Automatización, modelamiento y evaluación de un sistema acuapónico NFT para cultivo de Carpa Roja (Cyprinus carpio) y Lechuga Crespa (Lactuca sativa)

dc.contributor.advisorGarcía Navarrete, Oscar Leonardo
dc.contributor.authorVaca Vargas, Sergio Alejandro
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001549579spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Y7rrWsMAAAAJ&hl=es&authuser=2spa
dc.contributor.orcidhttps://orcid.org/0000-0003-2006-4813spa
dc.contributor.projectmemberColorado Gomez, Mario Andrés
dc.date.accessioned2023-04-19T13:43:41Z
dc.date.available2023-04-19T13:43:41Z
dc.date.issued2023-03-03
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEl presente proyecto de investigación muestra el desarrollo y evaluación de un sistema automatizado para el cultivo de diferentes especies sobre un esquema acuapónico NFT de recirculación simple. Partiendo de una revisión sistemática para la identificación del estado actual de los sistemas acuapónicos automatizados, tecnificados y tradicionales, se obtuvo un panorama de la orientación investigativa además de las variables críticas dentro del sistema y sus rangos óptimos, ratios pez-planta y manejos de caudales para un intercambio adecuado de nutrientes entre los bloques acuícola e hidropónico. Teniendo en cuenta lo anterior y la principal preocupación del Centro de Biotecnología Agropecuaria CBA Mosquera, el levantamiento de datos del sistema para la estandarización de los ciclos productivos y el costo de los equipos, se planteó el diseño y modelamiento de un sistema automatizado que incluyera la medición de pH, oxígeno disuelto, temperatura, turbidez, nivel y flujo en el tanque acuícola, y la activación de válvulas y bombas bajo los modos de control manual y automático, aplicando tecnologías industriales de bajo y mediano costo. Posteriormente se llevó a cabo la evaluación comparativa del rendimiento de biomasa de Lechuga crespa (Lactuca sativa) cultivada en este medio. Como resultado se encontró que el rendimiento de biomasa fue mayor en un 52,82% en comparación con la siembra tradicional en suelo, además se establecieron estadísticas y rangos fiables de las variables medidas permitiendo dar recomendaciones sobre el manejo de oxigenación y recirculación. Cumpliendo con los objetivos planteados y llegando a una solución estandarizada de bajo-medio costo. (Texto tomado de la fuente)spa
dc.description.abstractThe present study shows the development and evaluation of an automated system for the growing of different species on a simple recirculation NFT aquaponic scheme. Based on a systematic review to identify the current status of automated, technified and traditional aquaponic systems, an overview of the research orientation was obtained, as well as the critical variables related to the system and their optimal ranges, fish-plant ratios and flow management for an adequate exchange of nutrients between the aquaculture and hydroponic blocks. Taking into account the above and the main concern of the Centro de Biotecnología Agropecuaria CBA Mosquera, the system data collection for the standardization of the productive cycles and the equipment costs, it was proposed the design and modeling of an automated system that included the measurement of pH, dissolved oxygen, temperature, turbidity, level and flow in the aquaculture tank, and the activation of valves and pumps under manual and automatic control modes, applying low and medium cost industrial technologies. Subsequently, the comparative evaluation of the biomass yield of Lactuca sativa (Lactuca sativa) grown in this medium was carried out. As a result, it was found that the biomass yield was higher in 52,82% compared to the traditional planting in soil, in addition, statistics and reliable ranges of the measured variables were established, allowing recommendations on the management of oxygenation and recirculation. Fulfilling the objectives set and reaching a standardized low-medium cost solution.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Agrícolaspa
dc.description.researchareaAutomatización y control de sistemas biológicosspa
dc.description.sponsorshipServicio Nacional de Aprendizaje SENAspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extentxvii, 126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83734
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícolaspa
dc.relation.referencesJ. Van Rijn, “Waste treatment in recirculating aquaculture systems,” Aquac. Eng., 2013, doi: 10.1016/j.aquaeng.2012.11.010.spa
dc.relation.referencesW. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi: 10.3354/aei00146.spa
dc.relation.referencesJ. E. Rakocy, “Aquaponics-Integrating Fish and Plant Culture,” in Aquaculture Production Systems, 2012.spa
dc.relation.referencesC. Maucieri, C. Nicoletto, R. Junge, Z. Schmautz, P. Sambo, and M. Borin, “Hydroponic systems and water management in aquaponics: A review,” Italian Journal of Agronomy. 2018, doi: 10.4081/ija.2017.1012.spa
dc.relation.referencesS. R. Paudel, “Nitrogen transformation in engineered aquaponics with water celery (Oenanthe javanica) and koi carp (Cyprinus carpio): Effects of plant to fish biomass ratio,” Aquaculture, 2020, doi: 10.1016/j.aquaculture.2020.734971.spa
dc.relation.referencesA. Endut, A. Jusoh, N. Ali, W. B. Wan Nik, and A. Hassan, “A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system,” Bioresour. Technol., vol. 101, no. 5, pp. 1511–1517, 2010, doi: 10.1016/j.biortech.2009.09.040.spa
dc.relation.referencesW. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi: 10.1007/s10499-006-9053-2.spa
dc.relation.referencesP. M. Cusqui Sandoval and A. J. Oswaldo Israel, “Implementación de un sistema electrónico automatizado para cultivos de invernadero,” 2013.spa
dc.relation.referencesL. A. López Vargas, “Diseño de un sistema de control de temperatura on/off para aplicaciones en invernadero utilizando energía solar y gas natural,” 2011.spa
dc.relation.referencesN. B. Iglesias, “Estudio de condiciones térmicas y lumínicas y determinación de alternativas tecnológicas para el ahorro de energía en invernaderos de la Patagonia Norte – Argentina,” 2005.spa
dc.relation.referencesR. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi: 10.3390/w9030182.spa
dc.relation.referencesC. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2017.11.097.spa
dc.relation.referencesB. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2018.01.037.spa
dc.relation.referencesZ. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.spa
dc.relation.referencesH. W. Palm et al., “Towards commercial aquaponics: a review of systems, designs, scales and nomenclature,” Aquaculture International. 2018, doi: 10.1007/s10499-018-0249-z.spa
dc.relation.referencesY. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi: 10.1109/ACCESS.2019.2953491.spa
dc.relation.referencesZ. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi: 10.1007/s10499-018-0303-x.spa
dc.relation.referencesR. Ghamkhar, C. Hartleb, F. Wu, and A. Hicks, “Life cycle assessment of a cold weather aquaponic food production system,” J. Clean. Prod., vol. 244, p. 118767, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118767.spa
dc.relation.referencesI. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, vol. 519, p. 734918, 2020, doi: https://doi.org/10.1016/j.aquaculture.2019.734918.spa
dc.relation.referencesZ. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi: 10.3390/w8110533.spa
dc.relation.referencesJ. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., 2013, doi: 10.1016/j.aquaeng.2012.11.008.spa
dc.relation.referencesJ. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.spa
dc.relation.referencesH. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.spa
dc.relation.referencesY. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia,” Bioresour. Technol., 2017, doi: 10.1016/j.biortech.2017.08.116.spa
dc.relation.referencesB. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., 2017, doi: 10.1016/j.agsy.2017.01.020.spa
dc.relation.referencesD. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., 2016, doi: 10.1016/j.aquaeng.2016.10.004.spa
dc.relation.referencesC. Lee and Y. J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., 2020, doi: 10.1016/j.aquaeng.2020.102067.spa
dc.relation.referencesT. I. Conference and S. T. Engineering, “Real Time Monitoring of the Environmental parameters of an Aquaponic System Based on Internet of Things,” pp. 943–948, 2017.spa
dc.relation.referencesA. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi: 10.1016/j.jclepro.2020.121571.spa
dc.relation.referencesM. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.spa
dc.relation.referencesJ. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi: 10.1016/j.aquaculture.2019.02.009.spa
dc.relation.referencesC. Nicoletto et al., “Extension of Aquaponic Water Use for NFT Baby-Leaf Production: Mizuna and Rocket Salad,” Agronomy, 2018, doi: 10.3390/agronomy8050075.spa
dc.relation.referencesL. Silva, D. Valdés-Lozano, E. Escalante, and E. Gasca-Leyva, “Dynamic root floating technique: An option to reduce electric power consumption in aquaponic systems,” J. Clean. Prod., vol. 183, pp. 132–142, 2018, doi: 10.1016/j.jclepro.2018.02.086.spa
dc.relation.referencesK. Velichkova, I. Sirakov, S. Stoyanova, and Y. Staykov, “Cultivation of lettuce (Lactuca sativa L.) and rainbow trout (oncorhynchus mykiss w.) in the aquaponic recirculation system,” J. Cent. Eur. Agric., 2019, doi: 10.5513/JCEA01/20.3.2223.spa
dc.relation.referencesW. Lennard and J. Ward, “A comparison of plant growth rates between an NFT hydroponic system and an NFT aquaponic system,” Horticulturae, 2019, doi: 10.3390/horticulturae5020027.spa
dc.relation.referencesR. A. Jordan, E. F. Ribeiro, F. C. de Oliveira, L. O. Geisenhoff, and E. A. S. Martins, “Yield of lettuce grown in hydroponic and aquaponic systems using different substrates,” Rev. Bras. Eng. Agric. e Ambient., 2018, doi: 10.1590/1807-1929/agriambi.v22n8p525-529.spa
dc.relation.referencesA. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi: 10.1016/j.jksus.2018.02.001.spa
dc.relation.referencesL. O. Geisenhoff, R. A. Jordan, R. C. Santos, F. C. De Oliveira, and E. P. Gomes, “Effect of different substrates in aquaponic lettuce production associated with intensive tilapia farming with water recirculation systems,” Eng. Agric., 2016, doi: 10.1590/1809-4430-Eng.Agric.v36n2p291-299/2016.spa
dc.relation.referencesA. C. P. Cani, R. V. de Azevedo, R. N. Pereira, M. A. de Oliveira, M. A. Chaves, and L. G. T. Braga, “Phytodepuration of the effluents in a closed system of fish production,” Rev. Bras. Saude e Prod. Anim., 2013, doi: 10.1590/S1519-99402013000200012.spa
dc.relation.referencesJ. Suhl et al., “The potential of double recirculating aquaponic systems for intensive tomato production,” Acta Hortic., 2019, doi: 10.17660/ActaHortic.2019.1242.100.spa
dc.relation.referencesP. Sreejariya, T. Raynaud, L. Dabbadie, and A. Yakupitiyage, “Effect of water recirculation duration and shading on lettuce (Lactuca sativa) growth and leaf nitrate content in a commercial aquaponic system,” Turkish J. Fish. Aquat. Sci., 2016, doi: 10.4194/1303-2712-v16_2_11.spa
dc.relation.referencesA. P. Shete et al., “Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis),” Aquac. Eng., vol. 72–73, pp. 53–57, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.04.004.spa
dc.relation.referencesJ. Suhl et al., “Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics,” Agric. Water Manag., vol. 178, pp. 335–344, 2016, doi: https://doi.org/10.1016/j.agwat.2016.10.013.spa
dc.relation.referencesDeveloponics, “One-Loop vs Multi-Loop Aquaponics,” 2020. http://www.developonics.com/aquaponics/%0A (accessed Feb. 14, 2020).spa
dc.relation.referencesH. Monsees, W. Kloas, and S. Wuertz, “Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes,” PLoS One, 2017, doi: 10.1371/journal.pone.0183056.spa
dc.relation.referencesF. S. David, D. C. Proença, D. L. Flickinger, G. W. Bueno, and W. C. Valenti, “Carbon budget in integrated aquaculture systems with Nile tilapia (Oreochromis niloticus) and Amazon river prawn (Macrobrachium amazonicum),” Scopus, 2021, doi: 10.1111/are.15384.spa
dc.relation.referencesS. Udin, M. Ekram-Ul-Azim, A. Wahab, and M. C. Verdegem, “The potential of mixed culture of genetically improved farmed tilapia (Oreochromis niloticus) and freshwater giant prawn (Macrobrachium rosenbergii) in periphyton-based systems,” Aquac. Res., vol. 37, no. 3, pp. 241–247, 2006, doi: https://doi.org/10.1111/j.1365-2109.2005.01424.x.spa
dc.relation.referencesC. Maucieri et al., “Effect of stocking density of fish on water quality and growth performance of European Carp and leafy vegetables in a low-tech aquaponic system,” PLoS One, 2019, doi: 10.1371/journal.pone.0217561.spa
dc.relation.referencesH. T. Nhan, N. T. Tai, P. T. Liem, V. N. Ut, and H. Ako, “Effects of different stocking densities on growth performance of Asian swamp eel Monopterus albus, water quality and plant growth of watercress Nasturtium officinale in an aquaponic recirculating system,” Aquaculture, 2019, doi: 10.1016/j.aquaculture.2018.12.067.spa
dc.relation.referencesB. Delaide, G. Delhaye, M. Dermience, J. Gott, H. Soyeurt, and M. H. Jijakli, “Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system,” Aquac. Eng., 2017, doi: 10.1016/j.aquaeng.2017.06.002.spa
dc.relation.referencesS. Khalil, “Growth performance, nutrients and microbial dynamic in aquaponics systems as affected by water temperature,” Eur. J. Hortic. Sci., 2018, doi: 10.17660/eJHS.2018/83.6.7.spa
dc.relation.referencesG. C. Hundley, F. K. S. P. Navarro, O. P. R. Filho, and R. D. Navarro, “Integration of nile tilapia (Oreochromis niloticus L.) production origanum majorana l. and ocimum basilicum L. using aquaponics technology,” Acta Sci. - Technol., 2018, doi: 10.4025/actascitechnol.v40i1.35460.spa
dc.relation.referencesT. A. Babatunde, K. Ibrahim, B. Abdulkarim, N. H. Wagini, and S. A. Usman, “Co-production and biomass yield of amaranthus (Amaranthus hybridus) and tilapia (Oreochromis niloticus) in gravel-based substrate filter aquaponic,” Int. J. Recycl. Org. Waste Agric., 2019, doi: 10.1007/s40093-019-00297-5.spa
dc.relation.referencesP. A. Patil, K. Dube, A. K. Verma, N. K. Chadha, J. K. Sundaray, and P. Jayasankar, “Growth performance of goldfish, Carassius auratus and basil, Ocimum basilicum in media bed aquaponics,” Indian Journal of Fisheries. 2019, doi: 10.21077/ijf.2019.66.1.78353-15.spa
dc.relation.referencesJ. de F. Lima, S. S. Duarte, A. M. Bastos, and T. Carvalho, “Performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) on treating wastewater of culture of amazon river shrimp (macrobrachium amazonicum),” Environ. Sci. Pollut. Res., 2019, doi: 10.1007/s11356-019-04496-5.spa
dc.relation.referencesR. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., 2019, doi: 10.1016/j.scitotenv.2019.06.167.spa
dc.relation.referencesP. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi: 10.1007/978-3-030-44044-2_5.spa
dc.relation.referencesM. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017 IEEE Int. Conf. Smart Technol. Manag. Comput. Commun. Control. Energy Mater. ICSTM 2017 - Proc., vol. 2, no. August, pp. 396–401, 2017, doi: 10.1109/ICSTM.2017.8089192.spa
dc.relation.referencesJ. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.spa
dc.relation.referencesS. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.spa
dc.relation.referencesS. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi: 10.13189/ujer.2019.071509.spa
dc.relation.referencesS. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., vol. 171, pp. 143–154, 2019, doi: https://doi.org/10.1016/j.agsy.2019.01.010.spa
dc.relation.referencesW. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1109/IAC.2017.8280590.spa
dc.relation.referencesD. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375–385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.spa
dc.relation.referencesA. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi: 10.1109/ICSGSC.2017.8038547.spa
dc.relation.referencesA. Neori et al., “Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture,” Aquaculture, vol. 231, no. 1, pp. 361–391, 2004, doi: https://doi.org/10.1016/j.aquaculture.2003.11.015.spa
dc.relation.referencesH. Monsees, J. Suhl, M. Paul, W. Kloas, D. Dannehl, and S. Würtz, “Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer,” PLoS One, 2019, doi: 10.1371/journal.pone.0218368.spa
dc.relation.referencesS. Wongkiew, Z. Hu, K. Chandran, J. W. Lee, and S. K. Khanal, “Nitrogen transformations in aquaponic systems: A review,” Aquacultural Engineering. 2017, doi: 10.1016/j.aquaeng.2017.01.004.spa
dc.relation.referencesK. H. Dijkgraaf, S. Goddek, and K. J. Keesman, “Modeling innovative aquaponics farming in Kenya,” Aquac. Int., 2019, doi: 10.1007/s10499-019-00397-z.spa
dc.relation.referencesP. A. Schwartz, T. S. Anderson, and M. B. Timmons, “Predictive equations for butterhead lettuce (Lactuca sativa, cv. flandria) root surface area grown in aquaponic conditions,” Horticulturae, 2019, doi: 10.3390/horticulturae5020039.spa
dc.relation.referencesS. Pedersen and T. Wik, “A comparison of topologies in recirculating aquaculture systems using simulation and optimization,” Aquac. Eng., vol. 89, p. 102059, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102059.spa
dc.relation.referencesM. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi: 10.1109/ICONSTEM.2017.8261342.spa
dc.relation.referencesR. Lefers, A. Alam, F. Scarlett, and T. Leiknes, “Aquaponics water use and nutrient cycling in a seawater-cooled controlled environment agriculture system,” 2020, doi: 10.17660/ActaHortic.2020.1271.54.spa
dc.relation.referencesL. F. Hernández, “Diseño, construcción y evaluación de un sistema acuapónico automatizado de tipo tradicional y doble recirculación en el cultivo de Tilapia Roja (Oreochromis Mossambicus) y Lechuga Crespa (Lactuca Sativa),” p. 127, 2017, [Online]. Available: http://bdigital.unal.edu.co/62310/1/1057592154.2018.pdf.spa
dc.relation.referencesU. Knaus and H. W. Palm, “Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania),” Aquaculture, 2017, doi: 10.1016/j.aquaculture.2017.01.020.spa
dc.relation.referencesH. Wu, Y. Zou, J. Lv, and Z. Hu, “Impacts of aeration management and polylactic acid addition on dissolved organic matter characteristics in intensified aquaponic systems,” Chemosphere, vol. 205, pp. 579–586, 2018, doi: https://doi.org/10.1016/j.chemosphere.2018.04.089.spa
dc.relation.referencesB. Marques, R. Calado, and A. I. Lillebø, “New species for the biomitigation of a super-intensive marine fish farm effluent: Combined use of polychaete-assisted sand filters and halophyte aquaponics,” Sci. Total Environ., vol. 599–600, pp. 1922–1928, 2017, doi: https://doi.org/10.1016/j.scitotenv.2017.05.121.spa
dc.relation.referencesD. Tanikawa, Y. Nakamura, H. Tokuzawa, Y. Hirakata, M. Hatamoto, and T. Yamaguchi, “Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification–denitrification using a down-flow hanging sponge reactor,” Int. Biodeterior. Biodegradation, vol. 132, pp. 268–273, 2018, doi: https://doi.org/10.1016/j.ibiod.2018.04.016.spa
dc.relation.referencesS. M. Pinho, D. Molinari, G. L. de Mello, K. M. Fitzsimmons, and M. G. Coelho Emerenciano, “Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties,” Ecol. Eng., vol. 103, pp. 146–153, 2017, doi: 10.1016/j.ecoleng.2017.03.009.spa
dc.relation.referencesE. G. Durigon et al., “Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water,” Aquac. Fish., vol. 5, no. 1, pp. 42–51, 2020, doi: https://doi.org/10.1016/j.aaf.2019.07.001.spa
dc.relation.referencesL. Collazos and J. Arias., “Fundamentals of bioflocs technology ( BFT ). An alternative for fish farming in Colombia . A review .,” Orinoquia, vol. 19, pp. 77–86, 2015.spa
dc.relation.referencesY. Zou, Z. Hu, J. Zhang, H. Xie, C. Guimbaud, and Y. Fang, “Effects of pH on nitrogen transformations in media-based aquaponics,” Bioresour. Technol., 2016, doi: 10.1016/j.biortech.2015.12.079.spa
dc.relation.referencesJ. Suhl, B. Oppedijk, D. Baganz, W. Kloas, U. Schmidt, and B. van Duijn, “Oxygen consumption in recirculating nutrient film technique in aquaponics,” Sci. Hortic. (Amsterdam)., vol. 255, pp. 281–291, 2019, doi: 10.1016/j.scienta.2019.05.033.spa
dc.relation.referencesF. Li et al., “Effects of Rice-Fish Co-culture on Oxygen Consumption in Intensive Aquaculture Pond,” Rice Sci., vol. 26, no. 1, pp. 50–59, 2019, doi: https://doi.org/10.1016/j.rsci.2018.12.004.spa
dc.relation.referencesZ. Khiari, K. Alka, S. Kelloway, B. Mason, and N. Savidov, “Integration of Biochar Filtration into Aquaponics: Effects on Particle Size Distribution and Turbidity Removal,” Agric. Water Manag., vol. 229, p. 105874, 2020, doi: https://doi.org/10.1016/j.agwat.2019.105874.spa
dc.relation.referencesM. Colorado and M. Ospina, “Acuaponia, Herramienta de formación en tiempos de paz,” p. 66, 2019, [Online]. Available: https://hdl.handle.net/11404/5555.spa
dc.relation.referencesE. C. Legarda et al., “Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology,” Aquaculture, vol. 512, p. 734308, 2019, doi: https://doi.org/10.1016/j.aquaculture.2019.734308.spa
dc.relation.referencesE. Ayipio, D. E. Wells, A. McQuilling, and A. E. Wilson, “Comparisons between aquaponic and conventional hydroponic crop yields: A meta-analysis,” Sustainability (Switzerland). 2019, doi: 10.3390/su11226511.spa
dc.relation.referencesA. Graber and R. Junge, “Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production,” Desalination, vol. 246, no. 1, pp. 147–156, 2009, doi: https://doi.org/10.1016/j.desal.2008.03.048.spa
dc.relation.referencesA. E. Ghaly, M. Kamal, and N. S. Mahmoud, “Phytoremediation of aquaculture wastewater for water recycling and production of fish feed,” Environ. Int., 2005, doi: 10.1016/j.envint.2004.05.011.spa
dc.relation.referencesU. Yogev, A. Barnes, and A. Gross, “Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics,” Water (Switzerland), 2016, doi: 10.3390/w8120589.spa
dc.relation.referencesB. Baßmann, H. Harbach, S. Weißbach, and H. W. Palm, “Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus,” J. World Aquac. Soc., 2020, doi: 10.1111/jwas.12574.spa
dc.relation.referencesK. K. T. Nuwansi, A. K. Verma, G. Rathore, M. H. Chandrakant, G. P. W. A. Prabhath, and R. M. Peter, “Effect of hydraulic loading rate on the growth of koi carp (Cyprinus carpio var. koi.) and Gotukola (Centella asiatica (L.)) using phytoremediated aquaculture wastewater in aquaponics,” Aquac. Int., 2020, doi: 10.1007/s10499-019-00485-0.spa
dc.relation.referencesT. Hussain et al., “Effect of water flow rates on growth of Cyprinus carpio var. koi (Cyprinus carpio L., 1758) and spinach plant in aquaponic system,” Aquac. Int., 2014, doi: 10.1007/s10499-014-9821-3.spa
dc.relation.referencesZ. S. Juhi, N. A. A. A. Mubin, M. G. G. Jonik, S. Salleh, and M. Mohammad, “Impact of short-term light variability on the photobiology of turbid water corals,” J. Sea Res., vol. 175, p. 102088, 2021, doi: https://doi.org/10.1016/j.seares.2021.102088.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAcuiculturaspa
dc.subject.lembAquacultureeng
dc.subject.lembCultivo hidropónicospa
dc.subject.lembHydroponicseng
dc.subject.proposalacuaponíaspa
dc.subject.proposalaquaponicseng
dc.subject.proposalautomatizaciónspa
dc.subject.proposalautomationeng
dc.subject.proposaldiseñospa
dc.subject.proposaldesigneng
dc.subject.proposalprocesospa
dc.subject.proposalprocesseng
dc.subject.proposalevaluaciónspa
dc.subject.proposalevaluationeng
dc.subject.proposalrendimientospa
dc.subject.proposalperformanceeng
dc.subject.proposalrevisiónspa
dc.subject.proposalrevieweng
dc.subject.proposalcontrolspa
dc.subject.proposalcontroleng
dc.subject.proposalComparaciónspa
dc.subject.proposalcomparisoneng
dc.titleAutomatización, modelamiento y evaluación de un sistema acuapónico NFT para cultivo de Carpa Roja (Cyprinus carpio) y Lechuga Crespa (Lactuca sativa)spa
dc.title.translatedAutomation, modeling and evaluation of an NFT aquaponic system for culture of Red Carp (Cyprinus carpio) and Crespa Lettuce (Lactuca sativa)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010210942.2023.pdf
Tamaño:
4.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería en Biosistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: