En 5 día(s), 12 hora(s) y 5 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Synchronization of heterogeneous agents for cooperative cruise Control through game theory

dc.contributor.advisorMojica Nava, Eduardo Aliriospa
dc.contributor.authorArévalo Castiblanco, Miguel Felipespa
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UNspa
dc.date.accessioned2020-08-28T14:37:50Zspa
dc.date.available2020-08-28T14:37:50Zspa
dc.date.issued2019-01-24spa
dc.description.abstractThis project shows the development of a distributed control strategy for a cooperative network of autonomous vehicles in the context of cooperative cruise control. The development is shown from the perspective of distributed control addressed as an adaptive and a predictive control strategies, in conjunction with a real-time hardware emulation. The adaptive control worked through a reference model, allows the online adjustment of parameters defined in the controller for the synchronization of desired dynamics. On the other side, the predictive control seen as a Model Predictive Control focuses on solving an optimization problem, where a cost function is defined and an algorithm based on game theory is presented, which minimizes the disturbances and tracking errors of each vehicle. This algorithm allows distributed optimization together with a predictive control law for the action of each networked vehicle considering the disturbances in its environment and input. The objective of the control is to achieve a follow-up based on the model proposed by a reference and that this error tends asymptotically to zero. To achieve this synchronization, each vehicle must replicate the position and speed dynamics of the reference model under the Cooperative Cruise Control methodology, in an initial case tested with six agents modeled through a digraph, a reference for simulation, and four agents for emulation. The implementation is done in real-time hardware modules for the validation of the algorithms developed considering the hardware's own restrictions. The implementation is done through the emulation of dynamic systems and the interaction with implemented control logic. This is summarized in an iterative process that includes the solution of an optimization problem through high-level instructions, which allows to find values minimum in convex spaces to fulfilling a Nash equilibrium. This framework allows a network of vehicles to have a better behavior along a highway and improve traffic conditions, even in the presence of uncertainty or disturbance parameters (such as non-modeled dynamics or unconnected agents). The operation of these algorithms is presented in non-trivial simulations on Matlab®, to observe the response of each agent and lead to its emulation in National Instruments CompactRio real-time hardware.spa
dc.description.abstractEste proyecto muestra el desarrollo de una estrategia de control distribuido para una red cooperativa de vehículos autónomos en el contexto del control de crucero cooperativo. El desarrollo se muestra desde la perspectiva de control distribuido abordado como una estrategia de control adaptativo y una estrategia de control predictivo, en conjunto con una emulación en hardware en tiempo real. El control adaptativo trabajado a través de un modelo de referencia, permite el ajuste en linea de parametros definidos en el controlador para la sincronización de dinámicas deseadas. Por otro lado, el control predictivo visto como un Model Predictive Control se centra en la solución de un problema de optimización, en donde se define una función de costo y se presenta un algoritmo basado en teoría de juegos, que minimiza las perturbaciones y errores de seguimiento de cada vehículo. Este algoritmo permite la optimización distribuida junto con una ley de control predictivo para la acción de cada vehículo en red considerando las perturbaciones en su entorno y entrada. El objetivo del control es lograr un seguimiento basado en el modelo propuesto por una referencia y que este error llegue asintóticamente a cero. Para lograr esta sincronización, cada vehículo debe replicar la posición y la dinámica de la velocidad de un modelo de referencia bajo la metodología Cooperative Cruise Control, en un caso inicial probado con seis agentes modelados a través de un dígrafo, una referencia para simulación, y cuatro agentes para emulación. La implementación se realiza en módulos de hardware en tiempo real para la validación de los algoritmos desarrollados teniendo en cuenta las restricciones propias del hardware. La implementación se realiza mediante la emulación de sistemas dinámicos y su interacción con la lógica de control implementada. Esta lógica se resume en un proceso iterativo que incluye la solución de un problema de optimización mediante instrucciones de alto nivel, la cual permite encontrar valores mínimos en espacios convexos cumpliendo a su vez un equilibrio de Nash. Este marco de trabajo permite a una red de vehículos tener un mejor comportamiento a lo largo de una autopista y mejorar condiciones de trafico, incluso en presencia de parámetros de incertidumbre o perturbación (como dinámicas no modeladas o agentes no conectados). El funcionamiento de estos algoritmos es presentado en simulaciones no triviales en Matlab buscando observar la respuesta de cada agente para llevar a su emulación en hardware en tiempo real mediante el uso de los módulos de National Instruments CompactRiospa
dc.description.additionalLínea de investigación: Control y robóticaspa
dc.description.degreelevelMaestríaspa
dc.format.extent100spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78308
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relationArevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Cardona, Gustavo A. ; Mojica-Nava, Eduardo.: An Adaptive Optimal Control Modi cation with Input Uncertainty for Unknown Heterogeneous Agents Synchronization. En: Proceedings of 58th Conference on Decision and Control (2019), Nr. 1spa
dc.relationArevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Sofrony, Jorge ; Mojica-Nava, Eduardo.: Adaptive Control for Unknown Heterogeneous Vehicles Synchronization with Unstructured Uncertainty. En: Proceedings of 4th Colombian Conference on Automatic Control (2019), Nr. 1spa
dc.relation.referencesAlvarado, I ; Limon, D ; De La Pe~na, D M. ; Maestre, JM ; Ridao, MA ; Scheu, H ; Marquardt, W ; Negenborn, RR ; De Schutter, B ; Valencia, F [u. a.]: A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. En: Journal of Process Control 21 (2011), Nr. 5, p. 800{815spa
dc.relation.referencesArevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Cardona, Gustavo A. ; Mojica-Nava, Eduardo.: An Adaptive Optimal Control Modi cation with Input Uncertainty for Unknown Heterogeneous Agents Synchronization. En: Procee- dings of 58th Conference on Decision and Control (2019), Nr. 1spa
dc.relation.referencesArevalo-Castiblanco, Miguel F. ; Tellez-Castro, Duvan ; Sofrony, Jorge ; Mojica-Nava, Eduardo.: Adaptive Control for Unknown Heterogeneous Vehicles Synchronization with Unstructured Uncertainty. En: Proceedings of 4th Colombian Confe- rence on Automatic Control (2019), Nr. 1spa
dc.relation.referencesArkin, Ronald C. ; Balch, Tucker: Cooperative multiagent robotic systems. (1997)spa
dc.relation.referencesAstrom, Karl J. ; Wittenmark, Bjorn: Adaptive control. Courier Corporation, 2013spa
dc.relation.referencesAstrom, K.J. ; Wittenmark, B.: Adaptive Control. Dover Publications, 2008 (Dover Books on Electrical Engineering). { ISBN 9780486462783spa
dc.relation.referencesBalch, T. ; Arkin, R. C.: Behavior-based formation control for multirobot teams. En: IEEE Transactions on Robotics and Automation 14 (1998), Dec, Nr. 6, p. 926{939spa
dc.relation.referencesBaldi, Simone ; Rosa, Muhammad ; Frasca, Paolo: Adaptive state-feedback synchronization with distributed input: the cyclic case. En: IFAC-PapersOnLine 51 (2018), 01, p. 1{6spa
dc.relation.referencesBaldi, Simone ; Rosa, Muhammad R. ; Frasca, Paolo ; Kosmatopoulos, Elias B.: Platooning merging maneuvers in the presence of parametric uncertainty. En: IFAC- PapersOnLine 51 (2018), Nr. 23, p. 148 { 153. { 7th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2018. { ISSN 2405{8963spa
dc.relation.referencesBennett, S.: A brief history of automatic control. En: IEEE Control Systems Magazine 16 (1996), June, Nr. 3, p. 17{25spa
dc.relation.referencesBerger, Thomas ; Birner, Regina ; Mccarthy, Nancy ; Díaz, José ; Wittmer, Heidi: Capturing the complexity of water uses and water users within a multi-agent framework. En: Water Resources Management 21 (2007), Nr. 1, p. 129-148spa
dc.relation.referencesBesselink, Bart ; Johansson, Karl H.: String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. En: IEEE Transactions on Automatic Control 62 (2017), Nr. 9, p. 4376-4391spa
dc.relation.referencesBorgers, Tilman ; Sarin, Rajiv: Learning through reinforcement and replicator dynamics. En: Journal of Economic Theory 77 (1997), Nr. 1, p. 1-14spa
dc.relation.referencesBoyd, Stephen ; Vandenberghe, Lieven: Convex Optimization. New York, NY, USA : Cambridge University Press, 2004. - ISBN 0521833787spa
dc.relation.referencesChalkiadakis, G. ; Elkind, E. ;Wooldridge, M.: Cooperative Game Theory: Basic Concepts and Computational Challenges. En: IEEE Intelligent Systems 27 (2012), May, Nr. 3, p. 86-90spa
dc.relation.referencesCheng, Jimming ; Cheng, Winston ; Nagpal, Radhika: Robust and Self-Repairing Formation Control for Swarms of Mobile Agents., 2005, p. 59-64spa
dc.relation.referencesCortéS, Jorge: Finite-time convergent gradient ows with applications to network consensus. En: Automatica 42 (2006), Nr. 11, p. 1993-2000spa
dc.relation.referencesDoan, Dang ; Keviczky, Tamas ; Necoara, Ion ; Diehl, Moritz: A Jacobi algorithm for distributed model predictive control of dynamically coupled systems. (2008), 10spa
dc.relation.referencesSenturk, M. ; Ismail Meric Can Uygan ; Guvenc, L.: Mixed Cooperative Adaptive Cruise Control for light commercial vehicles. En: 2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p. 1506-1511spa
dc.relation.referencesFax, J A. ; Murray, Richard M.: Information ow and cooperative control of vehicle formations. En: IEEE transactions on automatic control 49 (2004), Nr. 9, p. 1465-1476spa
dc.relation.referencesGarc a, Carlos E. ; Prett, David M. ; Morari, Manfred: Model predictive control: Theory and practice|A survey. En: Automatica 25 (1989), Nr. 3, p. 335 - 348. - ISSN 0005-1098spa
dc.relation.referencesGhazikhani, A. ; Mashadi, H. R. ; Monsefi, R.: A novel algorithm for coalition formation in Multi-Agent Systems using cooperative game theory. En: 2010 18th Iranian Conference on Electrical Engineering, 2010, p. 512-516spa
dc.relation.referencesGhommam, J. ; Mehrjerdi, H. ; Saad, M.: Robust formation control without velocity measurement of the leader robot. En: Control Engineering Practice 21 (2013), Nr. 8, p. 1143 - 1156. - ISSN 0967-0661spa
dc.relation.referencesGillies, DB: DISCRIMINATORY AND BARGAINING SOLUTIONS TO A CLASS OP SYMMETRIC n-PERSON GAMES1. En: Contributions to the Theory of Games (AM-28) 2 (2016), p. 325spa
dc.relation.referencesGoodwin, G.C. ; Mayne, D.Q.: A parameter estimation perspective of continuous time model reference adaptive control. En: Automatica 23 (1987), Nr. 1, p. 57 - 70. { ISSN 0005-1098spa
dc.relation.referencesGrammatico, S.: Proximal Dynamics in Multiagent Network Games. En: IEEE Transactions on Control of Network Systems 5 (2018), Dec, Nr. 4, p. 1707-1716spa
dc.relation.referencesGrammatico, S. ; Parise, F. ; Colombino, M. ; Lygeros, J.: Decentralized Convergence to Nash Equilibria in Constrained Deterministic Mean Field Control. En: IEEE Transactions on Automatic Control 61 (2016), Nov, Nr. 11, p. 3315-3329spa
dc.relation.referencesG uvenc, L. ; Uygan, I. M. C. ; Kahraman, K. ; Karaahmetoglu, R. ; Altay, I. ; Sent urk, M. ; Emirler, M. T. ; Hartavi Karci, A. E. ; Aksun Guvenc, B. ; Altug, E. ; Turan, M. C. ; Tas, O. S. ; Bozkurt, E. ; Ozguner, U. ; Redmill, K. ; Kurt, A. ; Efendioglu, B.: Cooperative Adaptive Cruise Control Implementation of Team Mekar at the Grand Cooperative Driving Challenge. En: IEEE Transactions on Intelligent Transportation Systems 13 (2012), Sep., Nr. 3, p. 1062-1074spa
dc.relation.referencesHakimi, S L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. En: Operations research 13 (1965), Nr. 3, p. 462-475spa
dc.relation.referencesHarsanyi, John C.: A Simpli ed Bargaining Model for the n-Person Cooperative Game. En: International Economic Review 4 (1963), Nr. 2, p. 194{220. - ISSN 00206598, 14682354spa
dc.relation.referencesHew, S. ; White, L. B.: Cooperative resource allocation games in shared networks: symmetric and asymmetric fair bargaining models. En: IEEE Transactions on Wireless Communications 7 (2008), November, Nr. 11, p. 4166-4175spa
dc.relation.referencesInstruments, National. CompactRIO Developers Guide. 2009spa
dc.relation.referencesInstruments, National. NI PS-16 Power Supply User Manual and Speci cations. 2009spa
dc.relation.referencesIoannou, Petros A. ; Sun, Jing: Robust adaptive control. Courier Corporation, 2012spa
dc.relation.referencesJia, D. ; Lu, K. ; Wang, J. ; Zhang, X. ; Shen, X.: A Survey on Platoon-Based Vehicular Cyber-Physical Systems. En: IEEE Communications Surveys Tutorials 18 (2016), Firstquarter, Nr. 1, p. 263-284spa
dc.relation.referencesKayacan, E.: Multiobjective Hª Control for String Stability of Cooperative Adaptive Cruise Control Systems. En: IEEE Transactions on Intelligent Vehicles 2 (2017), March, Nr. 1, p. 52-61spa
dc.relation.referencesLillicrap, Timothy P. ; Hunt, Jonathan J. ; Pritzel, Alexander ; Heess, Nicolas ; Erez, Tom ; Tassa, Yuval ; Silver, David ; Wierstra, Daan. Continuous control with deep reinforcement learning. 2015spa
dc.relation.referencesMarden, Jason R. ; Shamma, Je S.: Game Theory and Control. En: Annual Review of Control, Robotics, and Autonomous Systems 1 (2018), Nr. 1, p. 105-134spa
dc.relation.referencesMayne, D.Q. ; Rawlings, J.B. ; Rao, C.V. ; Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. En: Automatica 36 (2000), Nr. 6, p. 789 { 814. { ISSN 0005-1098spa
dc.relation.referencesMcdonald, Ashley ; McGehee, Daniel ; Chrysler, Susan ; Angell, Linda ; Askelson, Natoshia ; Seppelt, Bobbie: National Survey Identifying Gaps in Consumer Knowledge of Advanced Vehicle Safety Systems. En: Transportation Research Record Journal of the Transportation Research Board 2559 (2016), 01spa
dc.relation.referencesMesbahi, Mehran ; Egerstedt, Magnus: Graph Theoretic Methods in Multiagent Net- works. STU - Student edition. Princeton University Press, 2010. - ISBN 9780691140612spa
dc.relation.referencesMonopoli, R.: Model reference adaptive control with an augmented error signal. En: IEEE Transactions on Automatic Control 19 (1974), October, Nr. 5, p. 474-484spa
dc.relation.referencesMoser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi: Flexible spacing adaptive cruise control using stochastic model predictive control. En: IEEE Transactions on Control Systems Technology 26 (2017), Nr. 1, p. 114-127spa
dc.relation.referencesMota, Joao F. ; Xavier, Joao M. ; Aguiar, Pedro M. ; P uschel, Markus: D-ADMM: A communication-e cient distributed algorithm for separable optimization. En: IEEE Transactions on Signal Processing 61 (2013), Nr. 10, p. 2718-2723spa
dc.relation.referencesMuir, Patrick F. ; Neuman, Charles P.: Kinematic modeling of wheeled mobile robots. En: Journal of robotic systems 4 (1987), Nr. 2, p. 281-340spa
dc.relation.referencesMYERSON, ROGER B.: Game Theory: Analysis of Con ict. Harvard University Press, 1991. - ISBN 9780674341166spa
dc.relation.referencesNash, John F.: Equilibrium points in n-person games. En: Proceedings of the National Academy of Sciences 36 (1950), Nr. 1, p. 48{49. - ISSN 0027{8424spa
dc.relation.referencesNash Jr, John F.: The Bargaining Problem. En: Econometrica 18 (1950), Nr. 2, p. 155-162spa
dc.relation.referencesNash Jr, John F.: Two-person cooperative games. En: Econometrica 21 (1953), Nr. 1, p. 128-140spa
dc.relation.referencesNecoara, I. ; Doan, D. ; Suykens, J. A. K.: Application of the proximal center decomposition method to distributed model predictive control. En: 2008 47th IEEE Conference on Decision and Control, 2008, p. 2900-2905spa
dc.relation.referencesvon Neumann, John ; Morgenstern, Oskar ; Rubinstein, Ariel: Theory of Ga- mes and Economic Behavior (60th Anniversary Commemorative Edition). Princeton University Press, 1944. - ISBN 9780691130613spa
dc.relation.referencesNguyen, Nhan: Model-Reference Adaptive Control. A Primer. Springer, March 2018. - 123 p.spa
dc.relation.referencesNguyen, Nhan ; Krishnakumar, Kalmanje ; Boskovic, Jovan: An Optimal Control Modi cation to Model-Reference Adaptive Control for Fast Adaptation. En: AIAA Guidance, Navigation and Control Conference and Exhibit (2008), Augustspa
dc.relation.referencesOkada, Akira: A Noncooperative Approach to General n-Person Cooperative Games. En: Graduate School of Economics, Hitotsubashi University, Discussion Papers (2005), 01spa
dc.relation.referencesOlfati-Saber, Reza: Flocking for multi-agent dynamic systems: Algorithms and theory. En: IEEE Transactions on automatic control 51 (2006), Nr. 3, p. 401-420spa
dc.relation.referencesParise, F. ; Gentile, B. ; Grammatico, S. ; Lygeros, J.: Network aggregative games: Distributed convergence to Nash equilibria. En: 2015 54th IEEE Conference on Decision and Control (CDC), 2015, p. 2295-2300spa
dc.relation.referencesPeng, Z. ;Wang, D. ; Chen, Z. ; Hu, X. ; Lan, W.: Adaptive Dynamic Surface Control for Formations of Autonomous Surface Vehicles With Uncertain Dynamics. En: IEEE Transactions on Control Systems Technology 21 (2013), March, Nr. 2, p. 513-520spa
dc.relation.referencesPeters, Hans: Axiomatic bargaining game theory. En: Theory and decision library C, 1992spa
dc.relation.referencesRadke, Friedrich ; Isermann, Rolf: A parameter-adaptive PID-controller with stepwise parameter optimization. En: Automatica 23 (1987), Nr. 4, p. 449-457spa
dc.relation.referencesRen,Wei ; Beard, Randal W. ; Atkins, Ella M.: Information consensus in multivehicle cooperative control. En: IEEE Control systems magazine 27 (2007), Nr. 2, p. 71-82spa
dc.relation.referencesSchenato, Luca ; Gamba, Giovanni: A distributed consensus protocol for clock synchronization in wireless sensor network. En: 2007 46th IEEE Conference on Decision and Control IEEE, 2007, p. 2289-2294spa
dc.relation.referencesShi, C. ; Wang, F. ; Sellathurai, M. ; Zhou, J.: Non-Cooperative Game Theoretic Power Allocation Strategy for Distributed Multiple-Radar Architecture in a Spectrum Sharing Environment. En: IEEE Access 6 (2018), p. 17787-17800spa
dc.relation.referencesSoyster, A. L.: Technical Note|Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. En: Operations Research 21 (1973), Nr. 5, p. 1154-1157spa
dc.relation.referencesThomson, William: Monotonicity of bargaining solutions with respect to the disagreement point. En: Journal of Economic Theory 42 (1987), Nr. 1, p. 50-58spa
dc.relation.referencesTopics, Transport. Tra c congestion costs billions in wasted fuel, time, report says. March 2014spa
dc.relation.referencesValencia, Felipe ; Espinosa, Jairo J. ; Schutter, Bart D. ; Stankova, Katerina: Feasible-Cooperation Distributed Model Predictive Control Scheme Based on Game Theory*. En: IFAC Proceedings Volumes 44 (2011), Nr. 1, p. 386 - 391. - 18th IFAC World Congress. - ISSN 1474-6670spa
dc.relation.referencesValencia, Felipe ; Patiño, Julian ; Lopez, Jose D. ; Espinosa, Jairo: Game Theory Based Distributed Model Predictive Control for a Hydro-Power Valley Control. En: IFAC Proceedings Volumes 46 (2013), Nr. 13, p. 538 - 544. - 13th IFAC Symposium on Large Scale Complex Systems: Theory and Applications. - ISSN 1474-6670spa
dc.relation.referencesVenkat, A. N. ; Rawlings, J. B. ; Wright, S. J.: Stability and optimality of distributed model predictive control. En: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p. 6680-6685spa
dc.relation.referencesWinston, Wayne L.: Introduction to Mathematical Programming: Applications and Algorithms. Duxbury Resource Center, 2003. - ISBN 0534423574spa
dc.relation.referencesYu, Wenwu ; Chen, Guanrong ; Cao, Ming: Consensus in directed networks of agents with nonlinear dynamics. En: IEEE Transactions on Automatic Control 56 (2011), Nr. 6, p. 1436-1441spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalHeterogeneous agentseng
dc.subject.proposalAgerntes heterogéneosspa
dc.subject.proposalControl en tiempo realspa
dc.subject.proposalReal time controleng
dc.subject.proposalAdaptive controleng
dc.subject.proposalControl adaptativospa
dc.subject.proposalModel predictive controleng
dc.subject.proposalControl predictivo basado en modelospa
dc.subject.proposalTeoría de juegosspa
dc.subject.proposalGame theoryeng
dc.subject.proposalCooperative cruise controleng
dc.subject.proposalControl cooperativo de crucerospa
dc.titleSynchronization of heterogeneous agents for cooperative cruise Control through game theoryspa
dc.title.alternativeSincronización de agentes heterogéneos para el control de crucero cooperativo a través de teoría de juegosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMSc.pdf
Tamaño:
2.77 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: