Modelamiento matemático de la fermentación de vinazas azucareras para la producción de un biofertilizante
dc.contributor.advisor | Higuita Vásquez, Juan Carlos | |
dc.contributor.advisor | Olivar Tost, Gerard | |
dc.contributor.author | Caballero Galván, Juan José | |
dc.date.accessioned | 2021-10-09T18:27:24Z | |
dc.date.available | 2021-10-09T18:27:24Z | |
dc.date.issued | 2021 | |
dc.description | figuras, tablas | spa |
dc.description.abstract | El desarrollo de modelos matemáticos es considerado una de las bases para la estandarización, escalamiento, supervisión y control de procesos químicos, físicos y biológicos. En los procesos biológicos, como las fermentaciones, conocer el comportamiento del microorganismo permite predecir y controlar su eficiencia en la formación de productos. Sin embargo, encontrar modelos matemáticos que describan a la perfección un sistema biológico es una tarea difícil, debido a la sensibilidad de los microorganimos a perturbaciones. En la industria colombiana los residuos agroindustriales tipo vinazas generan un gran impacto ambiental a causa de su escaso tratamiento en su disposición final y su alto contenido de materia orgánica. A partir de lo anterior, la fermentación de vinazas con Gluconacetobacter diazotrophicus para producir un biofertilizante, se considera una estrategia para mitigar el impacto de este residuo industrial y obtener un producto con alto valor agregado. El propósito principal de esta tesis es la obtención de un modelo matemático que permita describir el comportamiento de las variables que participan en la fermentación de vinazas azucareras, utilizando G. diazotrophicus mediante el seguimiento de las principales variables que participan en el proceso y el planteamiento de posibles ecuaciones matemáticas. La reparametrización de los modelos se realizó planteando diferentes optimizaciones de mínimos cuadrados para los datos experimentales y realizando un análisis de estabilidad a mejor modelo obtenido. Los resultados obtenidos demuestran la importancia del seguimiento de variables para realizar un modelado matemático, los factores que influyen en la optimización y obtención de un modelo matemático con un porcentaje de error entre los datos reales y modelados de 14.6% sin problema de estabilidad (Texto tomado de la fuente). | spa |
dc.description.abstract | The development of mathematical models is considered one of the bases for the standardization, scaling, supervision and control of chemical, physical and biological processes. In biological processes, such as fermentations, knowing the behavior of the microorganism makes it possible to predict and control efficiency in the formation of products. However, finding mathematical models that perfectly describe a biological system is a difficult task, mainly due to the sensitivity of microorganisms to disturbances. In the Colombian industry, agroindustrial residues such as vinasses generate a great impact due to poor treatment strategies for their final disposal and their high content of organic matter. Based on the above, the fermentation of stillage with Gluconacetobacter diazotrophicus to produce a biofertilizer is considered a strategy to mitigate the impact of this industrial waste and to obtain a product with high added value. The main purpose of this thesis is to obtain a mathematical model that allows describing the behavior of the variables that participate in the fermentation of sugar vinasses, using G. diazotrophicus. This objective was reached by monitoring the main variables that participate in the process and the approach to obtain possible mathematical equations. The reparametrization of the models was carried out by proposing different least squares optimizations for the experimental data and performing a stability analysis to the best model obtained. The research showed the importance of tracking variables to perform mathematical modeling, the factors that influence optimization and obtaining a mathematical model with a percentage of error between the real and modeled data of 14.6% without a stability problem. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.format.extent | 179 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80473 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | Andr, Pablo, and De Villeros Arias. 2015. “PARTIR DE MODELOS CIBERNÉTICOS State Observer Design for Biomass Estimation in Bioreactors Based on Cybernetic Models.” | spa |
dc.relation.references | Aparcana, Sandra. 2008. “Estudio Sobre El Valor Fertilizante de Los Productos Del Proceso Fermentación Anaeróbica Para Producción de Biogás.” German ProfEC, GmbH: 10. https://doi.org/10.3109/08830185.2014.902452%0Ahttps://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Report_2018.pdf%0Ahttp://eprints.lse.ac.uk/43447/1/India_globalisation%2C society and inequalities%28l. | spa |
dc.relation.references | Ashikhmin, V.N. et al. 2007. Introducción En Modelado Matemático. P.V. Truso. | spa |
dc.relation.references | Le Borgne, Sylvie, and Rodolfo Quintero. 2003. “Biotechnological Processes for the Refining of Petroleum.” Fuel Processing Technology 81(2): 155–69. | eng |
dc.relation.references | Boudrant, Joseph, and Jack Legrand. 2010. 45 Process Biochemistry Bioprocess Engineering. | eng |
dc.relation.references | Camelo-Rusinque, Mauricio, Andrés Moreno-Galván, Felipe Romero-Perdomo, and Ruth Bonilla-Buitrago. 2017. “Desarrollo de Un Sistema de Fermentación Líquida y de Enquistamiento Para Una Bacteria Fijadora de Nitrógeno Con Potencial Como Biofertilizante.” Revista Argentina de Microbiología 49(3): 289–96. | spa |
dc.relation.references | Cavalcante, Vladimir A., and J. Dobereiner. 1988. “A New Acid-Tolerant Nitrogen-Fixing Bacterium Associated with Sugarcane.” Plant and Soil 108(1): 23–31. | eng |
dc.relation.references | Cenicaña. 2016. “Etanol: Más de 10 Años de Producción.” Carta Informativa 3: 20. | spa |
dc.relation.references | Cervantes Gómez, Lucia. 2015. Modelización Matemática. Principios y Aplicaciones.(Libro). https://www.fcfm.buap.mx/assets/docs/publicaciones/Modeliza.pdf. | spa |
dc.relation.references | Conil, P. 2008. “Manejo de Vinazas: Metanización y Compostaje. Aplicaciones Industriales.” Revista tecnicaña: 26–30. | spa |
dc.relation.references | Costa, Ohana Y.A., Jos M. Raaijmakers, and Eiko E. Kuramae. 2018. “Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation.” Frontiers in Microbiology 9(JUL): 1–14. | eng |
dc.relation.references | Duca, Daiana et al. 2014. “Indole-3-Acetic Acid in Plant-Microbe Interactions.” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 106(1): 85–125. | eng |
dc.relation.references | Eckert, B. et al. 2001. “Azospirillum Doebereinerae Sp. Nov., a Nitrogen-Fixing Bacterium Associated with the C4-Grass Miscanthus.” International Journal of Systematic and Evolutionary Microbiology 51(1): 17–26. | eng |
dc.relation.references | Emami, Somayeh et al. 2019. “Assessment of the Potential of Indole-3-Acetic Acid Producing Bacteria to Manage Chemical Fertilizers Application.” International Journal of Environmental Research 13(4): 603–11. https://doi.org/10.1007/s41742-019-00197-6. | eng |
dc.relation.references | Farias, Rafael, Germán Moreno, and Alexandre Patriota. 2009. “Reducción de Modelos En La Presencia de Parámetros de Perturbación.” Revista Colombiana de Estadistica 32(1): 99–121. | spa |
dc.relation.references | Fuentes, Ángel, Carmen Carreño, and Cinthya Llanos. 2013. “Yield Emulsifiers Exopolysaccharides Produced by Native Halophilic Bacteria Concentrations Molasses Three Saccharum Officinarum L. ‘Sugarcane.’” Scientia agropecuaria 4: 111–20. | eng |
dc.relation.references | García Alvarado, Yahara. 2007. “Modelado y Estimación de Procesos de Fermentación.” UNIVERSIDAD AUTONOMA DE NUEVO LEON. | spa |
dc.relation.references | García Moreno, Emilio. 1999. Automatización de Procesos Industriales. Editorial. Valencia, España: La librería. | spa |
dc.relation.references | Jain, Aakanchha, Richa Jain, and Sourabh Jain. 2020. “Quantitative Analysis of Reducing Sugars by 3, 5-Dinitrosalicylic Acid (DNSA Method). In: Basic Techniques in Biochemistry, Microbiology and Molecular Biology.” In Springer Protocols Handbooks, New York, NY. | eng |
dc.relation.references | Jiang, Yang et al. 2015. “Rapid Production of Organic Fertilizer by Dynamic High-Temperature Aerobic Fermentation (DHAF) of Food Waste.” Bioresource Technology 197: 7–14. | eng |
dc.relation.references | Katalin, Hangos;, and Cameron; Ian. 2001. Process Modelling and Model Analysis: Volume 4 (Process Systems Engineering). Austin, TX,United States: GoldBooks. | eng |
dc.relation.references | Khan, Abdul Latif et al. 2017. “Endophytes from Medicinal Plants and Their Potential for Producing Indole Acetic Acid, Improving Seed Germination and Mitigating Oxidative Stress.” Journal of Zhejiang University: Science B 18(2): 125–37. | eng |
dc.relation.references | Knoema. 2020. “Atlas Mundial de Datos: Colombia-Fuel Ethanol Production.” | spa |
dc.relation.references | Kuila, Arindam, and Vinay Sharma. 2018. Pinciples and Applications of Fermentation Technology. Wiley Glob. Library of Congress Cataloging-in-Publication Data. | eng |
dc.relation.references | Manesis, Stamatios, and George Nikolakopoulos. 2018. Introduction to Industrial Automation. ed. LLC Taylor & Francis Group. | eng |
dc.relation.references | Marcos, N. I., M. Guay, and D. Dochain. 2004. “Output Feedback Adaptive Extremum Seeking Control of a Continuous Stirred Tank Bioreactor with Monod’s Kinetics.” Journal of Process Control 14(7): 807–18. | eng |
dc.relation.references | Mata Gómez, Juan Antonio. 2006. “Caracterización de Los Exopoliosacáridos Producidos Por Microorganismos Halófilos Pertenecientes a Los Géneros Halomonas, Alteromonas, Idiomarina, Palleronia y Salipiger.” Universidad de Granada. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf. | spa |
dc.relation.references | Matlab. 2020. “MathWorks.” la.mathworks.com/products/matlab.html. | eng |
dc.relation.references | Medina, José Luis, and Josep Maria Guadayol. 2010. La Automatización En La Industria Química. | spa |
dc.relation.references | Mehta, B. R., and Y. J. Reddy. 2014. Industrial Process Automation Systems: Design and Implementation Industrial Process Automation Systems: Design and Implementation. | eng |
dc.relation.references | Moldes, Ana, José Manuel Domínguez González, Ligia Raquel Marona Rodrigues, and Attilio Converti. 2013. “New Trends in Biotechnological Processes to Increase the Environmental Protection.” BioMed Research International 2013: 2–4. | eng |
dc.relation.references | Moncada, Jonathan, Mahmoud M. El-Halwagi, and Carlos A. Cardona. 2013. “Techno-Economic Analysis for a Sugarcane Biorefinery: Colombian Case.” Bioresource Technology 135: 533–43. http://dx.doi.org/10.1016/j.biortech.2012.08.137. | eng |
dc.relation.references | Morabito, Bruno, Achim Kienle, Rolf Findeisen, and Lisa Carius. 2019. “Multi-Mode Model Predictive Control and Estimation for Uncertain Biotechnological Processes.” IFAC-PapersOnLine 52(1): 709–14. https://doi.org/10.1016/j.ifacol.2019.06.146. | eng |
dc.relation.references | Moreno, Manuel, and Suani Teixeira Coelho. 2014. “Vinaza Como Fuente de Energía.” Bioenergy International N°22: 38–39. | spa |
dc.relation.references | Nathional Geographic. 2012. “Nonrenewable Resources.” Nonrenewable Resources. nationalgeographic.org/encyclopedia/nonrenewable-resources/. | eng |
dc.relation.references | Nepolean, P. et al. 2012. “Role of Biofertilizers in Increasing Tea Productivity.” Asian Pacific Journal of Tropical Biomedicine 2(3 SUPPL.): S1443–45. http://dx.doi.org/10.1016/S2221-1691(12)60434-1. | eng |
dc.relation.references | Nielsen, Jens, and John Villadsen. 2011. Bioreaction Engineering Principles Bioreaction Engineering Principles. third edit. | eng |
dc.relation.references | Novales, Alfonso. 2010. Análisis de Regresión. Universidad Complutense. | spa |
dc.relation.references | Nutaratat, Pumin, Apitchaya Monprasit, and Nantana Srisuk. 2017. “High-Yield Production of Indole-3-Acetic Acid by Enterobacter Sp. DMKU-RP206, a Rice Phyllosphere Bacterium That Possesses Plant Growth-Promoting Traits.” 3 Biotech 7(5). | eng |
dc.relation.references | Nwodo, Uchechukwu U., Ezekiel Green, and Anthony I. Okoh. 2012. “Bacterial Exopolysaccharides: Functionality and Prospects.” International Journal of Molecular Sciences 13(11): 14002–15. | eng |
dc.relation.references | O’Donnell, P. J., William W. Seifort, and Carl W. Steeg. 1961. “Control Systems Engineering.” or 12(2): 124. | eng |
dc.relation.references | Ortega, Fabián. 2017. “Modelado de Bioprocesos: Relaciones Matemáticas Entre El Medioambiente y El Material Biológico.” : 187p. | spa |
dc.relation.references | Ozdal, Murat et al. 2017a. “Continuous Production of Indole-3-Acetic Acid by Immobilized Cells of Arthrobacter Agilis.” 3 Biotech 7(1). | eng |
dc.relation.references | ———. 2017b. “Continuous Production of Indole-3-Acetic Acid by Immobilized Cells of Arthrobacter Agilis.” 3 Biotech 7(1): 1–6. | eng |
dc.relation.references | Panikov, Nicolai S. 2014. “Kinetics , Microbial Growth.” (May). | eng |
dc.relation.references | Patil, Nita B et al. 2011. “Optimization of Indole 3 Acetic Acid ( IAA ) Production by Acetobacter Diazotrophicus L1 Isolated from Sugarcane.” International Journal of Environmental Sciences 2(1): 295–302. | eng |
dc.relation.references | Patsalou, Maria, Antonios Chrysargyris, Nikolaos Tzortzakis, and Michalis Koutinas. 2020. “A Biorefinery for Conversion of Citrus Peel Waste into Essential Oils, Pectin, Fertilizer and Succinic Acid via Different Fermentation Strategies.” Waste Management 113: 469–77. | eng |
dc.relation.references | Pérez, Carlos M Rodríguez. 2015. “Cultivo y Crecimiento de Los Microorganismos.” (January 2001): 45–54. | spa |
dc.relation.references | Pérez, Mario, Analia Pérez Hidalgo, and Elisa Pérez Berenguer. 2007. “Introduccion a Los Sistemas de Control y Modelo Matemático Para Sistemas Lineales Invariantes En El Tiempo.” Universidad Nacional de San Juan 1: 1–69. http://dea.unsj.edu.ar/control1/apuntes/unidad1y2.pdf. | spa |
dc.relation.references | Pineda, Sebastián Pineda. 2019. LA FERMENTACIÓN DE VINAZAS AZUCARERAS POR Gluconacetobacter Diazotrophicus. | spa |
dc.relation.references | Prabudoss, V. 2011. “A Real Multi Beneficial Endophytic Diazotroph Gluconacetobacter Diazotrophicus for Sugarcane.” INTERNATIONAL JOURNAL OF CURRENT RESEARCH 3: 103–6. | eng |
dc.relation.references | Qian, Xuhong. et al. 2015. Chemical Biotechnology and Bioengineering. | eng |
dc.relation.references | Rincón Santamaría, Alejandro, Jorge Andres Cuellar Gil, Luis Felipe Valencia Gil, and Oscar Julián Sánchez Toro. 2019. “Kinetics of Gluconacetobacter Diazotrophicus Growth Using Cane Molasses and Sucrose: Assessment of Kinetic Models.” Acta Biologica Colombiana 24(1): 38–57. | eng |
dc.relation.references | Rios, Yoania et al. 2016. “Aislamiento Y Caracterización De Cepas.” Cultivos Tropicales 37(1): 34–39. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362016000100005. | spa |
dc.relation.references | Sakuraba, Hitoshi, Kazuhiro Ohga, and Yoshiyuki Suzuki. 1981. “Fabry’s Disease: Detection of Heterozygotes Using Blastoid Lymphocytes StimuIated by PhytohemaggIutinin.” Pediatrics International 23(1): 39–43. | eng |
dc.relation.references | Schaller, G. Eric, Anthony Bishopp, and Joseph J. Kieber. 2015. “The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development.” Plant Cell 27(1): 44–63. | eng |
dc.relation.references | Seborg, Dale E., and Thomas F. Edgar. 2003. “Process Dynamics and Control,2nd Ed.Pdf.” | eng |
dc.relation.references | Sharma, KLS. 2011. “Automation Strategies.” Overview of Industrial Process Automation: 53–62. | eng |
dc.relation.references | Shokri, Dariush, and Giti Emtiazi. 2010. “Indole-3-Acetic Acid (IAA) Production in Symbiotic and Non-Symbiotic Nitrogen-Fixing Bacteria and Its Optimization by Taguchi Design.” Current Microbiology 61(3): 217–25. | eng |
dc.relation.references | Sindhu, R., A. Pandey, and P. Binod. 2017. Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls Design and Types of Bioprocesses. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-444-63663-8.00002-1. | eng |
dc.relation.references | Smith, John E., and John E. Smith. 2013. “Bioprocess/Fermentation Technology.” Biotechnology: 49–72. | eng |
dc.relation.references | Vargas Corredor, Yury Alexandra, and Liliana Ibeth Peréz Pérez. 2018. “Aprovechamiento de Residuos Agroindustriales En El Mejoramiento de La Calidad Del Ambiente.” Revista Facultad de Ciencias Básicas V(1): 59–72. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | ingeniería química | spa |
dc.subject.lcsh | Biofertilizer | eng |
dc.subject.lemb | Biofertilizante | spa |
dc.subject.proposal | Biofertilizante | spa |
dc.subject.proposal | Gluconacetobacter diazotrophicus | spa |
dc.subject.proposal | mínimos cuadrados | spa |
dc.subject.proposal | optimización | spa |
dc.subject.proposal | ácido indolacético | spa |
dc.subject.proposal | Biofertilizer | eng |
dc.subject.proposal | Gluconacetobacter diazotrophicus | eng |
dc.subject.proposal | least squares | eng |
dc.subject.proposal | optimization | eng |
dc.subject.proposal | indoleacetic acid | eng |
dc.title | Modelamiento matemático de la fermentación de vinazas azucareras para la producción de un biofertilizante | spa |
dc.title.translated | Mathematical modeling of sugar vinases fermentatior fo a biofertilizer production | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053849701.2021.pdf
- Tamaño:
- 4.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: