Synchronization of heterogeneous agents for cooperative cruise Control through game theory
| dc.contributor.advisor | Mojica Nava, Eduardo Alirio | spa |
| dc.contributor.author | Arévalo Castiblanco, Miguel Felipe | spa |
| dc.contributor.researchgroup | PROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN | spa |
| dc.date.accessioned | 2020-08-28T14:37:50Z | spa |
| dc.date.available | 2020-08-28T14:37:50Z | spa |
| dc.date.issued | 2019-01-24 | spa |
| dc.description.abstract | This project shows the development of a distributed control strategy for a cooperative network of autonomous vehicles in the context of cooperative cruise control. The development is shown from the perspective of distributed control addressed as an adaptive and a predictive control strategies, in conjunction with a real-time hardware emulation. The adaptive control worked through a reference model, allows the online adjustment of parameters defined in the controller for the synchronization of desired dynamics. On the other side, the predictive control seen as a Model Predictive Control focuses on solving an optimization problem, where a cost function is defined and an algorithm based on game theory is presented, which minimizes the disturbances and tracking errors of each vehicle. This algorithm allows distributed optimization together with a predictive control law for the action of each networked vehicle considering the disturbances in its environment and input. The objective of the control is to achieve a follow-up based on the model proposed by a reference and that this error tends asymptotically to zero. To achieve this synchronization, each vehicle must replicate the position and speed dynamics of the reference model under the Cooperative Cruise Control methodology, in an initial case tested with six agents modeled through a digraph, a reference for simulation, and four agents for emulation. The implementation is done in real-time hardware modules for the validation of the algorithms developed considering the hardware's own restrictions. The implementation is done through the emulation of dynamic systems and the interaction with implemented control logic. This is summarized in an iterative process that includes the solution of an optimization problem through high-level instructions, which allows to find values minimum in convex spaces to fulfilling a Nash equilibrium. This framework allows a network of vehicles to have a better behavior along a highway and improve traffic conditions, even in the presence of uncertainty or disturbance parameters (such as non-modeled dynamics or unconnected agents). The operation of these algorithms is presented in non-trivial simulations on Matlab®, to observe the response of each agent and lead to its emulation in National Instruments CompactRio real-time hardware. | spa |
| dc.description.abstract | Este proyecto muestra el desarrollo de una estrategia de control distribuido para una red cooperativa de vehículos autónomos en el contexto del control de crucero cooperativo. El desarrollo se muestra desde la perspectiva de control distribuido abordado como una estrategia de control adaptativo y una estrategia de control predictivo, en conjunto con una emulación en hardware en tiempo real. El control adaptativo trabajado a través de un modelo de referencia, permite el ajuste en linea de parametros definidos en el controlador para la sincronización de dinámicas deseadas. Por otro lado, el control predictivo visto como un Model Predictive Control se centra en la solución de un problema de optimización, en donde se define una función de costo y se presenta un algoritmo basado en teoría de juegos, que minimiza las perturbaciones y errores de seguimiento de cada vehículo. Este algoritmo permite la optimización distribuida junto con una ley de control predictivo para la acción de cada vehículo en red considerando las perturbaciones en su entorno y entrada. El objetivo del control es lograr un seguimiento basado en el modelo propuesto por una referencia y que este error llegue asintóticamente a cero. Para lograr esta sincronización, cada vehículo debe replicar la posición y la dinámica de la velocidad de un modelo de referencia bajo la metodología Cooperative Cruise Control, en un caso inicial probado con seis agentes modelados a través de un dígrafo, una referencia para simulación, y cuatro agentes para emulación. La implementación se realiza en módulos de hardware en tiempo real para la validación de los algoritmos desarrollados teniendo en cuenta las restricciones propias del hardware. La implementación se realiza mediante la emulación de sistemas dinámicos y su interacción con la lógica de control implementada. Esta lógica se resume en un proceso iterativo que incluye la solución de un problema de optimización mediante instrucciones de alto nivel, la cual permite encontrar valores mínimos en espacios convexos cumpliendo a su vez un equilibrio de Nash. Este marco de trabajo permite a una red de vehículos tener un mejor comportamiento a lo largo de una autopista y mejorar condiciones de trafico, incluso en presencia de parámetros de incertidumbre o perturbación (como dinámicas no modeladas o agentes no conectados). El funcionamiento de estos algoritmos es presentado en simulaciones no triviales en Matlab buscando observar la respuesta de cada agente para llevar a su emulación en hardware en tiempo real mediante el uso de los módulos de National Instruments CompactRio | spa |
| dc.description.additional | Línea de investigación: Control y robótica | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 100 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78308 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | spa |
| dc.relation | Arevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Cardona, Gustavo A. ; Mojica-Nava, Eduardo.: An Adaptive Optimal Control Modi cation with Input Uncertainty for Unknown Heterogeneous Agents Synchronization. En: Proceedings of 58th Conference on Decision and Control (2019), Nr. 1 | spa |
| dc.relation | Arevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Sofrony, Jorge ; Mojica-Nava, Eduardo.: Adaptive Control for Unknown Heterogeneous Vehicles Synchronization with Unstructured Uncertainty. En: Proceedings of 4th Colombian Conference on Automatic Control (2019), Nr. 1 | spa |
| dc.relation.references | Alvarado, I ; Limon, D ; De La Pe~na, D M. ; Maestre, JM ; Ridao, MA ; Scheu, H ; Marquardt, W ; Negenborn, RR ; De Schutter, B ; Valencia, F [u. a.]: A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. En: Journal of Process Control 21 (2011), Nr. 5, p. 800{815 | spa |
| dc.relation.references | Arevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Cardona, Gustavo A. ; Mojica-Nava, Eduardo.: An Adaptive Optimal Control Modi cation with Input Uncertainty for Unknown Heterogeneous Agents Synchronization. En: Procee- dings of 58th Conference on Decision and Control (2019), Nr. 1 | spa |
| dc.relation.references | Arevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Sofrony, Jorge ; Mojica-Nava, Eduardo.: Adaptive Control for Unknown Heterogeneous Vehicles Synchronization with Unstructured Uncertainty. En: Proceedings of 4th Colombian Confe- rence on Automatic Control (2019), Nr. 1 | spa |
| dc.relation.references | Arkin, Ronald C. ; Balch, Tucker: Cooperative multiagent robotic systems. (1997) | spa |
| dc.relation.references | Astrom, Karl J. ; Wittenmark, Bjorn: Adaptive control. Courier Corporation, 2013 | spa |
| dc.relation.references | Astrom, K.J. ; Wittenmark, B.: Adaptive Control. Dover Publications, 2008 (Dover Books on Electrical Engineering). { ISBN 9780486462783 | spa |
| dc.relation.references | Balch, T. ; Arkin, R. C.: Behavior-based formation control for multirobot teams. En: IEEE Transactions on Robotics and Automation 14 (1998), Dec, Nr. 6, p. 926{939 | spa |
| dc.relation.references | Baldi, Simone ; Rosa, Muhammad ; Frasca, Paolo: Adaptive state-feedback synchronization with distributed input: the cyclic case. En: IFAC-PapersOnLine 51 (2018), 01, p. 1{6 | spa |
| dc.relation.references | Baldi, Simone ; Rosa, Muhammad R. ; Frasca, Paolo ; Kosmatopoulos, Elias B.: Platooning merging maneuvers in the presence of parametric uncertainty. En: IFAC- PapersOnLine 51 (2018), Nr. 23, p. 148 { 153. { 7th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2018. { ISSN 2405{8963 | spa |
| dc.relation.references | Bennett, S.: A brief history of automatic control. En: IEEE Control Systems Magazine 16 (1996), June, Nr. 3, p. 17{25 | spa |
| dc.relation.references | Berger, Thomas ; Birner, Regina ; Mccarthy, Nancy ; Díaz, José ; Wittmer, Heidi: Capturing the complexity of water uses and water users within a multi-agent framework. En: Water Resources Management 21 (2007), Nr. 1, p. 129-148 | spa |
| dc.relation.references | Besselink, Bart ; Johansson, Karl H.: String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. En: IEEE Transactions on Automatic Control 62 (2017), Nr. 9, p. 4376-4391 | spa |
| dc.relation.references | Borgers, Tilman ; Sarin, Rajiv: Learning through reinforcement and replicator dynamics. En: Journal of Economic Theory 77 (1997), Nr. 1, p. 1-14 | spa |
| dc.relation.references | Boyd, Stephen ; Vandenberghe, Lieven: Convex Optimization. New York, NY, USA : Cambridge University Press, 2004. - ISBN 0521833787 | spa |
| dc.relation.references | Chalkiadakis, G. ; Elkind, E. ;Wooldridge, M.: Cooperative Game Theory: Basic Concepts and Computational Challenges. En: IEEE Intelligent Systems 27 (2012), May, Nr. 3, p. 86-90 | spa |
| dc.relation.references | Cheng, Jimming ; Cheng, Winston ; Nagpal, Radhika: Robust and Self-Repairing Formation Control for Swarms of Mobile Agents., 2005, p. 59-64 | spa |
| dc.relation.references | CortéS, Jorge: Finite-time convergent gradient ows with applications to network consensus. En: Automatica 42 (2006), Nr. 11, p. 1993-2000 | spa |
| dc.relation.references | Doan, Dang ; Keviczky, Tamas ; Necoara, Ion ; Diehl, Moritz: A Jacobi algorithm for distributed model predictive control of dynamically coupled systems. (2008), 10 | spa |
| dc.relation.references | Senturk, M. ; Ismail Meric Can Uygan ; Guvenc, L.: Mixed Cooperative Adaptive Cruise Control for light commercial vehicles. En: 2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p. 1506-1511 | spa |
| dc.relation.references | Fax, J A. ; Murray, Richard M.: Information ow and cooperative control of vehicle formations. En: IEEE transactions on automatic control 49 (2004), Nr. 9, p. 1465-1476 | spa |
| dc.relation.references | Garc a, Carlos E. ; Prett, David M. ; Morari, Manfred: Model predictive control: Theory and practice|A survey. En: Automatica 25 (1989), Nr. 3, p. 335 - 348. - ISSN 0005-1098 | spa |
| dc.relation.references | Ghazikhani, A. ; Mashadi, H. R. ; Monsefi, R.: A novel algorithm for coalition formation in Multi-Agent Systems using cooperative game theory. En: 2010 18th Iranian Conference on Electrical Engineering, 2010, p. 512-516 | spa |
| dc.relation.references | Ghommam, J. ; Mehrjerdi, H. ; Saad, M.: Robust formation control without velocity measurement of the leader robot. En: Control Engineering Practice 21 (2013), Nr. 8, p. 1143 - 1156. - ISSN 0967-0661 | spa |
| dc.relation.references | Gillies, DB: DISCRIMINATORY AND BARGAINING SOLUTIONS TO A CLASS OP SYMMETRIC n-PERSON GAMES1. En: Contributions to the Theory of Games (AM-28) 2 (2016), p. 325 | spa |
| dc.relation.references | Goodwin, G.C. ; Mayne, D.Q.: A parameter estimation perspective of continuous time model reference adaptive control. En: Automatica 23 (1987), Nr. 1, p. 57 - 70. { ISSN 0005-1098 | spa |
| dc.relation.references | Grammatico, S.: Proximal Dynamics in Multiagent Network Games. En: IEEE Transactions on Control of Network Systems 5 (2018), Dec, Nr. 4, p. 1707-1716 | spa |
| dc.relation.references | Grammatico, S. ; Parise, F. ; Colombino, M. ; Lygeros, J.: Decentralized Convergence to Nash Equilibria in Constrained Deterministic Mean Field Control. En: IEEE Transactions on Automatic Control 61 (2016), Nov, Nr. 11, p. 3315-3329 | spa |
| dc.relation.references | G uvenc, L. ; Uygan, I. M. C. ; Kahraman, K. ; Karaahmetoglu, R. ; Altay, I. ; Sent urk, M. ; Emirler, M. T. ; Hartavi Karci, A. E. ; Aksun Guvenc, B. ; Altug, E. ; Turan, M. C. ; Tas, O. S. ; Bozkurt, E. ; Ozguner, U. ; Redmill, K. ; Kurt, A. ; Efendioglu, B.: Cooperative Adaptive Cruise Control Implementation of Team Mekar at the Grand Cooperative Driving Challenge. En: IEEE Transactions on Intelligent Transportation Systems 13 (2012), Sep., Nr. 3, p. 1062-1074 | spa |
| dc.relation.references | Hakimi, S L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. En: Operations research 13 (1965), Nr. 3, p. 462-475 | spa |
| dc.relation.references | Harsanyi, John C.: A Simpli ed Bargaining Model for the n-Person Cooperative Game. En: International Economic Review 4 (1963), Nr. 2, p. 194{220. - ISSN 00206598, 14682354 | spa |
| dc.relation.references | Hew, S. ; White, L. B.: Cooperative resource allocation games in shared networks: symmetric and asymmetric fair bargaining models. En: IEEE Transactions on Wireless Communications 7 (2008), November, Nr. 11, p. 4166-4175 | spa |
| dc.relation.references | Instruments, National. CompactRIO Developers Guide. 2009 | spa |
| dc.relation.references | Instruments, National. NI PS-16 Power Supply User Manual and Speci cations. 2009 | spa |
| dc.relation.references | Ioannou, Petros A. ; Sun, Jing: Robust adaptive control. Courier Corporation, 2012 | spa |
| dc.relation.references | Jia, D. ; Lu, K. ; Wang, J. ; Zhang, X. ; Shen, X.: A Survey on Platoon-Based Vehicular Cyber-Physical Systems. En: IEEE Communications Surveys Tutorials 18 (2016), Firstquarter, Nr. 1, p. 263-284 | spa |
| dc.relation.references | Kayacan, E.: Multiobjective Hª Control for String Stability of Cooperative Adaptive Cruise Control Systems. En: IEEE Transactions on Intelligent Vehicles 2 (2017), March, Nr. 1, p. 52-61 | spa |
| dc.relation.references | Lillicrap, Timothy P. ; Hunt, Jonathan J. ; Pritzel, Alexander ; Heess, Nicolas ; Erez, Tom ; Tassa, Yuval ; Silver, David ; Wierstra, Daan. Continuous control with deep reinforcement learning. 2015 | spa |
| dc.relation.references | Marden, Jason R. ; Shamma, Je S.: Game Theory and Control. En: Annual Review of Control, Robotics, and Autonomous Systems 1 (2018), Nr. 1, p. 105-134 | spa |
| dc.relation.references | Mayne, D.Q. ; Rawlings, J.B. ; Rao, C.V. ; Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. En: Automatica 36 (2000), Nr. 6, p. 789 { 814. { ISSN 0005-1098 | spa |
| dc.relation.references | Mcdonald, Ashley ; McGehee, Daniel ; Chrysler, Susan ; Angell, Linda ; Askelson, Natoshia ; Seppelt, Bobbie: National Survey Identifying Gaps in Consumer Knowledge of Advanced Vehicle Safety Systems. En: Transportation Research Record Journal of the Transportation Research Board 2559 (2016), 01 | spa |
| dc.relation.references | Mesbahi, Mehran ; Egerstedt, Magnus: Graph Theoretic Methods in Multiagent Net- works. STU - Student edition. Princeton University Press, 2010. - ISBN 9780691140612 | spa |
| dc.relation.references | Monopoli, R.: Model reference adaptive control with an augmented error signal. En: IEEE Transactions on Automatic Control 19 (1974), October, Nr. 5, p. 474-484 | spa |
| dc.relation.references | Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi: Flexible spacing adaptive cruise control using stochastic model predictive control. En: IEEE Transactions on Control Systems Technology 26 (2017), Nr. 1, p. 114-127 | spa |
| dc.relation.references | Mota, Joao F. ; Xavier, Joao M. ; Aguiar, Pedro M. ; P uschel, Markus: D-ADMM: A communication-e cient distributed algorithm for separable optimization. En: IEEE Transactions on Signal Processing 61 (2013), Nr. 10, p. 2718-2723 | spa |
| dc.relation.references | Muir, Patrick F. ; Neuman, Charles P.: Kinematic modeling of wheeled mobile robots. En: Journal of robotic systems 4 (1987), Nr. 2, p. 281-340 | spa |
| dc.relation.references | MYERSON, ROGER B.: Game Theory: Analysis of Con ict. Harvard University Press, 1991. - ISBN 9780674341166 | spa |
| dc.relation.references | Nash, John F.: Equilibrium points in n-person games. En: Proceedings of the National Academy of Sciences 36 (1950), Nr. 1, p. 48{49. - ISSN 0027{8424 | spa |
| dc.relation.references | Nash Jr, John F.: The Bargaining Problem. En: Econometrica 18 (1950), Nr. 2, p. 155-162 | spa |
| dc.relation.references | Nash Jr, John F.: Two-person cooperative games. En: Econometrica 21 (1953), Nr. 1, p. 128-140 | spa |
| dc.relation.references | Necoara, I. ; Doan, D. ; Suykens, J. A. K.: Application of the proximal center decomposition method to distributed model predictive control. En: 2008 47th IEEE Conference on Decision and Control, 2008, p. 2900-2905 | spa |
| dc.relation.references | von Neumann, John ; Morgenstern, Oskar ; Rubinstein, Ariel: Theory of Ga- mes and Economic Behavior (60th Anniversary Commemorative Edition). Princeton University Press, 1944. - ISBN 9780691130613 | spa |
| dc.relation.references | Nguyen, Nhan: Model-Reference Adaptive Control. A Primer. Springer, March 2018. - 123 p. | spa |
| dc.relation.references | Nguyen, Nhan ; Krishnakumar, Kalmanje ; Boskovic, Jovan: An Optimal Control Modi cation to Model-Reference Adaptive Control for Fast Adaptation. En: AIAA Guidance, Navigation and Control Conference and Exhibit (2008), August | spa |
| dc.relation.references | Okada, Akira: A Noncooperative Approach to General n-Person Cooperative Games. En: Graduate School of Economics, Hitotsubashi University, Discussion Papers (2005), 01 | spa |
| dc.relation.references | Olfati-Saber, Reza: Flocking for multi-agent dynamic systems: Algorithms and theory. En: IEEE Transactions on automatic control 51 (2006), Nr. 3, p. 401-420 | spa |
| dc.relation.references | Parise, F. ; Gentile, B. ; Grammatico, S. ; Lygeros, J.: Network aggregative games: Distributed convergence to Nash equilibria. En: 2015 54th IEEE Conference on Decision and Control (CDC), 2015, p. 2295-2300 | spa |
| dc.relation.references | Peng, Z. ;Wang, D. ; Chen, Z. ; Hu, X. ; Lan, W.: Adaptive Dynamic Surface Control for Formations of Autonomous Surface Vehicles With Uncertain Dynamics. En: IEEE Transactions on Control Systems Technology 21 (2013), March, Nr. 2, p. 513-520 | spa |
| dc.relation.references | Peters, Hans: Axiomatic bargaining game theory. En: Theory and decision library C, 1992 | spa |
| dc.relation.references | Radke, Friedrich ; Isermann, Rolf: A parameter-adaptive PID-controller with stepwise parameter optimization. En: Automatica 23 (1987), Nr. 4, p. 449-457 | spa |
| dc.relation.references | Ren,Wei ; Beard, Randal W. ; Atkins, Ella M.: Information consensus in multivehicle cooperative control. En: IEEE Control systems magazine 27 (2007), Nr. 2, p. 71-82 | spa |
| dc.relation.references | Schenato, Luca ; Gamba, Giovanni: A distributed consensus protocol for clock synchronization in wireless sensor network. En: 2007 46th IEEE Conference on Decision and Control IEEE, 2007, p. 2289-2294 | spa |
| dc.relation.references | Shi, C. ; Wang, F. ; Sellathurai, M. ; Zhou, J.: Non-Cooperative Game Theoretic Power Allocation Strategy for Distributed Multiple-Radar Architecture in a Spectrum Sharing Environment. En: IEEE Access 6 (2018), p. 17787-17800 | spa |
| dc.relation.references | Soyster, A. L.: Technical Note|Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. En: Operations Research 21 (1973), Nr. 5, p. 1154-1157 | spa |
| dc.relation.references | Thomson, William: Monotonicity of bargaining solutions with respect to the disagreement point. En: Journal of Economic Theory 42 (1987), Nr. 1, p. 50-58 | spa |
| dc.relation.references | Topics, Transport. Tra c congestion costs billions in wasted fuel, time, report says. March 2014 | spa |
| dc.relation.references | Valencia, Felipe ; Espinosa, Jairo J. ; Schutter, Bart D. ; Stankova, Katerina: Feasible-Cooperation Distributed Model Predictive Control Scheme Based on Game Theory*. En: IFAC Proceedings Volumes 44 (2011), Nr. 1, p. 386 - 391. - 18th IFAC World Congress. - ISSN 1474-6670 | spa |
| dc.relation.references | Valencia, Felipe ; Patiño, Julian ; Lopez, Jose D. ; Espinosa, Jairo: Game Theory Based Distributed Model Predictive Control for a Hydro-Power Valley Control. En: IFAC Proceedings Volumes 46 (2013), Nr. 13, p. 538 - 544. - 13th IFAC Symposium on Large Scale Complex Systems: Theory and Applications. - ISSN 1474-6670 | spa |
| dc.relation.references | Venkat, A. N. ; Rawlings, J. B. ; Wright, S. J.: Stability and optimality of distributed model predictive control. En: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p. 6680-6685 | spa |
| dc.relation.references | Winston, Wayne L.: Introduction to Mathematical Programming: Applications and Algorithms. Duxbury Resource Center, 2003. - ISBN 0534423574 | spa |
| dc.relation.references | Yu, Wenwu ; Chen, Guanrong ; Cao, Ming: Consensus in directed networks of agents with nonlinear dynamics. En: IEEE Transactions on Automatic Control 56 (2011), Nr. 6, p. 1436-1441 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
| dc.subject.proposal | Heterogeneous agents | eng |
| dc.subject.proposal | Agerntes heterogéneos | spa |
| dc.subject.proposal | Control en tiempo real | spa |
| dc.subject.proposal | Real time control | eng |
| dc.subject.proposal | Adaptive control | eng |
| dc.subject.proposal | Control adaptativo | spa |
| dc.subject.proposal | Model predictive control | eng |
| dc.subject.proposal | Control predictivo basado en modelo | spa |
| dc.subject.proposal | Teoría de juegos | spa |
| dc.subject.proposal | Game theory | eng |
| dc.subject.proposal | Cooperative cruise control | eng |
| dc.subject.proposal | Control cooperativo de crucero | spa |
| dc.title | Synchronization of heterogeneous agents for cooperative cruise Control through game theory | spa |
| dc.title.alternative | Sincronización de agentes heterogéneos para el control de crucero cooperativo a través de teoría de juegos | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

