Influencia de los depósitos de óxido de hierro sobre la resistencia a la corrosión en caliente de barreras térmicas de YSZ usadas en turbinas a gas.

dc.contributor.advisorToro-Betancur, Alejandro Octavio
dc.contributor.authorGómez Betancur, José Andrés
dc.date.accessioned2021-08-23T16:05:16Z
dc.date.available2021-08-23T16:05:16Z
dc.date.issued2021-08-08
dc.descriptionilustraciones
dc.description.abstractLa presente investigación evaluó el efecto de los depósitos de óxido de hierro sobre la resistencia de la corrosión en caliente de las barreras térmicas de Zirconia estabilizada con Itria (YSZ) en presencia de óxido de vanadio. En los experimentos las muestras de YSZ fueron puestas en contacto con óxido de vanadio (V2O5) a 900°C durante 90 min con y sin la adición de óxido de hierro. Las superficies ensayadas y la sección transversal de las muestras fueron evaluadas mediante microscopía óptica y electrónica de barrido. La porosidad de la sección transversal y la delaminación de la barrera térmica fue medida a través de tratamiento digital de imágenes. El análisis microestructural se llevó a cabo mediante difracción de rayos X (DRX). El microanálisis químico elemental fue llevado a cabo mediante espectroscopía de energía dispersiva por rayos X (EDX). Se encontró que el óxido de hierro no tuvo un efecto inhibidor ni acelerador sobre el mecanismo de corrosión en caliente de la YSZ dado que es disuelto por el óxido de vanadio una vez este alcanza su punto de fusión. (Tomado de la fuente)spa
dc.description.abstractThe present investigation evaluated the effect of iron oxide deposits on the hot corrosion resistance of YSZ thermal barriers in the presence of vanadium oxide. In the experiments, the YSZ samples were put in contact with vanadium oxide (V2O5) at 900 ° C for 90 min with and without the addition of iron oxide. The tested surfaces and the cross section of the samples were evaluated by optical and scanning electron microscopy. The porosity of the cross-section and the delamination of the thermal barrier was measured through digital image processing. Microstructural analysis was carried out by XRD. The elemental chemical microanalysis was carried out by means of X-ray energy dispersive spectroscopy (EDS). It was found that iron oxide did not have an inhibiting or accelerating effect on the hot corrosion mechanism of the YSZ since it is dissolved by vanadium oxide once it reaches its melting point. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería Materiales y Procesosspa
dc.format.extent146 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79994
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] S. Bose, Higth temperature coating. 2007.spa
dc.relation.references[2] R. Vaßen and D. Sebold, “Corrosion behaviour of new thermal barrier coatings,” CESF, vol. 28, no. 0, pp. 27–38, 2007.spa
dc.relation.references[3] Empresas Publicas de Medellín, “HOT GAS PATH UNIDAD 2 Contenido,” 2017.spa
dc.relation.references[4] International Agency Energy, “World energy outlook 2016,” 2016, 2016. [Online]. Available: https://www.iea.org/publications/freepublications/publication/WEO2016_ExecutiveSummary_Spanishversion.pdf.spa
dc.relation.references[5] C. U. Hardwicke and Y.-C. Lau, “Advances in thermal spray coatings for gas turbines and energy generation: a review,” J. Therm. Spray Technol., vol. 22, no. 5, pp. 564–576, 2013.spa
dc.relation.references[6] D. Zambrano, “Estudio calorimétrico mediante análisis por DSC y TGA de la degradación de recubrimientos de YSZ depositados por Air Plasma Spray (Tesis de maestria),” p. 110, 2015.spa
dc.relation.references[7] S. G. Garrido, “Especial Turbinas de Gas,” Energiza.org, pp. 4–30, 2011.spa
dc.relation.references[8] A. C. Barrios, “Efecto del ángulo de impacto en la resistencia a la erosión a alta temperatura en barreras térmicas de zirconia estabilizada con itria,” Med. Clin. (Barc)., vol. 141, no. 12, p. 561, 2013.spa
dc.relation.references[9] M. P. Boyce, Gas turbine engineering handbook. 2012.spa
dc.relation.references[10] T. Giampaolo, Gas Turbine Handbook. 2009.spa
dc.relation.references[11] D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull., vol. 37, no. 10, pp. 891–898, 2012.spa
dc.relation.references[12] Z. Lu et al., “Microstructure evolution and interface stability of thermal barrier coatings with vertical type cracks in cyclic thermal exposure,” J. Therm. Spray Technol., vol. 22, pp. 671–679, 2013.spa
dc.relation.references[13] J. D. Mattingly and H. von Ohain, Elements of Propulsion : Gas Turbines and Rockets Department of Mechanical Engineering. 2006.spa
dc.relation.references[14] General Electric, “Gas Turbine 7FA-GT,” 2011.spa
dc.relation.references[15] D. F. David Balevic, Robert Burger, “Heavy-Duty Gas Turbine Operating and Maintenance Considerations,” GER-3620K, pp. 1–60, 2004.spa
dc.relation.references[16] R. Eldrid, L. Kaufman, and P. Marks, “The 7FB: The Next Evolution of the F Gas Turbine,” GER-4194, 2001.spa
dc.relation.references[17] The American Ceramic Society, Progress in Thermal Barrier Coatings. 2009.spa
dc.relation.references[18] R. Rajendran, “Gas turbine coatings – An overview,” Eng. Fail. Anal., vol. 26, pp. 355–369, 2012.spa
dc.relation.references[19] W. R. Chen, X. Wu, B. R. Marple, D. R. Nagy, and P. C. Patnaik, “TGO growth behaviour in TBCs with APS and HVOF bond coats,” Surf. Coatings Technol., vol. 202, no. 12, pp. 267–2683, 2008.spa
dc.relation.references[20] G. Narayanan, “Life Prediction of Functionally Graded Thermal Barrier Coatings,” no. January, 2017.spa
dc.relation.references[21] R. F. Geller and P. J. Yavorsky, “Efects of some additions on the thermal length changes of zirconia,” vol. 35, pp. 87–110, 1945.spa
dc.relation.references[22] D. Zhu and R. A. Miller, “Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions,” J. Therm. Spray Technol., vol. 9, no. 2, pp. 175–180, 2000.spa
dc.relation.references[23] J. de la Roche Yepes, “Hot Corrosion Resistance of Dense Ceria-Yttria Stabilized Zirconia/Yttria Stabilized Zirconia (CYSZ/YSZ) Bilayer Coatings Deposited by Atmospheric Plasma Spray,” 2019.spa
dc.relation.references[24] X. Cao, R. Vassen, and D. Stoever, “Ceramic Materials for Thermal Barrier Coatings,” J. Eur. Ceram. Soc., vol. 24, pp. 1–10, Jan. 2004.spa
dc.relation.references[25] A. G. Evans, D. R. Clarke, and C. G. Levi, “The influence of oxides on the performance of advanced gas turbines,” J. Eur. Ceram. Soc., vol. 28, no. 7, pp. 1405–1419, 2008.spa
dc.relation.references[26] L. CHEN, “Yttria-Stabilized Zirconia Thermal Barrier Coatings—A Review,” Surf. Rev. Lett., vol. 13, pp. 535–544, Oct. 2006.spa
dc.relation.references[27] P. Robotti and G. Zappini, “Chapter 10 - Thermal Plasma Spray Deposition of Titanium and Hydroxyapatite on PEEK Implants,” in Plastics Design Library, S. M. B. T.-P. B. H. (Second E. Kurtz, Ed. William Andrew Publishing, 2019, pp. 147–177.spa
dc.relation.references[28] P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals, vol. 1, no. 0. Boston, MA: Springer US, 2014.spa
dc.relation.references[29] J. R. Davis and A. S. M. I. T. S. S. T. Committee, Handbook of Thermal Spray Technology. ASM International, 2004.spa
dc.relation.references[30] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings. 1995.spa
dc.relation.references[31] K. E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components. Wiley, 2006.spa
dc.relation.references[32] M. Kandeva, A. Vencl, and D. Karastoyanov, Advanced Tribological Coatings for Heavy-Duty Applications: Case Studies. 2016.spa
dc.relation.references[33] Thermal Spray Society, “Thermal Spray Technology,” February, 2017. [Online]. Available: https://www.asminternational.org/web/tss/news/-/journal_content/56/10192/27140877/NEWS.spa
dc.relation.references[34] R. Darolia, “Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev., vol. 58, no. 6, pp. 315–348, 2013.spa
dc.relation.references[35] D. R. Mumm and G. A. Evans, “Mechanisms controlling the performance and durability of thermal barrier coatings,” Key Eng. Mater., vol. 197, pp. 199–230, 2001.spa
dc.relation.references[36] G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H.-P. Bossmann, “Phase Evolution in Yttria‐Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X‐Ray Powder Diffraction Patterns,” J. Am. Ceram. Soc., vol. 90, no. 9, pp. 2938–2940, 2007.spa
dc.relation.references[37] F. Cernuschi, L. Lorenzoni, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, “Studies of the Sintering Kinetics of Thick Thermal Barrier Coatings by Thermal Diffusivity Measurements,” J. Eur. Ceram. Soc. - J EUR CERAM SOC, vol. 25, pp. 393–400, Apr. 2005.spa
dc.relation.references[38] A. G. Evans, M. Y. He, A. Suzuki, M. Gigliotti, B. Hazel, and T. M. Pollock, “A mechanism governing oxidation-assisted low-cycle fatigue of superalloys,” Acta Mater., vol. 57, no. 10, pp. 2969–2983, 2009.spa
dc.relation.references[39] W. Stamm, “Taking the Heat,” Siemens, 2011.spa
dc.relation.references[40] E. M. Gutiérrez Mojica, “Determinacion y analisis de los indices de autenticidad del diagnostico de una turbina de gas,” Inst. Politec. Nac. Mex., 2009.spa
dc.relation.references[41] D. R. Clarke and C. G. Levi, “Materials Design for the Next Generation Thermal Barrier Coatings,” Annu. Rev. Mater. Res., vol. 33, pp. 383–417, 2003.spa
dc.relation.references[42] B. N. Popov, Corrosion Engineering -Principles and Solved Problems. Elsevier, 2015.spa
dc.relation.references[43] R. Rapp, “Hot corrosion of materials: A fluxing mechanism?,” Corros. Sci., vol. 44, pp. 209–221, Feb. 2002.spa
dc.relation.references[44] R. L. Jones, “Some Aspects of the Hot Corrosion of Thermal Barrier Coatings,” J. Therm. Spray Technol., vol. 6, pp. 77–84, 1997.spa
dc.relation.references[45] I. Zaplatynsky, “REACTIONS OF YTTRIA-STABILIZED ZIRCONIA WITH OXIDES AND SULFATES OF VARIOUS ELEMENTS,” 2018.spa
dc.relation.references[46] D. W. McKee and P. A. Siemers, “Resistance of thermal barrier ceramic coatings to hot salt corrosion,” Thin Solid Films, vol. 73, no. 2, pp. 439–445, 1980.spa
dc.relation.references[47] A. S. Nagelberg, “Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts,” J. Electrochem. Soc., vol. 132, no. 10, pp. 2502–2507, 1985.spa
dc.relation.references[48] Y.-S. Hwang and R. A. Rapp, “Thermochemistry and Solubilities of Oxides in Sodium Sulfate-Vanadate Solutions,” CORROSION, vol. 45, no. 11, pp. 933–937, 1989.spa
dc.relation.references[49] Y. S. Zhang and R. A. Rapp, “Solubilities of CeO2, HfO2 and Y2O3 in Fused Na2SO4-30 mol% NaVO3 and CeO2 in Pure Na2SO4 at 900 C,” CORROSION, vol. 43, no. 6, pp. 348–352, 1987.spa
dc.relation.references[50] R. L. Jones, C. E. Williams, and A. J. Jones, “Reaction of vanadium compounds with ceramic oxides,” J. Electrochem. Soc., vol. 133, no. 1, 1986.spa
dc.relation.references[51] I. Gurrappa, “Thermal Barrier Coatings for Hot Corrosion Resistance of CM 247 LC Superalloy,” J. Mater. Sci. Lett. Vol., vol. 17, no. 15, pp. 1267–1269, 1998.spa
dc.relation.references[52] W. Hertl, “Vanadia reactions with yttria stabilized zirconia,” J. Appl. Phys., vol. 63, no. 11, pp. 5514–5520, 1988.spa
dc.relation.references[53] P. Mohan, “ENVIRONMENTAL DEGRADATION OF OXIDATION RESISTANT AND THERMAL BARRIER COATINGS FOR FUEL-FLEXIBLE GAS TURBINE APPLICATIONS,” Jan. 2010.spa
dc.relation.references[54] M. Daroonparvar, M. A. M. Yajid, N. M. Yusof, H. R. Bakhsheshi-Rad, E. Hamzah, and M. Nazoktabar, “Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones,” J. Rare Earths, vol. 32, no. 10, pp. 989–1002, 2014.spa
dc.relation.references[55] Z. Chen, N. Q. Wu, J. Singh, and S. X. Mao, “Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt,” Thin Solid Films, vol. 443, no. 1, pp. 46–52, 2003.spa
dc.relation.references[56] I. N. Qureshi, M. Shahid, A. Nusair Khan, and Y. A. Durrani, “Evaluation of Titanium Nitride-Modified Bondcoat System Used in Thermal Barrier Coating in Corrosive Salts Environment at High Temperature,” J. Therm. Spray Technol., vol. 24, no. 8, pp. 1520–1528, 2015.spa
dc.relation.references[57] Z. Chen, S. Speakman, J. Howe, H. Wang, W. Porter, and R. Trice, “Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings,” J. Eur. Ceram. Soc., vol. 29, no. 8, pp. 1403–1411, 2009.spa
dc.relation.references[58] Z. Chen, J. Mabon, J. G. Wen, and R. Trice, “Degradation of plasma-sprayed yttria-stabilized zirconia coatings via ingress of vanadium oxide,” J. Eur. Ceram. Soc., vol. 29, no. 9, pp. 1647–1656, 2009.spa
dc.relation.references[59] P. Mohan, B. Yuan, T. Patterson, V. H. Desai, and Y. H. Sohn, “Degradation of Yttria-Stabilized Zirconia Thermal Barrier Coatings by Vanadium Pentoxide, Phosphorous Pentoxide, and Sodium Sulfate,” J. Am. Ceram. Soc., vol. 90, no. 11, pp. 3601–3607, 2007.spa
dc.relation.references[60] R. W. Trice et al., “Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ,” J. Mater. Sci., vol. 37, pp. 2359–2365, 2002.spa
dc.relation.references[61] B. R. Marple, J. Voyer, C. Moreau, and D. R. Nagy, “Corrosion of thermal barrier coatings by vanadium and sulfur compounds,” Mater. High Temp., vol. 17, no. 3, pp. 397–412, Aug. 2000.spa
dc.relation.references[62] D. Susnitzky, W. HERTL, and C. Carter, “Destabilization of Zirconia Thermal Barriers in the Presence of V2O5,” J. Am. Ceram. Soc., vol. 71, pp. 992–1004, Mar. 2005.spa
dc.relation.references[63] M. H. Vidal-Setif, N. Chellah, C. Rio, C. Sanchez, and O. Lavigne, “Calcium-magnesium-alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: Characterization of CMAS damage on ex-service high pressure blade TBCs,” Surf. Coatings Technol., vol. 208, pp. 39–45, 2012.spa
dc.relation.references[64] M. . Borom, C. . Johnson, and L. . Peluso, “Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings,” Surf. Coatings Technol., vol. 116, pp. 86–87, 1996.spa
dc.relation.references[65] J. L. Smialek, F. A. Archer, and R. G. Garlick, “The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils,” in Advances in Synthesis and Processes, 3rd Int. SAMPE Metals Conf. F.H. Froes, 1992, pp. M63–M77.spa
dc.relation.references[66] W. Braue, “Environmental stability of the YSZ layer and the YSZ/TGO interface of an in-service EB-PVD coated high-pressure turbine blade,” J. Mater. Sci., vol. 44, no. 7, pp. 1664–1675, 2009.spa
dc.relation.references[67] C. Mercer, S. Faulhaber, A. G. Evans, and R. Darolia, “A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration,” Acta Mater., vol. 53, no. 4, pp. 1029–1039, 2005.spa
dc.relation.references[68] S. Krämer et al., “Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration,” Mater. Sci. Eng. A, vol. 490, no. 1–2, pp. 26–35, 2008.spa
dc.relation.references[69] S. Krämer, J. Yang, C. G. Levi, and C. A. Johnson, “Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits,” J. Am. Ceram. Soc., vol. 89, no. 10, pp. 3167–3175, 2006.spa
dc.relation.references[70] A. Aygun, A. Vasiliev, N. Padture, and X. Ma, “Novel Thermal Barrier Coatings That Are Resistant to High-Temperature Attack by Glassy Deposits,” Acta Mater. - ACTA MATER, vol. 55, pp. 6734–6745, Dec. 2007.spa
dc.relation.references[71] L. Li, N. Hitchman, and J. Knapp, “Failure of Thermal Barrier Coatings Subjected to CMAS Attack,” J. Therm. Spray Technol., vol. 19, no. 1, pp. 148–155, 2010.spa
dc.relation.references[72] A. D. Foster, H. E. Von Doering, and M. B. Hil, “Fuels Flexibility in Heavy-Duty Gas Turbines,” GE Co., vol. GER 3428a, p. 33, 1983.spa
dc.relation.references[73] General Electric, “Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines,” GE Power Syst., no. January, pp. 1–28, 2009.spa
dc.relation.references[74] J. A. Arboleda, “Efecto de los parametros de aspersión sobre la microestructura de recubrimientos de Al2O3 + 13%TiO2 aplicados mediante aspersión térmica por combustión.,” 2016.spa
dc.relation.references[75] S. Metco, “Product Data Sheet Sinplex Pro TM Universal Plasma Spray Guns,” 2013.spa
dc.relation.references[76] M. R. Loghman-Estarki, R. Shoja Razavi, and H. Jamali, “Effect of molten V2O5 salt on the corrosion behavior of micro- and nano-structured thermal sprayed SYSZ and YSZ coatings,” Ceram. Int., vol. 42, no. 11, pp. 12825–12837, 2016.spa
dc.relation.references[77] ASTM E1920-03, “Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings,” ASTM Int., pp. 1–6, 2014.spa
dc.relation.references[78] ASTM E2109-14, “Standard Test Methods for determining area percentage porosity in thermal sprayed coatings,” ASTM Int., vol. 04, no. Reapproved 2014, pp. 4–7, 1999.spa
dc.relation.references[79] R. Naraparaju, J. T. Gomez Chavez, U. Schulz, and C. V. Ramana, “Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2 O3 coating at high temperature,” Acta Mater., vol. 136, pp. 164–180, 2017.spa
dc.relation.references[80] A. G. González, F. M. Hurtado, H. Ageorges, E. López, and F. Vargas, “Evaluation of hot corrosion behavior of yttria-stabilized-zirconia coating elaborated by atmospheric plasma spraying,” Rev. Latinoam. Metal. y Mater., vol. 37, no. 1, pp. 2–10, 2017.spa
dc.relation.references[81] C. Zhou, X. W. Li, and R. Y. Pan, “Combined effect of thermal shock and hot corrosion on the failure of yttria stabilized zirconia thermal barrier coatings,” J. Met. Mater. Res., vol. 1, no. 1, Jan. 2019.spa
dc.relation.references[82] A. Manceau, J. F. Berar, and J. L. Hazemann, Physics and Chemistry of Minerals (Germany). 1992.spa
dc.relation.references[83] P. Romero-Gómez, J. C. González, A. Bustamante, A. Ruiz-Conde, and P. J. Sánchez-Soto, “Estudio in-situ de la transformación térmica de limonita utilizada como pigmento procedente de Perú,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 52, no. 3, pp. 127–131, 2013.spa
dc.relation.references[84] P. R. Palacios, L. D. L. S. Valladares, and A. Bustamante, “Estudio De La Deshidroxilación En El Óxido Férrico Hidratado Denominado Limonita,” Rev. la Soc. Química del Perú, vol. 78, no. 3, pp. 198–207, 2012.spa
dc.relation.references[85] W. H. Barnes, F. R. Ahmed, and H. . Bachmann, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie (145,1977-148,1979). 1961.  spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembTurbinas de gas
dc.subject.proposalYSZspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalÓxido de hierrospa
dc.subject.proposalÓxido de vanadiospa
dc.subject.proposalTransformación de fasespa
dc.subject.proposalCorrosioneng
dc.subject.proposalIron oxideeng
dc.subject.proposalVanadium oxideeng
dc.subject.proposalPhase transformationeng
dc.titleInfluencia de los depósitos de óxido de hierro sobre la resistencia a la corrosión en caliente de barreras térmicas de YSZ usadas en turbinas a gas.spa
dc.title.translatedInfluence of iron oxide deposits on the hot corrosion resistance of YSZ thermal barriers used in gas turbines.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
8029616.2021.pdf
Tamaño:
11.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: