Metodología para la generación de péptidos sintéticos antimicrobianos usando aprendizaje profundo y algoritmos de clasificación

dc.contributorMera Banguero, Carlos Andrésspa
dc.contributor.advisorOrduz Peralta, Sergio (Thesis advisor)spa
dc.contributor.advisorBranch Bedoya, John Willian (Thesis advisor)spa
dc.contributor.authorVélez Echeverri, Andrésspa
dc.date.accessioned2020-03-30T06:45:23Zspa
dc.date.available2020-03-30T06:45:23Zspa
dc.date.issued2019-08-31spa
dc.description.abstractLa resistencia de las bacterias a los antibióticos ha generado una preocupación creciente en nuestra sociedad. En la actualidad, se estima que en el mundo se presentan alrededor de 30 millones de casos de sepsis al año, de las cuales cerca de 5 millones terminan en muertes como resultado de infecciones que resisten los tratamientos con antibióticos tradicionales. Este panorama ha llevado a la búsqueda de nuevos antibióticos que permitan combatir las bacterias resistentes. Los péptidos antimicrobianos (o AMPs, de su sigla en inglés Antimicrobial Peptides) han tomado importancia en el desarrollo de nuevos antibióticos por su rol como agente inhibidor, no solo de bacterias sino también de virus, hongos y parásitos, entre otros. Los AMPs son parte esencial de todos los organismos vivos y configuran la primera línea de defensa contra bacterias, microbios y parásitos. Desde el descubrimiento de los AMPs, miles han sido reportados en la literatura, sin embargo, muchos de ellos no son adecuados para aplicaciones terapéuticas debido a sus largas secuencias de aminoácidos, baja potencia antimicrobiana y altos costos de producción. Con la finalidad de generar péptidos más potentes y de forma más económica, diversas aproximaciones han sido desarrolladas. Entre ellas, virtual screening se caracteriza por emplear métodos computacionales que ayudan a disminuir los costos y el tiempo de producción de AMPs. Con base en lo anterior, en este trabajo de maestría se propone una metodología para la generación de péptidos sintéticos antimicrobianos usando como referente virtual screening. La metodología propuesta involucra la evaluación de diferentes arquitecturas de aprendizaje profundo, las cuales son usadas para generar AMPs sintéticos. Los resultados muestran que las técnicas de aprendizaje profundo pueden aprender la estructura de un AMP y a partir de esta crear nuevos péptidos sintéticos con capacidad antimicrobiana.spa
dc.description.abstractAbstract: The resistance of bacteria to antibiotics has generated a growing concern worldwide. Currently, it is estimated 30 million cases of sepsis occur annually in the world, of which about 5 million ends in deaths because of infections that resist traditional antibiotic treatments. This scenario has led to the search for new antibiotics that can fight resistant bacteria. The antimicrobial peptides (AMPs) have taken importance in the development of new antibiotics because of their role as an inhibitor, not only of bacteria but also of viruses, fungi and parasites, among others. AMPs are an essential part of all living organisms and form the first line of defense against bacteria, microbes and parasites. Since the discovery of AMPs, thousands have been reported, however, many of them are not suitable for therapeutic applications due to their long amino acid sequences, low antimicrobial potency and high production costs. In order to generate more potent and economical peptides, various approaches have been used, of which virtual screening, which is characterized to use computational methods to reduce AMPs production costs and time. In this master's thesis is proposed a methodology to generate synthetic antimicrobial peptides using virtual screening as reference. The proposed methodology involves the evaluation of different deep learning architectures, which are used to generate synthetic AMPs. The results show that deep learning techniques can learn the structure of an AMPs and from this create new synthetic peptides with antimicrobial capacity.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/74922/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77288
dc.language.isospaspa
dc.relation.haspart0 Generalidades / Computer science, information and general worksspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Minas Instituto de Sistemas y Ciencias de la Decisiónspa
dc.relation.ispartofInstituto de Sistemas y Ciencias de la Decisiónspa
dc.relation.referencesVélez Echeverri, Andrés (2019) Metodología para la generación de péptidos sintéticos antimicrobianos usando aprendizaje profundo y algoritmos de clasificación. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalResistencia antimicrobianaspa
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalVirtual screeningspa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalAntimicrobial resistancespa
dc.subject.proposalvirtual screeningspa
dc.subject.proposalDeep learningspa
dc.titleMetodología para la generación de péptidos sintéticos antimicrobianos usando aprendizaje profundo y algoritmos de clasificaciónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017206498.2019.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format