Aprovechamiento del lactosuero dulce para el desarrollo de un concentrado de proteínas séricas obtenidas por tecnología de separación por membranas y su inclusión en la elaboración de queso fresco

dc.contributor.advisorRodriguez Sandoval, Eduardo
dc.contributor.advisorSepúlveda Valencia, José Uriel
dc.contributor.authorBejarano Toro, Edinson Eliecer
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001460058spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=MMhMHygAAAAJ&hl=es&oi=aospa
dc.contributor.orcidhttps://orcid.org/0000-0001-8508-8387spa
dc.contributor.researcherBejarano Toro, Edinson
dc.contributor.researcherRodríguez Sandoval, Eduardo
dc.contributor.researcherSepúlveda Valrencia, José Uriel
dc.contributor.researchgroupGrupo de Investigación en Ciencias y Tecnología de Alimentos -Gicta-spa
dc.date.accessioned2023-02-07T20:06:21Z
dc.date.available2023-02-07T20:06:21Z
dc.date.issued2022-09-02
dc.description.abstractEl tratamiento de lactosuero por medio de las tecnologías de filtración y concentración selectiva de componentes ha mostrado ser eficiente y adecuada para el aprovechamiento y valorización de los componentes de este efluente. Los concentrados de proteínas de lactosuero (WPC) son ingredientes usados por diversos sectores. A nivel de la industria láctea a partir de los WPC se han desarrollado ingredientes como los micropartículados de proteínas de lactosuero (MWP), los cuales han sido usados para productos como postres, helados, yogures y quesos. En los quesos ha ayudado a mejorar las características sensoriales de los productos reducidos en grasa y a aumentar el rendimiento quesero. En la primera fase del trabajo (capitulo 1) el objetivo fue concentrar por ultrafiltración (UF) las proteínas de lactosuero dulce evaluando condiciones de proceso. Se usó una membrana de polietersulfona con tamaño molecular de corte de 10 kDa. El efecto del factor volumétrico de concentración entre 5 y 18 y la presión transmembrana entre 2,5 y 5 bar fueron evaluados sobre el flujo de permeado, coeficiente de retención y rendimiento de retención de la proteína en una metodología de superficie de respuesta. Se aplicó ANOVA de una sola vía para el efecto de la filtración sobre contenido de proteína, sólidos totales, acidez, pH, lactosa, α-lactoalbumina y ß-lactoglobulina. Se encontraron diferencias significativas en contenido de sólidos totales, proteína total e individual, lactosa, pH y acidez. El concentrado de proteína de lactosuero fue 18,2% de los sólidos totales, de los cuales la proteína representa el 45%. En la segunda fase (capitulo 2) se evaluó la diafiltración como una metodología viable para desmineralizar la leche y su impacto en parámetros fisicoquímicos de un queso y un yogurt. Entonces se planteó estudiar el proceso de desmineralización de un concentrado de proteínas de leche (MPC) por medio de varios ciclos de DF y evaluar el efecto de este tratamiento sobre las características composicionales y texturales de productos coagulados enzimáticamente y por acidez. El(MPC) obtenido por ultrafiltración fue diafiltrado en dos ciclos, luego el MPC fue usado para elaborar un queso fresco, un yogurt batido y uno cuchareable. La aplicación de un ciclo de DF removió el 22,2% de las cenizas y 8,12% del calcio, pero no hubo diferencias significativas (P>0,05) con respecto a la aplicación de dos ciclos de DF. El queso elaborado utilizando el MPC con uno y dos ciclos de DF fue menos duro y presentó menor resistencia a la masticación que el elaborado con MPC sin DF, y el yogurt cuchareable presentó menor elasticidad debido al menor contenido de sólidos totales y calcio, los cuales fueron afectados por la DF. La desmineralización parcial aumentó el tiempo de coagulación y favoreció la formación de geles más débiles. La DF alcanzó el máximo de desmineralización de la leche en un solo ciclo. Finalmente, en la tercera fase (capitulo 3) se desarrollaron y optimizaron las condiciones de obtención de un MWP adecuado para su inclusión en la elaboración de queso blanco. Para la optimización del MWP se evaluaron como factores la temperatura y el tiempo del tratamiento térmico y como variables respuesta el potencial Zeta, tamaño de partícula, color, coeficiente de retención de proteína y rendimiento quesero por medio de un diseño de superficie de respuesta con 14 experimentos, de los cuales se obtuvieron unas condiciones óptimas de procesamiento que fueron 93ºC por un tiempo de 17 min en retención. Con respecto a la inclusión del MWP en el queso blanco, se probaron dos niveles de inclusión 3% y 5%; y se evaluó su impacto sobre características de rendimiento quesero, retención de la proteína y el perfil de textura con respecto a un queso control que no fue adicionado con MWP. Se encontró que el 3% de inclusión es más adecuado porque conservó características texturales semejantes a un queso blanco tradicional. De forma general los resultados obtenidos en esta investigación constituyen un avance significativo en el conocimiento sobre la valorización de los componentes del lactosuero dulce, obtenido de la elaboración de quesos frescos como cuajada, queso blanco y quesito antioqueño, que en el contexto colombiano aún no hay estrategias claras para la valorización de este coproducto. Particularmente, se obtuvo una caracterización del lactosuero dulce, que luego fue concentrado por ultrafiltración hasta obtener un WPC 45. Este WPC fue tratado térmica y físicamente para desarrollar un MWP que se incluyó posteriormente en la elaboración de queso blanco. Como resultado general se obtuvo un queso blanco con adición de MWP, con aumento de rendimiento quesero y con mayor retención de proteína. Sin embargo, sensorialmente los quesos fueron impactados en características de textura debido a la retención de humedad generada por las proteínas del lactosuero. (texto tomado de la fuente)spa
dc.description.abstractThe filtration and concentration technologies to the whey treatment have been shown to be efficient to use and valuation of the components of this effluent. whey proteins concentrates (WPC) are ingredients used by various sectors. The dairy industry has developed interesting ingredients from WPC like whey proteins microparticulated (MWP), which have been used in deserts, ice cream yogurt and cheeses fabrication. In the cheeses, the MWP has helped to improve sensory characteristics in low-fat products and increasing cheese yield. In the first stage (chapter 1) the objective of this study was to concentrate sweet whey proteins by ultrafiltration and to evaluate the process conditions. A polyethersulfone membrane with molecular weight cut-off of 10 kDa was used. The effect of volumetric concentration factor between 5 and 18, transmembrane pressure between 2.5 and 5 bar were evaluated on the permeate flow, protein retention coefficient, and retention yield using a response surface methodology. One-way ANOVA was applied for filtration effect on protein content, total solids, acidity, pH, lactose, α-lactalbumin and β-lactoglobulin. Significant differences were found in total solids content, total and individual protein, lactose, pH and acidity. Whey protein concentrate had 18.2% of total solids out of which protein represents 45%. In the second stage (chapter 2) it was considered studying the MPC demineralization process with DF and evaluates the effect of this treatment on the compositional and textural characteristics of enzymatically and acid-coagulated products. The MPC of ultrafiltration was diafiltered by two cycles, later this MPC was used to make a fresh cheese, a set yogurt and stirred yogurt. The application of a single DF cycle removed 22.2% of the ashes and 8.12% of the MPC calcium, but no statistically significant differences were present (P> 0.05) between the applications of two DF cycles. The cheeses with MPC undergone to one cycle and two cycles of DF were less hard and presented less resistance to chewing, and the set yogurt showed lower springiness values due a total solids and calcium content, that was affected by DF. These phenomena increased the coagulation time and the formation of weaker gels. The DF achieved the maximum milk demineralization in a single cycle. In the final stage (chapter 3) the conditions for obtaining a suitable MWP for its inclusion in white cheese production were developed and optimized. For the optimization of MWP were evaluated the temperature and the heat treatment time as factors and the zeta potential, particle size, color, protein retention coefficient, and cheese yield as response variables by means of a response surface design with 14 experiments, from which optimal processing conditions were obtained which were 93ºC for a retention time of 17 minutes. Regarding the inclusion of the MWP in white cheese, two levels of inclusion 3% and 5% were tested, and their impact on cheese yield, protein retention and texture profile was evaluated with respect to a control cheese without MWP addition. 3% cheese was the most adequate treatment because the textural characteristics are more similar to traditional white cheese. In general, the results presented in this research constitute a significant advancement of knowledge about sweet whey valorization obtained from fresh cheeses like the cuajada, white cheese and quesito antioqueño, which in the Colombian context there aren’t still strategies to whey solids valorization. sweet whey was characterized, and then it was concentrated by ultrafiltration technology until obtaining a WPC 45. This WPC was thermally and physicochemical treated to develop a MWP that was added in white cheese making. White cheese with MWP had a better yield with higher whey protein retention. Nevertheless, cheese textural characteristics were affected by the moisture retention generated by the whey proteins.eng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.researchareaValorización del lactosuerospa
dc.description.sponsorshipAuralacspa
dc.format.extentxiii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83370
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlkhatim, H., Alcaina, M., Soriano, E., Iborra, M., Lora, J., & Arnal, J. 1998. Treatment of whey effluents from dairy industries by nanofiltration membranes. Desalination. 119, p 177-184. https://doi.org/10.1016/S0011-9164(98)00142-8spa
dc.relation.referencesAl-Nabulsi, A., & Holley, R. 2005. Effect of bovine lactoferrin against Carnobacterium viridans. Food Microbiology. 22, p 179-187. https://doi.org/10.1016/j.fm.2004.06.001spa
dc.relation.referencesArnold, D., Di Biase, A. M., Marchetti, M., Pietrantoni, A., Valenti, P., Seganti, L., et al. 2002. Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antiviral Research. 53 (2), p 153-158. 10.1016/s0166-3542(01)00197-8spa
dc.relation.referencesAtra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. 2005. Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering. 67, p 325-332. https://doi.org/10.1016/j.jfoodeng.2004.04.035spa
dc.relation.referencesBaldasso, C., Barros, T., & Tessaro, I. 2011. Concentration and purification of whey proteins by ultrafiltration. Desalination. 278, p 381-386. https://doi.org/10.1016/j.desal.2011.05.055spa
dc.relation.referencesBayford C. Whey Protein: A Functional Food. The Nutrition Practitioner, 1-10spa
dc.relation.referencesBeulens, J., Bindels, J., de Graaf, C., Alles, M., & Wouters-Wesseling, W. 2004. Alpha-lactalbumin combined with a regular diet increases plasma Trp–LNAA ratio. Physiology & Behavior. 81 (4), p 585-593. https://doi.org/10.1016/j.physbeh.2004.02.027spa
dc.relation.referencesBrans, G. 2006. Design of membrane systems for fractionation of particle suspensions. Wageningen Universiteit.spa
dc.relation.referencesButylina, S., Luque, S. & Nystrom, M. 2006. Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. Journal of Membrane Science. 280 (1-2), p 418–426. https://doi.org/10.1016/j.memsci.2006.01.046spa
dc.relation.referencesCampbell, R., Kang, E., Bastian, E., & Drake, M. 2012. the use of lactoperoxidase for the bleaching of fluid whey. Journal Of Dairy Science. 95 (6), p 2882-2890. 10.3168/jds.2011-5166spa
dc.relation.referencesCarvalho, F., Prazeres, A., & Rivas, J. 2013. Cheese whey wastewater: Characterization and treatment. Science of the Total Environment. 445-446, p 385-396. https://doi.org/10.1016/j.scitotenv.2012.12.038spa
dc.relation.referencesCheryan, M., & Alvarez, J. 1995. Food and beverage industry. In R. Noble, & S. Stern, Membrane Separations Technology. Principles and Applications. p 415-465. Elservier.spa
dc.relation.referencesCheryan, M. 1998. Ultrafiltration and Microfiltration Handbook. Segunda edición. CRC Press. p 185-193.spa
dc.relation.referencesCodex Standard 283-1978. 2013. NORMA GENERAL DEL CODEX PARA EL QUESO. Codex Alimentarius, 1-3spa
dc.relation.referencesCowan, S. & Ritchie, S. 2007. Modified Polyethersulfone (PES) Ultrafiltration Membranes for Enhanced Filtration of Whey Proteins. Separation Science and Technology. 42 (11), p 2405–2418. https://doi.org/10.1080/01496390701477212spa
dc.relation.referencesCuartas-Uribe, B., Alcaina-Miranda, M., Soriano-Costa, E., & Bes-Piá, A. 2006. Comparison of two nanofiltration membranes NF200 and Ds-5 DL to demineralize whey. Desalination.199 (1-3), p 43-45. https://doi.org/10.1016/j.desal.2006.03.016spa
dc.relation.referencesCurtis, P., Bastian, E., Farkas, B., Drake, M. 2014. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder. American Dairy Science Association. 97 (7), p 4043-4051. https://doi.org/10.3168/jds.2013-7877spa
dc.relation.referencesCustódio, M. F., Goulart, A. J., Marques, D. P., Giordano, R., Giordano, R. C., & Monti, R. 2005. Hydrolysis Of Cheesewhey Proteinswith Trypsin, Chymotrypsinand Carboxypeptidasea. Alimentación Y Nutrición. 16 (2), p 105-109.spa
dc.relation.referencesDel Re, G., Di Giacomo, G., Aloisio, L., & Terreri, M. 1998. RO treatment of waste waters from dairy industry. Desalination. 119 (1-3), p 205-206. https://doi.org/10.1016/S0011-9164(98)00154-4spa
dc.relation.referencesChavan R.S., Khedkar C.D. and Bhatt S. 2016. Fat Replacer. In: Caballero, B., Finglas, P., and Toldrá, F. (eds.) The Encyclopedia of Food and Health vol. 2, pp. 589-595. Oxford: Academic Press.spa
dc.relation.referencesDe Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Bernardo, S. H., & Gimenes, M. L. 2010. Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification. 49 (11), p 1137-1143. https://doi.org/10.1016/j.cep.2010.08.015spa
dc.relation.referencesDe Wit, J. (2001). lecture's Handbook On Whey and Whey Products. Eindhoven: European Whey Products Association.spa
dc.relation.referencesDiarra, M., Petitclerc, D., Deschenes, E., Lessard, N., Grondin, G., Talbot, B., et al. 2003. Lactoferrin against Staphylococcus aureus Mastitis Lactoferrin alone or in combination with penicillin G on bovine polymorphonuclear function and mammary epithelial cells colonisation by Staphylococcus aureus. Veterinary Immunology and Immunopathology. 95 (1-2), p 33-42. 10.1016/s0165-2427(03)00098-9spa
dc.relation.referencesDi Cagno, R., Pasquale, I., Angelis M., Buchin, S., Rizzello, C. y Gobbetti, M. 2014. Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese. Journal of Dairy Science. 97 (1), 72-84. http://dx.doi.org/ 10.3168/jds.2013-7078.spa
dc.relation.referencesDi Giacomo, G., Del Re, G., & Spera, D. 1996. Milk whey treatment with recovery of valuable products. Desalination. 108 (1), p 273-276. 10.1016/S0011-9164(97)00035-0spa
dc.relation.referencesDi Mario, F., Aragona, G., Dal Bo, N., Cavestro, G., Cavallaro, L., Iori, V., et al. 2003. U se of bovine lactoferrin for Helicobacter pylori eradication. Digestive and Liver Disease. 35 (10), p 706-710. 10.1016/s1590-8658(03)00409-2spa
dc.relation.referencesDomingues, L., Lima, N., & Teixeira, J. 1999. Novas Metodologias Para A Fermentação Alcoólica Do Soro De Queijo.Braga.spa
dc.relation.referencesDunlap, C., & Cote, G. 2005. b-Lactoglobulin-Dextran Conjugates: Effect of Polysaccharide Size on Emulsion Stability. Journal Of Agricultural and Food Chemistry. 53 (2), p 419-426. https://doi.org/10.1021/jf049180cspa
dc.relation.referencesEbersold, M. F., & Zydney, A. (2004). The effect of membrane properties on the separation of protein charge variants using ultrafiltration. Journal of Membrane Science. 243 (1-2), p 379-388. 10.1016/j.memsci.2004.06.043spa
dc.relation.referencesErgüder, T., Tezel, U., Güven, E., & Demirer, G. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manage. 21 (7), p 643-650. https://doi.org/10.1016/S0956-053X(00)00114-8spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO) (2015). Food Outlook: Biannual Report on Global Food Markets. 87-89.spa
dc.relation.referencesFarnaud, S., & Evans, R. (2003). Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular Immunology. 40 (7), p 395-405. 10.1016/s0161-5890(03)00152-4spa
dc.relation.referencesFEDEGAN (2022). Cifras del sector. https://www.fedegan.org.co/estadisticas/general.spa
dc.relation.referencesFox, P. & McSweeney. (1992). Dairy Chemistry and Biochemistry. University College Cork, Irlanda. Blackie Academic & Professional. p 267-270spa
dc.relation.referencesFuquay. (2011). Encyclopedia of Dairy Science. Mississippi: ELSERVIER.spa
dc.relation.referencesGalaris, D., Skiada, V., & Barbouti, A. (2008). Redox signaling and cancer: The role of ‘‘labile” iron. Cancer Letters. 266 (1), p 21-29. 10.1016/j.canlet.2008.02.038spa
dc.relation.referencesGalanakis, C., Chasiotis, S., Botsaris, G. & Gekas, V. (2014) Separation and recovery of proteins and sugars from Halloumi cheese whey. Food Research International. 65, p 477–483. https://doi.org/10.1016/j.foodres.2014.03.060spa
dc.relation.referencesGarcía-Montoya, I. A., Cendón, T. S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: An overview. Biochimica et Biophysica Acta. 1820 (3), p 226-236. 10.1016/j.bbagen.2011.06.018spa
dc.relation.referencesGautam, A., Menkhaus. T.J. 2014. Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. Journal of Membrane Science. 451, p 252–265. https://doi.org/10.1016/j.memsci.2013.09.042spa
dc.relation.referencesGEA Process Engineering. 2012. Membrane Filtration in the Dairy Industry. GEA Filtration, 6-14.spa
dc.relation.referencesGonzáles, M. 1996. The Biotechnological Utilization Of Cheese Whey: A Riview. Bioresource Technology. 57, p 1-11. https://doi.org/10.1016/0960-8524(96)00036-3spa
dc.relation.referencesHinrichs, J. 2001. Incorporation of whey proteins in cheese. International Dairy Journal. 11 (4-7), p 495-503. https://doi.org/10.1016/S0958-6946(01)00071-1spa
dc.relation.referencesHinrichs, J. 2001. Incorporation of whey proteins in cheese. International Dairy Journal. 11 (4-7), p 495-503. https://doi.org/10.1016/S0958-6946(01)00071-1spa
dc.relation.referencesHossain, M., Keidel, J., Hensel, O., Diakité, M. 2020. The impact of extruded microparticulated whey proteins in reduced-fat, plain-type stirred yogurt: Characterization of physicochemical and sensory properties. LWT-Food Science and Technology. 134, 109976. https://doi.org/10.1016/j.lwt.2020.109976spa
dc.relation.referencesHossain, M., Petrov, M., Hensel, O., Diakité, M. 2021. Microstructure and Physicochemical Properties of Light Ice Cream: Effects of Extruded Microparticulated Whey Proteins and Process Design. Foods. 10, 1-14. https://doi.org/10.3390/foods10061433spa
dc.relation.referencesIpsen, R. (2017). Microparticulated whey proteins for improving dairy product texture. International Dairy Journal. 67, 73 – 79. http://dx.doi.org/10.1016/j.idairyj.2016.08.009spa
dc.relation.referencesJervis, S., Campbell, Wojciechowsk, K., Foedefing, E., Drake, M., Barbano, D. 2012. effect of bleaching whey on sensory and functional properties of 80% whey protein concéntrate. American Dairy Science Association. 95 (6), p 2848-2862. 10.3168/jds.2011-4967spa
dc.relation.referencesKaeriyama, E., Imai, S., Usui, Y., Hanada, N., & Takagi, Y. 2007. Effect of bovine lactoferrin on enamel demineralization and acid fermentation by Streptococcus mutans. Pediatric Dental Journal. 17(2), p 118-126. https://doi.org/10.11411/pdj.17.118spa
dc.relation.referencesKosikowski, F. (1982). Cheese And Fermented Milk Food.Nebraska.spa
dc.relation.referencesKushwaha, J. P., Srivastava, V. C., & Mall, I. D. 2010. Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Separation and Purification Technology. 76 (2), p 198-205. https://doi.org/10.1016/j.seppur.2010.10.008spa
dc.relation.referencesLaw, B., & Tamime, A. 2010. Technology of Cheesemaking. Chichester: Blackwell Publishing Ltd.spa
dc.relation.referencesLee, S., Buwalda, R., Euston, S., Foegeding, E., & McKenna, A. 2003. Changes in the rheologyand microstructure of processed cheese during cooking. Lebensm.-Wiss. U.-Technol. 36 (3), p 339-345. 10.1016/S0023-6438(03)00012-4spa
dc.relation.referencesLonnerdal, B., & lyer, S. (1995). Lactoferrin: Molecular Structure And Biological Function. Annual Reviews of Nutrition. 15, 93-110. https://doi.org/10.1146/annurev.nu.15.070195.000521spa
dc.relation.referencesLi, H., Liu, T., Zou, X., Yang, C., Li, H., Cui, W., Yu, J. 2021. Utilization of thermal-denatured whey protein isolate-milk fat emulsion gel microparticles as stabilizers and fat replacers in low-fat yogurt. LWT-Food Science and Technology. 150, 112045. https://doi.org/10.1016/j.lwt.2021.112045.spa
dc.relation.referencesMa, J., Guan, R., Shen, H., Lu, F., Xiao, C., Liu, M., et al. 2013. Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro. Food and Chemical Toxicology. 59, p 72-77. DOI: 10.1016/j.fct.2013.05.038spa
dc.relation.referencesMadureira, A., Pereira, C., Gomes, A., Pintado, M., & Malcata, X. 2007. Bovine whey proteins – Overview on their main biological properties. Food Research International. 40 (10), p 1197-1211. https://doi.org/10.1016/j.foodres.2007.07.005spa
dc.relation.referencesMadureira, A., Tavares, T., Gomes, A., Pintado, M., & Malcata, F. 2010. Invited review: physiological properties of bioactive peptides obtained from whey proteins. Journal Of Dairy Science. 93 (2), p 437-455. https://doi.org/10.3168/jds.2009-2566spa
dc.relation.referencesMarshall, K. 2004. Therapeutic Applications of Whey Protein. Alternative Medicine Review. 9 (7), p 136-156. 10.20546/ijcmas.2020.907.036spa
dc.relation.referencesMarcelo, P. & Rizvi, S. 2008. Physicochemical properties of liquid virgin whey protein isolate. International Dairy Journal. 18(3), p 236-246. https://doi.org/10.1016/j.idairyj.2007.08.011spa
dc.relation.referencesMcIntosh, G., Royle, P., Le Leu, R., Regester, G., Johnson, M., Grinsted, R., et al. 1998. Whey Proteins as Functional Food Ingredients? international Dairy Journal. 8 (5-6), p 425-434. https://doi.org/10.1016/S0958-6946(98)00065-Xspa
dc.relation.referencesMinisterio de Salud y Protección Social. 1986. Resolución 2310 de 1986: Por la cual se reglamenta parcialmente el Título V de la Ley 09 de 1979, en lo referente a procesamiento, composición, requisitos, transporte y comercialización de los Derivados Lácteos.spa
dc.relation.referencesMorr, C. V., German, B., Kinsella, J. E., Regenstein, J. M., Van Buren, J. P., Kilara, A., Lewis, B. A., & Mangino, M. E. 1985. A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science. 50 (6), p 1715–1718. https://doi.org/10.1111/j.1365-2621.1985.tb10572.xspa
dc.relation.referencesMistry, V., & Maubois, J. 2004. Application of Membrane Separation Technology to Cheese Production. In P. Fox, P. McSweeney, T. Cogan, & T. Guinee, Cheese: Chemistry, Physics and Microbiology (pp. 261-285). BROOKINGS : ELSERVIER. Nicolai, T., Durand, D. 2013. Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18(4), 249-256. https://doi.org/10.1016/j.cocis.2013.03.001spa
dc.relation.referencesO’Regan, J., & Mulvihill, D. 2010. Sodium caseinate–maltodextrin conjugate hydrolysates: Preparation, characterisation and some functional properties. Food Chemistry , 21-31. https://doi.org/10.1016/j.foodchem.2010.03.115spa
dc.relation.referencesOrosco, M., Rouch, C., Beslot, F., Feurte, S., Regnault, A., & Dauge, V. 2004. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behavioural Brain Research. 148(1-2): 1-10. DOI: 10.1016/s0166-4328(03)00153-0spa
dc.relation.referencesPatel, M. T., & Kilara, A. 1990. Studies on whey protein concentrates. 2. Foaming and emulsifying properties and their relationships with physicochemical properties. Journal of Dairy Science. 73(10), p 2731–2740. https://doi.org/10.3168/jds.S0022-0302(90)78958-8spa
dc.relation.referencesPattnaik, R., Yost, R., Porter, G., Masunaga, T., & Attanandana, T. 2007. Improving multi-soil-layer (MSL) system remediation of dairy effluent. Ecological Engineering. 32(1), p 1-10. https://doi.org/10.1016/j.ecoleng.2007.08.006spa
dc.relation.referencesPereira, C., Diaz, O., & Cobos, A. 2002. Valorization of by-products from ovine cheese manufacture: clarification by thermocalcic precipitation/microfiltration before ultrafiltration. International Dairy Journal. 12(9), p 773-783. https://doi.org/10.1016/S0958-6946(02)00070-5spa
dc.relation.referencesPrazeres, A., Carvalho, F., & Rivas, J. 2012. Cheese Whey Management: A Riview. Journal Of Environmental Management. 110, p 10. https://doi.org/10.1016/j.jenvman.2012.05.018spa
dc.relation.referencesRektor, A., & Vatai, G. 2004. Membrane filtration of Mozzarella whey. Desalination. 162, p 279-286. https://doi.org/10.1016/S0011-9164(04)00052-9spa
dc.relation.referencesRenhe, I. & Corredig, M. 2018. Effect of partial whey protein depletion during membrane filtration on thermal stability of milk concentrates. Journal of Dairy Science. 101 (10), 8757-8766. https://doi.org/10.3168/jds.2018-14407spa
dc.relation.referencesRivas, J., Prazeres, A., & Carvalho, F. 2011. Aerobic Biodegradation of Precoagulated Cheese Whey Wastewater. Journal of Agricultural and Food Chemistry. 59 (6), p 2511-2517. https://doi.org/10.1021/jf104252wspa
dc.relation.referencesRosenberg, M. 1995. Current and future applications for membrane processes in the dairy industry. Trends in Food Science & Technology. 6 (1), p 12-19. https://doi.org/10.1016/S0924-2244(00)88912-8spa
dc.relation.referencesRyhanen, E.-L., Pihlanto-Leppala, A., & Pahkala, E. 2001. A new type of ripened, low-fat cheese with bioactive properties. International Dairy Journal. 11 (4-7), p 441-447. https://doi.org/10.1016/S0958-6946(01)00079-6spa
dc.relation.referencesSánchez, G. L., Gil, M. J., Gil, M. A., Giraldo, F. J., Millán, L., & Villada, M. E. 2009. Aprovechamiento del suero Lácteo de una empresa del norte antioqueño mediante microorganismos eficientes. La Sallista. P 66-74. http://hdl.handle.net/10567/551spa
dc.relation.referencesSepúlveda, J., 2007. Desarrollo de quesos frescos con adición del cultivo probiótico: Lactobacillus casei.spa
dc.relation.referencesSanchez-Obando, J., Cabrera-Trujillo, M., Olivares-Tenorio, M., Klotz, B. 2020. Use of optimized microparticulated whey protein in the process of reduced-fat spread and petit-suisse cheeses. LWT-Food Science and Technology. 120, 108933. https://doi.org/10.1016/j.lwt.2019.108933.spa
dc.relation.referencesSgarbieri, C. V. 2006. Physiological-functional properties of milk whey proteins. Campinas: Universidade Estadual de Campinasspa
dc.relation.referencesSturaro, A., De Marchi, M., Zorzi, E., Cassandro M. 2015. Effect of microparticulated whey protein concentration and protein to-fat ratio on Caciotta cheese yield and composition. International Dairy Journal. 48, p 46-52. https://doi.org/10.1016/j.idairyj.2015.02.003spa
dc.relation.referencesSuárez, E., Lobo, A., Álvarez, S., Riera, F., & Álvarez, R. 2006. Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot-plant scale. Desalination. 198(1-3), p 274-281. https://doi.org/10.1016/j.desal.2005.12.028spa
dc.relation.referencesTarapata, J., Dybowska, B., Zulewska, J. 2022. Evaluation of fouling during ultrafiltration process of acid and sweet whey. Journal of Food Engineering. 328, 111059. https://doi.org/10.1016/j.jfoodeng.2022.111059spa
dc.relation.referencesWang, Q., CHen, G. & Kentish, S. 2020. Isolation of lactoferrin and immunoglobulins from dairy whey by an electrodialysis with filtration membrane process. Separation and Purification Technology. 233, p 115987. https://doi.org/10.1016/j.seppur.2019.115987spa
dc.relation.referencesVourch, M., Balannec, B., Chaufer, B., & Dorange, G. 2005. Nanofiltration and reverse osmosis of model process waters from the dairy industry to produce water for reuse. Desalination. 172(3), p 245-256. https://doi.org/10.1016/j.desal.2004.07.038spa
dc.relation.referencesYu-tang , t., Hsiao-Ling , C., Chih-Ching , Y., po-Ying , L., Hsin-Chung , t., ming-Fong , L., et al. 2013. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. Journal of Dairy Science. 96(4), p 2095-2106. DOI: 10.3168/jds.2012-6153spa
dc.relation.referencesZydney, A. (1998). Protein Separations Using Membrane Filtration: New Opportunities for Whey Fractionation. International Dairy Journal. 8(3), p 243-250. https://doi.org/10.1016/S0958-6946(98)00045-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembIndustria del queso
dc.subject.lembIndustria de productos lácteos - Aspectos ambientales
dc.subject.proposallactosuerospa
dc.subject.proposalconcentrado de proteínasspa
dc.subject.proposalultrafiltraciónspa
dc.subject.proposalmicropartículadospa
dc.subject.proposalcheese wheyeng
dc.subject.proposalultrafiltrationeng
dc.subject.proposalmicroparticulatedeng
dc.titleAprovechamiento del lactosuero dulce para el desarrollo de un concentrado de proteínas séricas obtenidas por tecnología de separación por membranas y su inclusión en la elaboración de queso frescospa
dc.title.translatedUse of sweet whey for the development of a whey protein concentrate obtained by membrane separation technology and its inclusion in the fresh cheese productioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlevalorización del lactosuero por medio de la tecnología de membranasspa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017175328.2022.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: