Modelamiento matemático de la fermentación de vinazas azucareras para la producción de un biofertilizante

dc.contributor.advisorHiguita Vásquez, Juan Carlos
dc.contributor.advisorOlivar Tost, Gerard
dc.contributor.authorCaballero Galván, Juan José
dc.date.accessioned2021-10-09T18:27:24Z
dc.date.available2021-10-09T18:27:24Z
dc.date.issued2021
dc.descriptionfiguras, tablasspa
dc.description.abstractEl desarrollo de modelos matemáticos es considerado una de las bases para la estandarización, escalamiento, supervisión y control de procesos químicos, físicos y biológicos. En los procesos biológicos, como las fermentaciones, conocer el comportamiento del microorganismo permite predecir y controlar su eficiencia en la formación de productos. Sin embargo, encontrar modelos matemáticos que describan a la perfección un sistema biológico es una tarea difícil, debido a la sensibilidad de los microorganimos a perturbaciones. En la industria colombiana los residuos agroindustriales tipo vinazas generan un gran impacto ambiental a causa de su escaso tratamiento en su disposición final y su alto contenido de materia orgánica. A partir de lo anterior, la fermentación de vinazas con Gluconacetobacter diazotrophicus para producir un biofertilizante, se considera una estrategia para mitigar el impacto de este residuo industrial y obtener un producto con alto valor agregado. El propósito principal de esta tesis es la obtención de un modelo matemático que permita describir el comportamiento de las variables que participan en la fermentación de vinazas azucareras, utilizando G. diazotrophicus mediante el seguimiento de las principales variables que participan en el proceso y el planteamiento de posibles ecuaciones matemáticas. La reparametrización de los modelos se realizó planteando diferentes optimizaciones de mínimos cuadrados para los datos experimentales y realizando un análisis de estabilidad a mejor modelo obtenido. Los resultados obtenidos demuestran la importancia del seguimiento de variables para realizar un modelado matemático, los factores que influyen en la optimización y obtención de un modelo matemático con un porcentaje de error entre los datos reales y modelados de 14.6% sin problema de estabilidad (Texto tomado de la fuente).spa
dc.description.abstractThe development of mathematical models is considered one of the bases for the standardization, scaling, supervision and control of chemical, physical and biological processes. In biological processes, such as fermentations, knowing the behavior of the microorganism makes it possible to predict and control efficiency in the formation of products. However, finding mathematical models that perfectly describe a biological system is a difficult task, mainly due to the sensitivity of microorganisms to disturbances. In the Colombian industry, agroindustrial residues such as vinasses generate a great impact due to poor treatment strategies for their final disposal and their high content of organic matter. Based on the above, the fermentation of stillage with Gluconacetobacter diazotrophicus to produce a biofertilizer is considered a strategy to mitigate the impact of this industrial waste and to obtain a product with high added value. The main purpose of this thesis is to obtain a mathematical model that allows describing the behavior of the variables that participate in the fermentation of sugar vinasses, using G. diazotrophicus. This objective was reached by monitoring the main variables that participate in the process and the approach to obtain possible mathematical equations. The reparametrization of the models was carried out by proposing different least squares optimizations for the experimental data and performing a stability analysis to the best model obtained. The research showed the importance of tracking variables to perform mathematical modeling, the factors that influence optimization and obtaining a mathematical model with a percentage of error between the real and modeled data of 14.6% without a stability problem.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.format.extent179 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80473
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAndr, Pablo, and De Villeros Arias. 2015. “PARTIR DE MODELOS CIBERNÉTICOS State Observer Design for Biomass Estimation in Bioreactors Based on Cybernetic Models.”spa
dc.relation.referencesAparcana, Sandra. 2008. “Estudio Sobre El Valor Fertilizante de Los Productos Del Proceso Fermentación Anaeróbica Para Producción de Biogás.” German ProfEC, GmbH: 10. https://doi.org/10.3109/08830185.2014.902452%0Ahttps://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Report_2018.pdf%0Ahttp://eprints.lse.ac.uk/43447/1/India_globalisation%2C society and inequalities%28l.spa
dc.relation.referencesAshikhmin, V.N. et al. 2007. Introducción En Modelado Matemático. P.V. Truso.spa
dc.relation.referencesLe Borgne, Sylvie, and Rodolfo Quintero. 2003. “Biotechnological Processes for the Refining of Petroleum.” Fuel Processing Technology 81(2): 155–69.eng
dc.relation.referencesBoudrant, Joseph, and Jack Legrand. 2010. 45 Process Biochemistry Bioprocess Engineering.eng
dc.relation.referencesCamelo-Rusinque, Mauricio, Andrés Moreno-Galván, Felipe Romero-Perdomo, and Ruth Bonilla-Buitrago. 2017. “Desarrollo de Un Sistema de Fermentación Líquida y de Enquistamiento Para Una Bacteria Fijadora de Nitrógeno Con Potencial Como Biofertilizante.” Revista Argentina de Microbiología 49(3): 289–96.spa
dc.relation.referencesCavalcante, Vladimir A., and J. Dobereiner. 1988. “A New Acid-Tolerant Nitrogen-Fixing Bacterium Associated with Sugarcane.” Plant and Soil 108(1): 23–31.eng
dc.relation.referencesCenicaña. 2016. “Etanol: Más de 10 Años de Producción.” Carta Informativa 3: 20.spa
dc.relation.referencesCervantes Gómez, Lucia. 2015. Modelización Matemática. Principios y Aplicaciones.(Libro). https://www.fcfm.buap.mx/assets/docs/publicaciones/Modeliza.pdf.spa
dc.relation.referencesConil, P. 2008. “Manejo de Vinazas: Metanización y Compostaje. Aplicaciones Industriales.” Revista tecnicaña: 26–30.spa
dc.relation.referencesCosta, Ohana Y.A., Jos M. Raaijmakers, and Eiko E. Kuramae. 2018. “Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation.” Frontiers in Microbiology 9(JUL): 1–14.eng
dc.relation.referencesDuca, Daiana et al. 2014. “Indole-3-Acetic Acid in Plant-Microbe Interactions.” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 106(1): 85–125.eng
dc.relation.referencesEckert, B. et al. 2001. “Azospirillum Doebereinerae Sp. Nov., a Nitrogen-Fixing Bacterium Associated with the C4-Grass Miscanthus.” International Journal of Systematic and Evolutionary Microbiology 51(1): 17–26.eng
dc.relation.referencesEmami, Somayeh et al. 2019. “Assessment of the Potential of Indole-3-Acetic Acid Producing Bacteria to Manage Chemical Fertilizers Application.” International Journal of Environmental Research 13(4): 603–11. https://doi.org/10.1007/s41742-019-00197-6.eng
dc.relation.referencesFarias, Rafael, Germán Moreno, and Alexandre Patriota. 2009. “Reducción de Modelos En La Presencia de Parámetros de Perturbación.” Revista Colombiana de Estadistica 32(1): 99–121.spa
dc.relation.referencesFuentes, Ángel, Carmen Carreño, and Cinthya Llanos. 2013. “Yield Emulsifiers Exopolysaccharides Produced by Native Halophilic Bacteria Concentrations Molasses Three Saccharum Officinarum L. ‘Sugarcane.’” Scientia agropecuaria 4: 111–20.eng
dc.relation.referencesGarcía Alvarado, Yahara. 2007. “Modelado y Estimación de Procesos de Fermentación.” UNIVERSIDAD AUTONOMA DE NUEVO LEON.spa
dc.relation.referencesGarcía Moreno, Emilio. 1999. Automatización de Procesos Industriales. Editorial. Valencia, España: La librería.spa
dc.relation.referencesJain, Aakanchha, Richa Jain, and Sourabh Jain. 2020. “Quantitative Analysis of Reducing Sugars by 3, 5-Dinitrosalicylic Acid (DNSA Method). In: Basic Techniques in Biochemistry, Microbiology and Molecular Biology.” In Springer Protocols Handbooks, New York, NY.eng
dc.relation.referencesJiang, Yang et al. 2015. “Rapid Production of Organic Fertilizer by Dynamic High-Temperature Aerobic Fermentation (DHAF) of Food Waste.” Bioresource Technology 197: 7–14.eng
dc.relation.referencesKatalin, Hangos;, and Cameron; Ian. 2001. Process Modelling and Model Analysis: Volume 4 (Process Systems Engineering). Austin, TX,United States: GoldBooks.eng
dc.relation.referencesKhan, Abdul Latif et al. 2017. “Endophytes from Medicinal Plants and Their Potential for Producing Indole Acetic Acid, Improving Seed Germination and Mitigating Oxidative Stress.” Journal of Zhejiang University: Science B 18(2): 125–37.eng
dc.relation.referencesKnoema. 2020. “Atlas Mundial de Datos: Colombia-Fuel Ethanol Production.”spa
dc.relation.referencesKuila, Arindam, and Vinay Sharma. 2018. Pinciples and Applications of Fermentation Technology. Wiley Glob. Library of Congress Cataloging-in-Publication Data.eng
dc.relation.referencesManesis, Stamatios, and George Nikolakopoulos. 2018. Introduction to Industrial Automation. ed. LLC Taylor & Francis Group.eng
dc.relation.referencesMarcos, N. I., M. Guay, and D. Dochain. 2004. “Output Feedback Adaptive Extremum Seeking Control of a Continuous Stirred Tank Bioreactor with Monod’s Kinetics.” Journal of Process Control 14(7): 807–18.eng
dc.relation.referencesMata Gómez, Juan Antonio. 2006. “Caracterización de Los Exopoliosacáridos Producidos Por Microorganismos Halófilos Pertenecientes a Los Géneros Halomonas, Alteromonas, Idiomarina, Palleronia y Salipiger.” Universidad de Granada. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf.spa
dc.relation.referencesMatlab. 2020. “MathWorks.” la.mathworks.com/products/matlab.html.eng
dc.relation.referencesMedina, José Luis, and Josep Maria Guadayol. 2010. La Automatización En La Industria Química.spa
dc.relation.referencesMehta, B. R., and Y. J. Reddy. 2014. Industrial Process Automation Systems: Design and Implementation Industrial Process Automation Systems: Design and Implementation.eng
dc.relation.referencesMoldes, Ana, José Manuel Domínguez González, Ligia Raquel Marona Rodrigues, and Attilio Converti. 2013. “New Trends in Biotechnological Processes to Increase the Environmental Protection.” BioMed Research International 2013: 2–4.eng
dc.relation.referencesMoncada, Jonathan, Mahmoud M. El-Halwagi, and Carlos A. Cardona. 2013. “Techno-Economic Analysis for a Sugarcane Biorefinery: Colombian Case.” Bioresource Technology 135: 533–43. http://dx.doi.org/10.1016/j.biortech.2012.08.137.eng
dc.relation.referencesMorabito, Bruno, Achim Kienle, Rolf Findeisen, and Lisa Carius. 2019. “Multi-Mode Model Predictive Control and Estimation for Uncertain Biotechnological Processes.” IFAC-PapersOnLine 52(1): 709–14. https://doi.org/10.1016/j.ifacol.2019.06.146.eng
dc.relation.referencesMoreno, Manuel, and Suani Teixeira Coelho. 2014. “Vinaza Como Fuente de Energía.” Bioenergy International N°22: 38–39.spa
dc.relation.referencesNathional Geographic. 2012. “Nonrenewable Resources.” Nonrenewable Resources. nationalgeographic.org/encyclopedia/nonrenewable-resources/.eng
dc.relation.referencesNepolean, P. et al. 2012. “Role of Biofertilizers in Increasing Tea Productivity.” Asian Pacific Journal of Tropical Biomedicine 2(3 SUPPL.): S1443–45. http://dx.doi.org/10.1016/S2221-1691(12)60434-1.eng
dc.relation.referencesNielsen, Jens, and John Villadsen. 2011. Bioreaction Engineering Principles Bioreaction Engineering Principles. third edit.eng
dc.relation.referencesNovales, Alfonso. 2010. Análisis de Regresión. Universidad Complutense.spa
dc.relation.referencesNutaratat, Pumin, Apitchaya Monprasit, and Nantana Srisuk. 2017. “High-Yield Production of Indole-3-Acetic Acid by Enterobacter Sp. DMKU-RP206, a Rice Phyllosphere Bacterium That Possesses Plant Growth-Promoting Traits.” 3 Biotech 7(5).eng
dc.relation.referencesNwodo, Uchechukwu U., Ezekiel Green, and Anthony I. Okoh. 2012. “Bacterial Exopolysaccharides: Functionality and Prospects.” International Journal of Molecular Sciences 13(11): 14002–15.eng
dc.relation.referencesO’Donnell, P. J., William W. Seifort, and Carl W. Steeg. 1961. “Control Systems Engineering.” or 12(2): 124.eng
dc.relation.referencesOrtega, Fabián. 2017. “Modelado de Bioprocesos: Relaciones Matemáticas Entre El Medioambiente y El Material Biológico.” : 187p.spa
dc.relation.referencesOzdal, Murat et al. 2017a. “Continuous Production of Indole-3-Acetic Acid by Immobilized Cells of Arthrobacter Agilis.” 3 Biotech 7(1).eng
dc.relation.references———. 2017b. “Continuous Production of Indole-3-Acetic Acid by Immobilized Cells of Arthrobacter Agilis.” 3 Biotech 7(1): 1–6.eng
dc.relation.referencesPanikov, Nicolai S. 2014. “Kinetics , Microbial Growth.” (May).eng
dc.relation.referencesPatil, Nita B et al. 2011. “Optimization of Indole 3 Acetic Acid ( IAA ) Production by Acetobacter Diazotrophicus L1 Isolated from Sugarcane.” International Journal of Environmental Sciences 2(1): 295–302.eng
dc.relation.referencesPatsalou, Maria, Antonios Chrysargyris, Nikolaos Tzortzakis, and Michalis Koutinas. 2020. “A Biorefinery for Conversion of Citrus Peel Waste into Essential Oils, Pectin, Fertilizer and Succinic Acid via Different Fermentation Strategies.” Waste Management 113: 469–77.eng
dc.relation.referencesPérez, Carlos M Rodríguez. 2015. “Cultivo y Crecimiento de Los Microorganismos.” (January 2001): 45–54.spa
dc.relation.referencesPérez, Mario, Analia Pérez Hidalgo, and Elisa Pérez Berenguer. 2007. “Introduccion a Los Sistemas de Control y Modelo Matemático Para Sistemas Lineales Invariantes En El Tiempo.” Universidad Nacional de San Juan 1: 1–69. http://dea.unsj.edu.ar/control1/apuntes/unidad1y2.pdf.spa
dc.relation.referencesPineda, Sebastián Pineda. 2019. LA FERMENTACIÓN DE VINAZAS AZUCARERAS POR Gluconacetobacter Diazotrophicus.spa
dc.relation.referencesPrabudoss, V. 2011. “A Real Multi Beneficial Endophytic Diazotroph Gluconacetobacter Diazotrophicus for Sugarcane.” INTERNATIONAL JOURNAL OF CURRENT RESEARCH 3: 103–6.eng
dc.relation.referencesQian, Xuhong. et al. 2015. Chemical Biotechnology and Bioengineering.eng
dc.relation.referencesRincón Santamaría, Alejandro, Jorge Andres Cuellar Gil, Luis Felipe Valencia Gil, and Oscar Julián Sánchez Toro. 2019. “Kinetics of Gluconacetobacter Diazotrophicus Growth Using Cane Molasses and Sucrose: Assessment of Kinetic Models.” Acta Biologica Colombiana 24(1): 38–57.eng
dc.relation.referencesRios, Yoania et al. 2016. “Aislamiento Y Caracterización De Cepas.” Cultivos Tropicales 37(1): 34–39. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362016000100005.spa
dc.relation.referencesSakuraba, Hitoshi, Kazuhiro Ohga, and Yoshiyuki Suzuki. 1981. “Fabry’s Disease: Detection of Heterozygotes Using Blastoid Lymphocytes StimuIated by PhytohemaggIutinin.” Pediatrics International 23(1): 39–43.eng
dc.relation.referencesSchaller, G. Eric, Anthony Bishopp, and Joseph J. Kieber. 2015. “The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development.” Plant Cell 27(1): 44–63.eng
dc.relation.referencesSeborg, Dale E., and Thomas F. Edgar. 2003. “Process Dynamics and Control,2nd Ed.Pdf.”eng
dc.relation.referencesSharma, KLS. 2011. “Automation Strategies.” Overview of Industrial Process Automation: 53–62.eng
dc.relation.referencesShokri, Dariush, and Giti Emtiazi. 2010. “Indole-3-Acetic Acid (IAA) Production in Symbiotic and Non-Symbiotic Nitrogen-Fixing Bacteria and Its Optimization by Taguchi Design.” Current Microbiology 61(3): 217–25.eng
dc.relation.referencesSindhu, R., A. Pandey, and P. Binod. 2017. Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls Design and Types of Bioprocesses. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-444-63663-8.00002-1.eng
dc.relation.referencesSmith, John E., and John E. Smith. 2013. “Bioprocess/Fermentation Technology.” Biotechnology: 49–72.eng
dc.relation.referencesVargas Corredor, Yury Alexandra, and Liliana Ibeth Peréz Pérez. 2018. “Aprovechamiento de Residuos Agroindustriales En El Mejoramiento de La Calidad Del Ambiente.” Revista Facultad de Ciencias Básicas V(1): 59–72.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcingeniería químicaspa
dc.subject.lcshBiofertilizereng
dc.subject.lembBiofertilizantespa
dc.subject.proposalBiofertilizantespa
dc.subject.proposalGluconacetobacter diazotrophicusspa
dc.subject.proposalmínimos cuadradosspa
dc.subject.proposaloptimizaciónspa
dc.subject.proposalácido indolacéticospa
dc.subject.proposalBiofertilizereng
dc.subject.proposalGluconacetobacter diazotrophicuseng
dc.subject.proposalleast squareseng
dc.subject.proposaloptimizationeng
dc.subject.proposalindoleacetic acideng
dc.titleModelamiento matemático de la fermentación de vinazas azucareras para la producción de un biofertilizantespa
dc.title.translatedMathematical modeling of sugar vinases fermentatior fo a biofertilizer productioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053849701.2021.pdf
Tamaño:
4.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: