL AND CONCRETE STRUCTURES.spa
dc.relation.references[31]. Fontana, M., & Bärtschi, R. (2002). COMPOSITE FLOORS WITH NOVEL SHEAR CONNECTORS [Verbunddecken mit neuartigen Verbundmitteln]. Stahlbau, 71(8), 605–611.spa
dc.relation.references[32]. GERDAU CORSA. (2010). CONSTRUCCIÓN COMPUESTA ACERO-CONCRETO. Instituto Mexicano de la Construcción en Acero. Mexico D. F. (Mexico).spa
dc.relation.references[33]. Gizejowski M. & Marcinowski J. (2016). In 13th International Conference on Metal Structures, ICMS 2016, 1–577.spa
dc.relation.references[34]. Hanaor, A. (2000). TESTS OF COMPOSITE BEAMS WITH COLD-FORMED SECTIONS. Journal of Constructional Steel Research, 54(2), 245–264.spa
dc.relation.references[35]. Hancock, G. (2003). COLD-FORMED STEEL STRUCTURES. Journal of Constructional Steel Research, 59, 473-487.spa
dc.relation.references[36]. Hamidi, B. (2013). DESIGN OF COMPOSITE BEAMS USING LIGHT STEEL CONSTRUCTIONS. Machines, technologies, materials. Issue 12/2013, 50–52.spa
dc.relation.references[37]. Hancock, G. (2003). COLD-FORMED STEEL STRUCTURES. Journal of Constructional Steel Research, 59, 473-487.spa
dc.relation.references[38]. Hosaka, T., Mitsuki, K., Hiragi, H., Ushijima, Y., Tachibana, Y. & Wantabe, H. (2000). AN EXPERIMENTAL STUDY ON SHEAR CHARACTERISTICS OF PERFOBOND STRIP AND ITS RATIONAL STRENGTH. Journal of Structural Engineering JSCE 46A, 1593-1604.spa
dc.relation.references[39]. Hossain, A. (2005). DESIGNING THIN-WALLED COMPOSITE-FILLED BEAMS. Proceedings of the Institution of Civil Engineers. Structures & Buildings, 158, 267-278.spa
dc.relation.references[40]. Hurtado, X.F. & Molina, M. (2020). ALTERNATIVE FASTENING MECHANISM FOR SHEAR CONNECTORS WITH COLD-FORMED STEEL SHAPES INVOLVED IN COMPOSITE SECTIONS. Athens Journal of Technology and Engineering 7(2), 133-156.spa
dc.relation.references[41]. Hurtado, X.F. & Molina, M. (2021). BEHAVIOR OF SCS-TYPE SHEAR CONNECTORS UNDER PRY-OUT SHEAR TEST: ANALYTICAL STUDY. Materials Science Forum Vol. 1046, 45-58.spa
dc.relation.references[42]. Hurtado, X. (2007). COMPORTAMIENTO DE CONECTORES DE CORTANTE TIPO TORNILLO DE RESISTENCIA GRADO 2 (DOS) PARA UN SISTEMA DE SECCIÓN COMPUESTA CON CONCRETO DE 21 MPa ANTE SOLICITACIÓN DE CORTE DIRECTO. Tesis de maestría Universidad Nacional de Colombia.spa
dc.relation.references[43]. Hurtado, X.F. & Molina, M. (2023). FLEXURAL BEHAVIOR OF CFS-CONCRETE COMPOSITE SYSTEMS INVOLVING CSC-TYPE SHEAR CONNECTORS. Athens Journal of Technology and Engineering 7(2), 133-156.spa
dc.relation.references[44]. Hurtado, X. & Molina, M. (2020). GEOMETRICAL AND MECHANICAL OPTIMIZATION OF SHEAR CONNECTORS FOR CFS-CONCRETE COMPOSITE SYSTEMS. In The 2020 Structures Congress 25-28.spa
dc.relation.references[45]. Hurtado, X.F. & Molina, M. (2023). EXPERIMENTAL ANALYSIS OF CSC-TYPE SHEAR CONNECTORS CAPACITY UNDER DIRECT SHEAR: PRY-OUT TEST. Athens Journal of Technology and Engineering 7(2), 133-156.spa
dc.relation.references[46]. Hsu, T., Munoz, R., Punurai, S., Majdi, Y., & Punurai, W. (2012). BEHAVIOR OF COMPOSITE BEAMS WITH COLD-FORMED STEEL JOISTS AND CONCRETE SLAB. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construcción, 339–353.spa
dc.relation.references[47]. Ipe, T., Bai, S., & Vani, K. (2016). AN EXPERIMENTAL STUDY ON BEHAVIOUR OF THIN-WALLED COLD FORMED STEEL-CONCRETE COMPOSITE BEAMS UNDER SHEAR. Indian Concrete Journal, 90(6), 20–29.spa
dc.relation.references[48]. Ipe, T., Bai, H., Vani, K., & Iqbal, M. (2013). FLEXURAL BEHAVIOR OF COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Steel and Composite Structures, 14(2), 105–120.spa
dc.relation.references[49]. Irwan, J., Hanizah, A., Azmi, I., & Koh, H.. (2011). LARGE-SCALE TEST OF SYMMETRIC COLD-FORMED STEEL (CFS)-CONCRETE COMPOSITE BEAMS WITH BTTST ENHANCEMENT. Journal Of Constructional Steel Research, 67(4), 720–726.spa
dc.relation.references[50]. Irvwan, J., & Hanizah, A. (2009). TEST OF SHEAR TRANSFER ENHANCEMENT IN SYMMETRIC COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Journal of Constructional Steel Research, 65, 2087-2098.spa
dc.relation.references[51]. Jeong, Y.J., Kim, H.Y. & Kim, S.H. (2005). PARTIAL-INTERACTION ANALYSIS WITH PUSH-OUT TEST. Journal of Constructional Steel Research 61, 1318-1331.spa
dc.relation.references[52]. Johnson, R. P., & Buckby, R. J. (1994). COMPOSITE STRUCTURES OF STEEL AND CONCRETE. Blackwell Scientific Publications. Oxford (England).spa
dc.relation.references[53]. JAPAN SOCIETY OF CIVIL ENGINEERS (JSCE-09). STANDARD SPECIFICATIONS FOR STEEL AND COMPOSITE STRUCTURES. Japon.spa
dc.relation.references[54]. Jung, c.H., Kim, S.H., Choi, K.T., Park, S.J. & Park, S.M. (2013). EXPERIMENTAL SHEAR RESISTANCE EVALUATION OF Y-TYPE PERFOBOND RIB SHEAR CONNECTOR. Journal of Constructional Steel Research, 82, 1-18.spa
dc.relation.references[55]. Khadavi, & Tahir, M. M. (2017). PREDICTION ON FLEXURAL STRENGTH OF ENCASED COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In V. B. F. Borgan W.R. Saloma (Ed.), AIP Conference Proceedings (Vol. 1903). American Institute of Physics Inc.spa
dc.relation.references[56]. Kim, S., Choi, K., Park, S.J., Park, S.M. & Jung, C.. (2013). EXPERIMENTAL SHEAR RESISTANCE EVALUATION OF Y-TYPE PERFOBOND RIB SHEAR CONNECTOR. Journal of Constructional Steel Research, 82, 1-18.spa
dc.relation.references[57]. Klansek, U., & Kravanja, S. (2006). COST ESTIMATION, OPTIMIZATION AND COMPETITIVENESS OF DIFFERENT COMPOSITE FLOOR SYSTEMS - PART 1: SELF-MANUFACTURING COST ESTIMATION OF COMPOSITE AND STEEL STRUCTURES. Journal of Constructional Steel Research, 62(5), 434–448.spa
dc.relation.references[58]. Kraus, D. & Wurzer, O. (1997). NON-LINEAR FINITE ELEMENT ANALYSIS OF CONCRETE DOWELS. Computers & Structures. 64, 1271-1279.spa
dc.relation.references[59]. Kyvelou, P., Gardner, L. & Nethercot, D.A. (2018). FINITE ELEMENT MODELLING OF COMPOSITE COLD-FORMED STEEL FLOORING SYSTEMS. Engineering Structures, 158, 28-42.spa
dc.relation.references[60]. Lakkavalli, B. & Liu, Y. (2006). EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION FLOOR JOIST. Journal of Constructional Steel Research, 62, 995-1006.spa
dc.relation.references[61]. Lawan, M., Tahir, M., & Mirza, J. (2016). BOLTED SHEAR CONNECTORS PERFORMANCE IN SELF-COMPACTING CONCRETE INTEGRATED WITH COLD-FORMED STEEL SECTION. Latin American Journal of Solids And Structures, 13(4), 731–749.spa
dc.relation.references[62]. Lawan, M., Tahir, M., & Osman, M. (2015). COMPOSITE CONSTRUCTION OF COLD-FORMED STEEL (CFS) SECTION WITH HIGH STRENGTH BOLTED SHEAR CONNECTOR. Jurnal Teknologi, 77(16), 171–179.spa
dc.relation.references[63]. Lawan, M., Tahir, M., & Hosseinpour, E. (2016). FEASIBILITY OF USING BOLTED SHEAR CONNECTOR WITH COLD-FORMED STEEL IN COMPOSITE CONSTRUCTION. Jurnal Teknologi, 78(6–12), 7–13.spa
dc.relation.references[64]. Lawan, M., & Tahir, M. (2015). STRENGTH CAPACITY OF BOLTED SHEAR CONNECTORS WITH COLD-FORMED STEEL SECTION INTEGRATED AS COMPOSITE BEAM IN SELF-COMPACTING CONCRETE. Jurnal Teknologi, 77(16), 105–112.spa
dc.relation.references[65]. Lawan, M., Tahir, M., Ngian, S. & Sulaiman, A. (2015). STRUCTURAL PERFORMANCE OF COLD-FORMED STEEL SECTION IN COMPOSITE STRUCTURES: A REVIEW. Jurnal Teknologi, 74:4, 165-175.spa
dc.relation.references[66]. Lawson, R., Popo-Ola, S. & Varley, D. (2001). INNOVATIVE DEVELOPMENT OF LIGHT STEEL COMPOSITES IN BUILDINGS. In International union of laboratories and experts in construction materials and structures (RILEM). International symposium on connections between steel and concrete.spa
dc.relation.references[67]. Lemes, D. (2007). ANÁLISE TEÓRICA E EXPERIMENTAL DE CONECTORES DE CISALHAMENTO E VIGAS MISTAS CONSTITUIDAS POR PERFIS DE AḈO FORMADOS A FRIO E LAJE DE VIGOTAS PRÉ-MOLDADAS. Tesis doctoral Universidad de Sao Paulo.spa
dc.relation.references[68]. Liu, Y., Zheng, S., Yoda, T. & Lin, W. (2016). PARAMETRIC STUDY ON SHEAR CAPACITY OF CIRCULAR-HOLE AND LONG-HOLE PERFOBONF SHEAR CONNECTOR. Journal of Constructional Steel Research, 117, 64-80.spa
dc.relation.references[69]. Luo, Y., Li, A. & Kang, Z. (2012). PARAMETRIC STUDY OF BONDED STEEL-CONCRETE COMPOSITE BEAMS BY USING FINITE ELEMENT ANALYSIS. Engineering Structures, 34, 40–51.spa
dc.relation.references[70]. PUSH TESTS ON INNOVATIVE SHEAR CONNECTOR FOR COMPOSITE BEAM WITH COLD-FORMED STEEL SECTION. In 21st International Specialty Conference on Cold-Formed Steel Structures - Recent Research and Developments in Cold-Formed Steel Design and Construction, 325–337.spa
dc.relation.references[71]. Majdi, Y., Hsu, C., & Zarei, M. (2014). FINITE ELEMENT ANALYSIS OF NEW COMPOSITE FLOORS HAVING COLD-FORMED STEEL AND CONCRETE SLAB. Engineering Structures, 77, 65–83.spa
dc.relation.references[72]. Majdi, Y., Hsu, C., & Zarei, M. (2014). FINITE ELEMENT MODELING OF NEW COMPOSITE FLOORS HAVING COLD-FORMED STEEL AND CONCRETE SLAB. In Y. W.-W. LaBoube R.A. (Ed.), 22nd International Specialty Conference on Recent Research and Developments in Cold-Formed Steel Design and Construction, 463-477.spa
dc.relation.references[73]. Malite, M., Nimir, W., De Sales, J., Goncalves, R., Dubey, A., Nayak, A., Malathy, R. (2016). COMPOSITE CONSTRUCTION OF COLD-FORMED STEEL (CFS) SECTION WITH HIGH STRENGTH BOLTED SHEAR CONNECTOR. Jurnal Teknologi, 67(1), 67–72.spa
dc.relation.references[74]. Malite, M., Nimir, W., Goncalves, R. & de Sales, J. (2000). ON THE STRUCTURAL BEHAVIOR OF COMPOSITE BEAMS USING COLD-FORMED SHAPES. In 15th International Specialty Conference on Cold-Formed Steel Structures, 307-319.spa
dc.relation.references[75]. Malite, M., Nimir, W., Goncalves, R. & de Sales, J. (1998). COLD-FORMED SHEAR CONNECTORS FOR COMPOSITE CONSTRUCTIONS. In 14th International Specialty Conference on Cold-Formed Steel Structures, 409-421.spa
dc.relation.references[76]. Medberry, S.B. & Shahrooz, B.M. (2002). PERFOBOND SHEAR CONNECTOR FOR COMPOSITE CONSTRUCTION. Engineering Journal AISC, 39(1), 2-12.spa
dc.relation.references[77]. Merryfield, G., El-Ragaby, A., & Ghrib, F. (2016). NEW SHEAR CONNECTOR FOR OPEN WEB STEEL JOIST WITH METAL DECK AND CONCRETE SLAB FLOOR SYSTEM. Construction And Building Materials, 125, 1-11.spa
dc.relation.references[78]. Montgomery, D. (2013). DESIGN AND ANALYSIS OF EXPERIMENTS, 8th ed., Wiley, New Jesey,spa
dc.relation.references[79]. Ñurinda, F., Bermudez, R. & Monge, G. (2008). REVISIÓN DEL DISEÑO ESTRUCTURAL DEL HOSPITAL MONTE ESPAÑA VILLA FONTANA. ANÁLISIS Y DISEÑO DE SECCIONE COMPUESTAS DE ACERO Y CONCRETO POR EL MÉTODO LRFD. Nicaragua.spa
dc.relation.references[80]. Ollgaard, J., Slutter, R., & Fisher, J. (1971). SHEAR STRENGTH OF STUD CONNECTORS IN LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE. AISC Engineering Journal, 55-64.spa
dc.relation.references[81]. Oguejiofor E.C & Hosain MU. (1994). A PARAMETRIC STUDY OF PERFOBOND RIB SHEAR CONNECTORS. Canadian Journal of Civil Engineering, 21, 614-625.spa
dc.relation.references[82]. Oguejiofor E.C & Hosain MU. (1997). NUMERICAL ANALYSIS OF PUSH-OUT SPECIMENES WITH PERFOBOND RIB CONNECTORS. Computers & Structures, 64 (4), 617-624.spa
dc.relation.references[83]. Ollgaard, J. Slutter, R. & Fisher, J. (1971). SHEAR STRENGTH OF STUD CONNECTORS IN LIGHTWEIGHT AND NORMAL-WEIGTH CONCRETE. AISC Engineering journal, 55-64.spa
dc.relation.references[84]. Papastergiou, D. & Lebet, J. (2014). EXPERIMENTAL INVESTIGATION AND MODELLING OF THE STRUCTURAL BEHAVIOR OF CONFINED GROUTED INTERFACES FOR A NEW STEEL-CONCRETE CONNECTION. Engineering Structures, 74, 180-192.spa
dc.relation.references[85]. Pathirana, S., Uy, B., Mirza, O. & Zhu, X.. (2016). FLEXURAL BEHAVIOUR OF COMPOSITE STEEL-CONCRETE BEAMS UTILISING BLIND BOLT SHEAR CONNECTORS. Engineering Structures, 114, 181-194.spa
dc.relation.references[86]. Queiroz, F.D., Nethercot, D.A. & Vellazco, P.C. (2007). FINITE ELEMENT MODELLING OF COMPOSITE BEAMS WITH FULL AND PARTIAL SHEAR CONNECTION. Journal of Constructional Steel Research, 63, 505-521.spa
dc.relation.references[87]. Queiroz, G., Rodrigues, F., Pereira, S., Pfeil, M. Oliveira, C. & da Mata, L. (2010). In. International Colloquium on Stability and Ductility of Steel Structures 2006, Vol. 1.spa
dc.relation.references[88]. Raj, P.V. & Sathiya B.P. (2017). AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF SHEAR CONNECTORS IN COMPOSITE SECTIONS. International Research Journal of Engineering and Technology (IRJET), Vol 04 (6), 991-999.spa
dc.relation.references[89]. Saggaff, A., Tahir, M., Azimi, M., & Alhajri, T. (2017). STRUCTURAL ASPECTS OF COLD-FORMED STEEL SECTION DESIGNED AS U-SHAPE COMPOSITE BEAM. In V. B. F. Borgan W.R. Saloma (Ed.), AIP Conference Proceedings (Vol. 1903). American Institute of Physics Inc.spa
dc.relation.references[90]. Saggaff, A., Alhajri, T., Alenezi, K., Tahir, M., Zin, R., Ngian, S., & Ragaee, M. (2016). EXPERIMENTAL STUDY ON BOLTED SHEAR CONNECTOR ENHANCEMENT IN PRECAST COLD-FORMED STEEL-FERRO CEMENT FOR COMPOSITE BEAM SYSTEM. Iioab Journal, 7(1), 446–452.spa
dc.relation.references[91]. Saggaff, A., Tahir, M., Azimi, M., & Lawan, M. (2016). IMPACT OF BOLTED SHEAR CONNECTOR SPACING IN COMPOSITE BEAM INCORPORATING COLD-FORMED STEEL OF CHANNEL LIPPED SECTION. Iioab Journal, 7(1), 441–445.spa
dc.relation.references[92]. Saggaff, A., Tahir, M. M., Azimi, M., & Lawan, M. M. (2016). INFLUENCE OF BOLTED SHEAR CONNECTOR SIZE IN PUSH-OUT TEST FOR COMPOSITE CONSTRUCTION WITH COLD-FORMED STEEL SECTION. Iioab Journal, 7(1), 521–526.spa
dc.relation.references[93]. Sara, B.M. & Bahram, M.S. (2002). PERFOBOND SHEAR CONNECTORS FOR COMPOSITE CONSRUCTION. Engineering Journal, First Quarter, 2-12.spa
dc.relation.references[94]. Shahabi, S., Sulong, N., Shariati, M., & Shah, S. (2016). PERFORMANCE OF SHEAR CONNECTORS AT ELEVATED TEMPERATURES-A REVIEW. Steel And Composite Structures, 20(1), 185–203.spa
dc.relation.references[95]. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M., & Shah, S. (2016). NUMERICAL ANALYSIS OF CHANNEL CONNECTORS UNDER FIRE AND A COMPARISON OF PERFORMANCE WITH DIFFERENT TYPES OF SHEAR CONNECTORS SUBJECTED TO FIRE. Steel And Composite Structures, 20(3), 651–669.spa
dc.relation.references[96]. Shankar, B., Liu, Y. (2006). EXPERIMENTAL STUDY OF COMPOSITE COLD-FORMED STEEL C-SECTION FLOOR JOISTS. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 62, 995-1006.spa
dc.relation.references[97]. Shariati, M., Ramli, N., Suhatril, M., Shariati,A., Arabnejad, M. & Sinaei, H. (2012). BEHAVIOUR OF C-SHAPED ANGLE SHEAR CONNECTORS UNDER MONOTONIC AND FULLY REVERSED CYCLIC LOADING: AN EXPERIMENTAL STUDY. Materials and Design, 41, 67-73.spa
dc.relation.references[98]. Shariati, M., Khorramian, K., Maleki, S., Jalali, A. & Tahir, M.M. (2017). NUMERICAL ANALYSIS OF TILTED ANGLE SHEAR CONNECTORS IN STEEL-CONCRETE COMPOSITE SYSTEMS. Steel and Composite Structures, Vol.23(1), 67-85.spa
dc.relation.references[99]. Shi, Y., Zhou, X., Xu, L., Yao, X. & Wang, W. (2019). A SIMPLIFIED METHOD TO EVALUATE THE FLEXURAL CAPACITY OF LIGHTWEIGHT COLD-FORMED STEEL FLOOR SYSTEM WITH ORIENTED STRAND BOARD SUBFLOOR. Thin-Walled Structures, 134, 40-51.spa
dc.relation.references[100]. Shi, Y., Yang, K., Guan, Y., Yao, X., Xu, L. & Zhang, H. (2020). THE FLEXURAL BEHAVIOR OF COLD-FORMED STEEL COMPOSITE BEAMS. Thin-Walled Structures, 218, 1-15.spa
dc.relation.references[101]. Shi, Y., Yang, K., Guan, Y., Yao, X., Xu, L. & Zhang, H. (2020). THE FLEXURAL BEHAVIOR OF COLD-FORMED STEEL COMPOSITE BEAMS. Thin-Walled Structures, 218, 1-15.spa
dc.relation.references[102]. Slutter, R., & Driscoll, G. (1963). FLEXURAL STRENGTH OF STEEL AND CONCRETE COMPOSITE BEAMS. Final report of an investigation of composite beams for buildings sponsored by the American Institute of Steel Construction, 1-57.spa
dc.relation.references[103]. Sotelino, E. & Chung, W. (2006). THREE-DIMENSIONAL FINITE ELEMENT MODELING OF COMPOSITE GIRDER BRIDGES. Engineering Structures, 28, 63-71.spa
dc.relation.references[104]. STANDARDS AUSTRALIA – STANDARDS NEW ZELAND.(AS/NZS 4600/2005). COLD FORMED STEEL STRUCTURES. Australia.spa
dc.relation.references[105]. Tahir, M., Saggaff, A., Azimi, M. & Lawan, M. (2016). IMPACT OF BOLTED SHEAR CONNECTOR SPACING IN COMPOSITE BEAM INCORPORATING COLD FORMED STEEL OF CHANNEL LIPPED SECTION. IIOAB Journal, 7, 441-445.spa
dc.relation.references[106]. Tahir, M.M., Bamaga, S.O., Tan, C.S., Shek, P.N. & Aghlara, R. (2019). PUSH-OUT TEST ON THREE INNOVATIVE SHEAR CONNECTORS FOR COMPOSITE COLD-FORMED STEEL CONCRETE BEAMS. Construction and Building Materials, 223, 288-298.spa
dc.relation.references[107]. Tahir, M., Bamaga, S., Ngian, S., Mohamad, S., Sulaiman, A., & Aghlara, R. (2019). STRUCTURAL BEHAVIOUR OF COLD-FORMED STEEL OF DOUBLE C-LIPPED CHANNEL SECTIONS INTEGRATED WITH CONCRETE SLABS AS COMPOSITE BEAMS. Latin American Journal of Solids and Structures, 16(5), 1–15.spa
dc.relation.references[108]. Tan, C., Lee, Y., Mohammad, S., Lim, S., Lee, Y., & Lim, J. (2015). FLEXURAL BEHAVIOUR OF REINFORCED SLAB PANEL SYSTEM WITH EMBEDDED COLD-FORMED STEEL FRAMES AS REINFORCEMENT. Jurnal Teknologi, 74(4), 39–44.spa
dc.relation.references[109]. Thivya, J., & Malathy, R. (2016). PERFORMANCE OF CONCRETE FILLED IN COLD FORM STEEL SHEET WITH SHEAR CONNECTOR UNDER PURE BENDING. Journal Of Scientific & Industrial Research, 75(3), 172–175.spa
dc.relation.references[110]. Titoum, M., Mazoz, A., Benanane, A. & Ouinas, D. (2016). EXPERIMENTAL STUDY AND FINITE ELEMENT MODELLING OF PUSH-OUT TEST ON A NEW SHEAR CONNECTOR OF I-SHAPE. Advanced Steel Construction Vol.12, N°4, 487–506.spa
dc.relation.references[111]. Valencia, G. (2010). DISEÑO BÁSICO DE ESTRUCTURAS DE ACERO DE ACUERDO CON NSR-10. 1° Edición. Editorial Escuela Colombiana de Ingenieria.spa
dc.relation.references[112]. Valsa I., Sharada H., Manjula K., & Iqbal, M. (2013). FLEXURAL BEHAVIOR OF COLD-FORMED STEEL CONCRETE COMPOSITE BEAMS. Steel and Composite Structures, 14(2), 105–120.spa
dc.relation.references[113]. Verissimo, G.S. (2007). DEVELOPMENT OF A SHEAR CONNECTOR PLATE GEAR FOR COMPOSITE STRUCTURES OF STEEL AND CONCRETE AND STUDY THEIR BEHAVIOR (En Portugués). Tesis de Doctorado Universidad Federal de Minas Gerais Belo Horizonte.spa
dc.relation.references[114]. Viest, I. M., Siess, C. P., Appleton, J. H. & Newmark N. M. (1952). FULL-SCALED TEST OF CHANNEL SHEAR CONNECTORS AND COMPOSITE T-BEAMS. Report of investigation. University of Illinois Bulletin N° 405.spa
dc.relation.references[115]. Vinnakota, S., Foley, C., & Vinnakota, M. (2003). DESIGN OF PARTIALLY OR FULLY COMPOSITE BEAMS WITH RIBBED METAL DECK USING LRFD SPECIFICATIONS. Engineering Journal/American Institute of Steel Construction. 60-78.spa
dc.relation.references[116]. Wehbe, N., Wehbe, A., Dayton, L. & Sigl, A. (2011). DEVELOPMENT OF CONCRETE/COLD FORMED STEEL COMPOSITE FLEXURAL MEMBERS. In ASCE Structures Congress 2011, 3099-3109.spa
dc.relation.references[117]. Youns, M.A., Hassaneen, S.A., Badr, M.R. & Salem, E.S. (2016). COMPOSITE BEAMS OF COLD FORMED STEEL SECTIONS AND CONCRETE SLAB. International Journal of Engineering Development and Research, Vol. 4(4), 165-177.spa
dc.relation.references[118]. Yu, J., Wang, L., & Chang, J. (2010). INTERFACE SHEARING FORCE ANALYSIS OF COMPOSITE BEAMS WITH COLD FORMED STEEL U SECTION BASED ON ENERGY THEORY. Journal of Shenyang Jianzhu University (Natural Science), 26(1), 108–111.spa
dc.relation.references[119]. Yu, Wei-Wen & Laboube, R. (2010). COLD FORMED STEEL DESIGN. 4th Edition. John Wiley & Sons, Inc.spa
dc.relation.references[120]. Zhao, C. & Liu, Y.Q. (2012). EXPERIMENTAL STUDY OF SHEAR CAPACITY OF PERFOBOND CONNECTOR. Journal of Engineering Mechanics, 29(12), 349-354.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalSecciones compuestasspa
dc.subject.proposalPerfiles CFSspa
dc.subject.proposalConectores de cortantespa
dc.subject.proposalEnsayos Pry-outspa
dc.subject.proposalAcción parcialmente compuestaspa
dc.subject.proposalFormulación de diseñospa
dc.subject.proposalComposite sectionseng
dc.subject.proposalCFS shapeseng
dc.subject.proposalShear connectorseng
dc.subject.proposalPry-out testseng
dc.subject.proposalPartial-interactioneng
dc.subject.proposalDesign formulationeng
dc.subject.unescoElemento estructural (construcción)spa
dc.subject.unescoStructural elements (buildings)eng
dc.subject.unescoIngeniería de la construcciónspa
dc.subject.unescoConstruction engineeringeng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.titleConectores de cortante para secciones compuestas de concreto y perfiles de acero formados en fríospa
dc.title.translatedShear connectors in CFS-concrete composite sectionseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80098348.2024.pdf
Tamaño:
20.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: