Obtención y evaluación de las propiedades mecánicas y químicas del caucho natural epoxidado
dc.contributor.advisor | Boyaca Mendilvelso, Luis Alejandro | |
dc.contributor.author | Garzon Gualteros, Brayan Alejandro | |
dc.contributor.orcid | Garzon Gualteros, Brayan Alejandro [0009-0000-8422-0534] | |
dc.date.accessioned | 2025-09-17T14:01:28Z | |
dc.date.available | 2025-09-17T14:01:28Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El presente trabajo abordó la obtención de caucho natural epoxidado (ENR) mediante un proceso de epoxidación, utilizando látex centrifugado de bajo contenido de amonio como materia prima. La reacción se llevó a cabo empleando ácido fórmico al 85 %, peróxido de hidrógeno al 50% como agente epoxidante, un surfactante no iónico (alcohol etoxilado) y agua destilada como medio de reacción. La mezcla fue sometida a agitación constante durante aproximadamente 4 horas a una temperatura de 50 °C, seleccionada con base en referencias bibliográficas para evitar la formación de reacciones secundarias no deseadas. Tras finalizar la epoxidación, se realizó la coagulación del látex epoxidado para obtener el caucho natural sólido, el cual fue secado y caracterizado para verificar la incorporación del grupo oxirano. Para este propósito, se empleó la técnica analítica ATR-FTIR (espectroscopía infrarroja por transformada de Fourier con reflectancia total atenuada), que permitió identificar con precisión la presencia del anillo epóxido a través de sus bandas características. Adicionalmente, mediante la ecuación de Lambert-Beer, se determinó un grado de epoxidación del 35 %. Una vez obtenido el ENR, se prepararon formulaciones a escala de laboratorio para su comparación con caucho natural no modificado (NR) y con copolímero de acrilonitrilobutadieno (NBR) al 33% de acrilonitrilo. Para ello, se diseñaron compuestos vulcanizables mediante la incorporación de los aditivos químicos necesarios. Las propiedades mecánicas evaluadas incluyeron esfuerzo de tensión, módulo, elongación y resistencia al desgarre, tanto en estado inicial como tras la inmersión en aceite ASTM No. 903 y el envejecimiento térmico a 70°C durante 70 horas. Asimismo, se realizaron ensayos de deformación permanente por compresión (DPC) a 70°C durante 22 horas y pruebas de abrasión. Los resultados indicaron que el caucho natural epoxidado presentó mejoras significativas en las propiedades mecánicas en comparación con el caucho natural y el NBR. (Texto tomado de la fuente) | spa |
dc.description.abstract | The present study focused on the production of epoxidized natural rubber (ENR) through an epoxidation process using low-ammonia centrifuged latex as the raw material. The reaction was carried out with 85% formic acid, 50% hydrogen peroxide as the epoxidizing agent, a non-ionic surfactant (ethoxylated alcohol), and distilled water as the reaction medium. The mixture was subjected to constant agitation for approximately 4 hours at a temperature of 50,°C, selected based on bibliographic references to avoid the formation of unwanted side reactions. Following the epoxidation process, coagulation of the epoxidized latex was performed to obtain solid natural rubber, which was then dried and characterized to confirm the incorporation of the oxirane group. For this purpose, ATR-FTIR analytical techniques (attenuated total reflectance Fourier transform infrared spectroscopy) were employed, enabling precise identification of the epoxy ring through its characteristic bands. Additionally, the degree of epoxidation was determined to be 35% using Lambert-Beer’s law. Once the ENR was obtained, laboratory-scale formulations were prepared for comparison with unmodified natural rubber (NR) and acrylonitrile-butadiene copolymer (NBR) containing 33% acrylonitrile. Vulcanizable compounds were designed by incorporating the necessary chemical additives. The mechanical properties evaluated included tensile strength, modulus, elongation, and tear resistance, both in their initial state and after immersion in ASTM No. 903 oil and thermal aging at 70,°C for 70 hours. Additionally, permanent compression set (DPC) tests at 70,°C for 22 hours and abrasion resistance tests were conducted. The results indicated that the epoxidized natural rubber exhibited significant improvements in mechanical properties compared to natural rubber and NBR. | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Materiales y Procesos | |
dc.description.researcharea | Materiales poliméricos | |
dc.format.extent | xiv, 122 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88856 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | |
dc.relation.references | Afzali, A. & Toiserkani, H.: , 2022; Fabrication and evaluation of properties of modified epoxidized natural rubber hybrid films by the incorporation of amine-functionalized nanosilica; Polymer-Plastics Technology and Materials; 61 (16): 1729--1739. | |
dc.relation.references | Ahmad, H. S.; Ismail, H. & Rashid, A. A.: , 2016; Tensile properties and morphology of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (enr 50/nbrr) blends; Procedia Chemistry; 19: 359--365. | |
dc.relation.references | Alam, V. e. a.: , 2022; Advances in rubber aging and ozone resistance; Polymer Degradation and Stability; 198: 109134. | |
dc.relation.references | ASTM International: , 2012; Astm d624-00(2012): Standard test method for tear strength of conventional vulcanized rubber and thermoplastic elastomers; ASTM International; available at https://www.astm.org/d0624-00r12.html. | |
dc.relation.references | ASTM International: , 2015; Astm d2240-15e1: Standard test method for rubber propertydurometer hardness; ASTM International; available at https://www.astm.org/d2240-15e1.html. | |
dc.relation.references | ASTM International: , 2016a; Astm d412-16: Standard test methods for vulcanized rubber and thermoplastic elastomerstension; ASTM International; available at https://www.astm.org/d0412-16.html. | |
dc.relation.references | ASTM International: , 2016b; Astm d471-16a: Standard test method for rubber propertyeffect of liquids; ASTM International; available at https://www.astm.org/d0471-16a.html. | |
dc.relation.references | ASTM International: , 2016c; Astm d5963-04(2016): Standard test method for rubber propertyabrasion resistance (rotary drum abrader); ASTM International; available at https://www.astm.org/d5963-04r16.html. | |
dc.relation.references | ASTM International: , 2018a; Astm d2000-18: Standard classification system for rubber products in automotive applications; ASTM International; available at https://www.astm.org/d2000-18.html. | |
dc.relation.references | ASTM International: , 2018b; Astm d395-18: Standard test methods for rubber propertycompression set; ASTM International; available at https://www.astm.org/d0395-18.html. | |
dc.relation.references | ASTM International: , 2019a; Astm d5289-19: Standard test method for rubber propertyvulcanization using rotorless cure meters; ASTM International; available at https://www.astm.org/d5289-19.html. | |
dc.relation.references | ASTM International: , 2019b; Astm d573-04(2019): Standard test method for rubberdeterioration in an air oven; ASTM International; available at https://www.astm.org/d0573-04r19.html. | |
dc.relation.references | Baker, C.; Gelling, I. & Newell, R.: , 1985; Epoxidized natural rubber; Rubber chemistry and Technology; 58 (1): 67--85. | |
dc.relation.references | Baker, J.: , 1987; Epoxidation effects on natural rubber properties; Journal of Polymer Science: 1123--1135. | |
dc.relation.references | Baoyuan Huang, Jun He, L. W. Z. C. J. Z.-J. F.: , 2023a; Mechanical strength and tear resistance of natural rubber composites; MDPI Polymers; 15: 1768. | |
dc.relation.references | Baoyuan Huang, Jun He, L. W. Z. C. J. Z.-J. F.: , 2023b; Mechanical strength and tear resistance of natural rubber composites; MDPI Polymers; 15: 1768. | |
dc.relation.references | Baudoin, M.; Paboeuf, G.; Liengprayoon, S.; Musigamart, N.; Bottier, C. & Vié, V.: , 2025; Hevea brasiliensis rubber particles’ fluid interfaces reveal size impact on early coagulation steps; Colloids and Surfaces B: Biointerfaces; 245: 114281. | |
dc.relation.references | Bedriye Nur Yeil, B. K.: , 2016; Properties of nr and nr/enr based rubber compounds reinforced with chopped and sized carbon fiber; Anadolu University Journal of Science and Technology; 17: 926--935. | |
dc.relation.references | Bhattacharjee, S.; De, P. P. & Mukhopadhyay, R.: , 1993; Determination of epoxy content in epoxidized natural rubber by infrared spectroscopy; Polymer International; 32 (1): 49--54; URL https://cpsm.kpi.ua/polymer/1993/24/5168-5173.pdf. | |
dc.relation.references | Bokobza, L.: , 2004; The reinforcement of elastomeric networks by fillers; Macromolecular Materials and Engineering; 289 (7): 607--621; doi:https://doi.org/10.1002/mame.200400034; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mame. 200400034. | |
dc.relation.references | Burfield, D. R.; Lim, K.-L. & Law, K.-S.: , 1984; Epoxidation of natural rubber latices: Methods of preparation and properties of modified rubbers; Journal of Applied Polymer Science; 29 (5): 1661--1673. | |
dc.relation.references | Chanchai Thongpin, Achiraya Muanwong, J. Y. P. L.: , 2017; Effect of enr contents on cure characteristic and properties of nr/enr/eva foam; Materials Science Forum; 889: 45--50. | |
dc.relation.references | Chuayjuljit, T. & Mungmeechai, A.: , 2016; Epoxidation of natural rubber latex using hydrogen peroxide and formic acid; Materials Science and Engineering; 56: 1456--1472. | |
dc.relation.references | Dick, J. S.: , 2014a; How to improve rubber compounds: 1800 experimental ideas for problem solving; Carl Hanser Verlag GmbH Co KG. | |
dc.relation.references | Dick, J. S.: , 2014b; How to improve rubber compounds: 1800 experimental ideas for problem solving; Carl Hanser Verlag GmbH Co KG. | |
dc.relation.references | Gan, L.-H. & Ng, S.-C.: , 1986; Kinetic studies of the performic acid epoxidation of natural rubber latex stabilized by cationic surfactant; European polymer journal; 22 (7): 573--576. | |
dc.relation.references | Gelling, I. R. & Smith, P. S.: , 1987; Epoxidised natural rubber: A new development in natural rubber; Rubber Chemistry and Technology; 60 (3): 512--527 | |
dc.relation.references | Giraldo Díaz, A. M.; López Aristizábal, P. et al.: , 2016; Evaluación de agentes de coagulación para la producción de láminas de caucho seco a partir de Látex multiclonal de Hevea Brasiliensis; B.S. thesis; Universidad EAFIT. | |
dc.relation.references | Gopalakrishnan, J.: , 2024; Quantification of epoxidized natural rubber using atr-ftir spectroscopy; Polymer Testing: 89--102. | |
dc.relation.references | Gopalakrishnan, J.: , 2025; Compatibilization of natural rubber-based composites and nanocomposites; SpringerLink: 107--143. | |
dc.relation.references | Gyeongchan Ryu, Donghyuk Kim, S. S. K. H. B. A.-W. K.: , 2021; Effect of epoxide content on the vulcanizate structure of silica-filled epoxidized natural rubber (enr) compounds; Polymers; 13: 1862; doi:10.3390/polym13111862. | |
dc.relation.references | Hamzah, R.; Bakar, M. A.; Khairuddean, M.; Mohammed, I. A. & Adnan, R.: , 2012; A structural study of epoxidized natural rubber (enr-50) and its cyclic dithiocarbonate derivative using nmr spectroscopy techniques; Molecules; 17 (9): 10974--10993 | |
dc.relation.references | Hardesty, J. H. & Attili, B.: , 2017; Spectrophotometry and the beer-lambert law: An important analytical technique in chemistry; Collin College Department of Chemistry: 1--15. | |
dc.relation.references | Harun, F. & Chan, C. H.: , 2016; Electronic applications of polymer electrolytes of epoxidized natural rubber and its composites; Flexible and stretchable electronic composites: 37--59. | |
dc.relation.references | Harun, M. & Chan, C. M.: , 2007; Comparison of epoxidation methods for natural rubber latex using peracids; Journal of Applied Polymer Science; 106 (1): 106--113. | |
dc.relation.references | Hatthapanit, K.: , 2007; Effect of blend ratio on properties of chloroprene rubber/natural rubber (cr/nr) blends; Express Polymer Letters: 1--10. | |
dc.relation.references | Hiep, N. Q. & Huy, T. H.: , 2018; Nitrile rubber compounds: Vulcanisation and rheological behavior; Polymer Engineering and Science: 343--360. | |
dc.relation.references | Hiep, N. Q.; Huy, T. H. & Nguyen, P. C.: , 2019; Preparation and properties of rubber nanocomposites based on nr/nbr blend reinforced with nanosilica and carbon black; Vietnam Journal of Chemistry: 213--217. | |
dc.relation.references | International, A.: , 2023; Standard test method for rubber propertyvulcanization using oscillating disk cure meter (astm d5289); ASTM Standards: 1--9. | |
dc.relation.references | International Organization for Standardization: , 2023; Iso 5260:2023 -- rubber determination of epoxide content by infrared spectroscopic method; ISO; available at https://www.iso.org/obp/ui/en/. | |
dc.relation.references | Jun He, Baoyuan Huang, L. W. Z. C. J. Z.-J. F.: , 2023; Enhancing natural rubber tearing strength by mixing ultra-high molecular weight polyethylene short fibers; Polymers; 15: 1768; doi:10.3390/polym15071768 | |
dc.relation.references | Jwad, M.: , 2017; Spectrophotometry and the beer-lambert law: An important analytical technique in chemistry; Academia.edu: 1--10. | |
dc.relation.references | Kinasih, D.: , 2021; Effect of latex type and addition method on epoxidation degree in natural rubber; Journal of Elastomers and Plastics; 47: 103--119. | |
dc.relation.references | Kirmani, K. K.: , 2019; Rubber compounding from formulation to compounding principles and polymer blending; Academia.edu: 1--10. | |
dc.relation.references | Kwanruethai Boonsong, Manus Seadan, N. L.: , 2008; Compatibilization of natural rubber (nr) and chlorosulfonated polyethylene (csm) blends with zinc salts of sulfonated natural rubber; Songklanakarin Journal of Science and Technology; 30: 491--499 | |
dc.relation.references | Lee, G.; Hong, S. & Park, H.: , 2022; Asymmetric epoxidation of enones: Effect of surfactants, radical scavengers, and morphology of catalysts; Organic Chemistry Frontiers; 18: 1--10. | |
dc.relation.references | Leveneur, S.; Tolvanen, P. & Russo, V.: , 2024; Catalytic epoxidation reaction; Catalysts; 14: 285. | |
dc.relation.references | Lorwanishpaisarn, N.; Sae-Oui, P.; Sirisinha, C. & Siriwong, C.: , 2023; A new approach to the epoxidation of natural rubber through a sonochemical method; Industrial Crops and Products; 197: 116629. | |
dc.relation.references | Mayasari, R. e. a.: , 2020; Quantification of epoxidation effect on swelling resistance in nr-nbr blends; European Journal of Material Science Engineering; 5: 102--115. | |
dc.relation.references | Meng-Zhen Zhou, Hao-Ran Wang, X. G. Y.-C. W. S. L.: , 2023; Synergistic effect of thermal oxygen and uv aging on natural rubber; e-Polymers; 23: 1--16; doi:10.1515/epoly-2023-0016. | |
dc.relation.references | Mohd Rasdi, F. R. & Mohamed, Y.: , 2023; Epoxidised natural rubber and its chemistry; en Epoxidised Natural Rubber: Properties & Applications; Springer; págs. 1--9. | |
dc.relation.references | Mooibroek, H. & Cornish, K.: , 2000; Alternative sources of natural rubber; Applied Microbiology and Biotechnology; 53 (4): 355--365; doi:10.1007/s002530051626. | |
dc.relation.references | Muhr, A. & Roberts, A.: , 1992; Rubber abrasion and wear; Wear; 158 (1-2): 213--228. | |
dc.relation.references | Núñez, C.; Lisperguer, J. & Droguett, C.: , 2016; Fast and reliable method for monitoring epoxidation reaction in recycled vegetable oils using ftir-atr technique; Journal of the Chilean Chemical Society; 61: 1202--1210. | |
dc.relation.references | of Arts, R. R. J. & Sciences: , 2015; Effect of blend ratio on cure characteristics, mechanical properties, oil resistance, and ageing resistance of silica-filled enr/nr blends; Rangsit University; 15: 1--15. | |
dc.relation.references | Ontsuka, H. & Toh, M.: , 2015; Mill behavior of rubber on two roll mill with temperature; Nippon Gomu Kyokaishi; 88: 130--135. | |
dc.relation.references | Panchal, N. B. & Vaghela, V. M.: , 2024; The elegance of epoxidation: Mechanistic insights, diverse applications, and promising horizons; Oriental Journal of Chemistry; 40: 4. | |
dc.relation.references | Panmanee, S. & Smitthipong, W.: , 2022; Study of yield percentage of epoxidized natural rubber preparation; available at https://www.researchgate.net/publication/363535167_Study_of_yield_percentage_of_epoxidized_natural_ rubber_preparation. | |
dc.relation.references | Pramanik, M.; Mendon, S. K. & Rawlins, J. W.: , 2012; Determination of epoxy equivalent weight of glycidyl ether-based epoxides via near infrared spectroscopy; Polymer Testing; 31: 1023--1032. | |
dc.relation.references | Pöschl, T. e. a.: , 2019; Effects of carbon black variants on mechanical properties of elastomers; Materials; 13: 2394. | |
dc.relation.references | Romli, A.: , 2017; Physical and mechanical properties of enr compatibilized nr/nbr blends reinforced with nanoclay and nanosilica; Macromolecular Symposia: 69--98. | |
dc.relation.references | Ruksakulpiwat, C.: , 2008; Synthesis and modification of epoxidized natural rubber; Polymer Engineering and Science: 1021--1032. | |
dc.relation.references | Samarija-Jovanovi, S. e. a.: , 2009; Influence of sulfur-based accelerators on rubber thermal stability; Journal of Polymer Science; 47: 2215--2228. | |
dc.relation.references | Sanchez, M. C. & Bacigalupe, A.: , 2022; Comparative analysis of epoxidation quantification methods in natural rubber; Journal of Applied Polymer Science: 345--360. | |
dc.relation.references | Sanchez, M. C.; Bacigalupe, A.; Escobar, M. & Mansilla, M.: , 2019; Rubber clay nanocomposites; Sustainable Polymer Composites and Nanocomposites: 593--628. | |
dc.relation.references | Sarkawi, S.; Rasdi, F. & Charlotte, V.: , 2023a; Epoxidised Natural Rubber: Properties & Applications; Springer Nature; ISBN 9789811988370; URL https://books.google.com.co/books?id=c0cx0AEACAAJ. | |
dc.relation.references | Sarkawi, S. S.; Aziz, A. K. C. & Ismail, N. I. N.: , 2023b; General compounding and properties of epoxidised natural rubber; SpringerLink: 69--98. | |
dc.relation.references | Sarkawi, S. S.; Aziz, A. K. C. & Ismail, N. I. N.: , 2023c; Reological properties of epoxidised natural rubber compounds; SpringerLink: 69--98. | |
dc.relation.references | Sengloyluan, K.; Sahakaro, K.; Dierkes, W. K. & Noordermeer, J. W.: , 2014; Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber; European polymer journal; 51: 69--79. | |
dc.relation.references | Shi, H.; Zhang, Z. & Wang, Y.: , 2005; Mechanism on epoxidation of alkenes by peracids: A protonation-promoted pathway and its quantum chemical elucidation; Journal of Molecular Catalysis A: Chemical; 238 (1-2): 13--25. | |
dc.relation.references | Silva, M. J.; Claro, P. I. C.; da Silva, J. C.; Júnior, E. J. S.; de Souza Gonçalves, P.; Martins, M. A. & Mattoso, L. H. C.: , 2021; Evaluation of the physicochemical properties of natural rubber from hevea brasiliensis clones; Industrial Crops and Products; 171: 113925. | |
dc.relation.references | Siti Salina Sarkawi, Ahmad Kifli Che Aziz, N. I. N. I.: , 2023; General compounding and properties of epoxidised natural rubber; SpringerLink: 69--98. | |
dc.relation.references | Sivaraman, O.; Ghosh, N. & Gayathri, S.: , 2016; Natural rubber nanoblends: Preparation, characterization and applications; Springer Series on Polymer and Composite Materials: 15--65. | |
dc.relation.references | Smith, B. C.: , 2011; Infrared Spectral Interpretation: A Systematic Approach; CRC Press | |
dc.relation.references | Tanrattanakul, V.; Wattanathai, B.; Tiangjunya, A. & Muhamud, P.: , 2003; In situ epoxidized natural rubber: improved oil resistance of natural rubber; Journal of Applied Polymer Science; 90 (1): 261--269. | |
dc.relation.references | Tanrattnakul, P.: , 2002; Improvement of oil resistance in natural rubber; Rubber Chemistry and Technology; 75: 879--895 | |
dc.relation.references | Tormento, M. e. a.: , 2018; Zinc oxide in rubber compounds: Effects on aging and durability; Rubber Chemistry and Technology; 91: 388--402. | |
dc.relation.references | Trinh, V.; Luu, T. & Nguyen, T.: , 2024; Research on the production technology of rubber epoxy from concentrated natural rubber latex; en IOP Conference Series: Earth and Environmental Science, tomo 1340; IOP Publishing; pág. 012003 | |
dc.relation.references | Vernekar, S.; Sabne, M.; Patil, S.; Patil, A.; Idage, S.; Avadhani, C. & Sivaram, S.: , 1992; Effect of latex concentration on epoxidation of natural rubber (nr) latex; Journal of applied polymer science; 44 (12): 2107--2114. | |
dc.relation.references | Wai, P. T.; Jiang, P.; Shen, Y.; Zhang, P.; Gu, Q. & Leng, Y.: , 2019; Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products; RSC Advances; 9: 38119--38136. | |
dc.relation.references | Wichien, A. N.; Ngudsuntear, C.; Rempel, G. L. & Arayapranee, W.: , 2015; Effect of blend ratio on cure characteristics, mechanical properties, oil resistance, and ageing resistance of silica-filled enr/nr blends; Journal of Current Science and Technology; 5 (1): 27--41. | |
dc.relation.references | Wong, C. S.; Ng, C. H. & Bakar, W. A. W. A.: , 2002; Epoxidation of natural rubber latex using performic acid generated in situ; European Polymer Journal; 38 (6): 1193--1198; doi:10.1016/S0014-3057(01)00269-3. | |
dc.relation.references | Xu, J.; Hao, Y.; Yang, Z.; Li, W.; Xie, W.; Huang, Y.; Wang, D.; He, Y.; Liang, Y.; Matsiko, J. et al.: , 2022; Rubber antioxidants and their transformation products: environmental occurrence and potential impact; International Journal of Environmental Research and Public Health; 19 (21): 14595 | |
dc.relation.references | Yazici, N.; Kodal, M. & Özkoç, G.: , 2021; Lab-scale twin-screw micro-compounders as a new rubber-mixing tool: A comparison on epdm/carbon black and epdm/silica composites; Polymers; 13: 4391. | |
dc.relation.references | Yi-hua Qian, Hong-zhao Xiao, M.-h. N. Y.-h. Z. Y.-b. L. S.-l. G.: , 2018; Lifetime prediction and aging behaviors of nitrile butadiene rubber under operating environment of transformer; Journal of Electrical Engineering and Technology; 13: 918--927; doi:10.5370/JEET.2018.13.2.918. | |
dc.relation.references | Yiding Li, Jian Wu, Z. C. Z. Z. B. S.-Y. W.: , 2024; The influence of oil and thermal aging on the sealing characteristics of nbr seals; Polymers; 16: 2501; doi:10.3390/polym16172501. | |
dc.relation.references | Yunus, N. A.; Mazlan, S. A.; Ubaidillah; Abdul Aziz, S. A.; Tan Shilan, S. & Abdul Wahab, N. A.: , 2019; Thermal stability and rheological properties of epoxidized natural rubber-based magnetorheological elastomer; International Journal of Molecular Sciences; 20 (3); doi:10.3390/ijms20030746; URL https://www.mdpi.com/1422-0067/20/3/746. | |
dc.relation.references | Yusof, N. H.; Singh, M. & Song, T. K.: , 2023a; Epoxidation of natural rubber: Atr-ftir analysis and structural characterization; Journal of Rubber Research; 28: 112--125. | |
dc.relation.references | Yusof, N. H.; Singh, M. & Song, T. K.: , 2023b; The vulcanisation of natural rubber: A comparative study; Journal of Rubber Research: 112--125. | |
dc.relation.references | Yusof, N. H.; Singh, M.; Song, T. K.; Abdullah, N. & Rasdi, F. R. M.: , 2024; Properties of vulcanised concentrated skim natural rubber latex dipped film; Journal of Rubber Research; 27: 565--577. | |
dc.relation.references | Zhang, X.; Li, Y. & Wu, C.: , 2023; Spectroscopic analysis and quantification of epoxidized natural rubber; Journal of Polymer Science; 59: 987--1002. | |
dc.relation.references | Zybaylo, M.: , 2019; Optimized epoxidation of natural rubber in water-xylene medium; Advances in Polymer Science: 389--402. | |
dc.relation.references | Öter, M. & Karaaaç, B.: , 2020; Epoxidised natural rubber as adhesion promoter in natural rubber based compounds; Journal of Rubber Research; 23: 333--341. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.subject.ddc | 540 - Química y ciencias afines | |
dc.subject.lemb | Polimetilmetacrilato | spa |
dc.subject.lemb | Polymethylmethacrylate | eng |
dc.subject.other | Epoxidación | spa |
dc.subject.other | Epoxidation | eng |
dc.subject.proposal | Polímero | spa |
dc.subject.proposal | Polymer | eng |
dc.subject.proposal | Epoxidación | spa |
dc.subject.proposal | Hinchamiento | spa |
dc.subject.proposal | Elastómero | spa |
dc.subject.proposal | Epoxidation | eng |
dc.subject.proposal | Swelling | eng |
dc.subject.proposal | Elastomer | eng |
dc.subject.wikidata | Elastómero | spa |
dc.subject.wikidata | Elastomer | eng |
dc.title | Obtención y evaluación de las propiedades mecánicas y químicas del caucho natural epoxidado | spa |
dc.title.translated | Synthesis and evaluation of the mechanical and chemical properties of epoxidized natural rubber | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
dcterms.audience.professionaldevelopment | Estudiantes | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |