Estudio de los defectos tipo squat en los rieles del Metro de Medellín

dc.contributor.advisorToro, Alejandro
dc.contributor.authorGarcía Jiménez, Jose Alejandro
dc.contributor.cvlacJose A. García-Jiménezspa
dc.contributor.orcidGarcía Jiménez, Jose Alejandro [0000-0002-2549-9982]spa
dc.contributor.researchgroupGrupo de Tribología y Superficiesspa
dc.coverage.cityMedellín (Antioquia, Colombia)
dc.date.accessioned2024-09-19T16:23:15Z
dc.date.available2024-09-19T16:23:15Z
dc.date.issued2024-09-18
dc.descriptionIlustraciones, fotografías, gráficasspa
dc.description.abstractEn los últimos años se han aumentado los reportes de aparición de defectos tipo squat en los rieles de la Línea A del metro de Medellín. Este incremento representa un riesgo para la seguridad del servicio y el confort del usuario, haciendo de este un objeto de estudio importante. Esta investigación se centra en conocer las características superficiales y microestructurales que describen los defectos tipo squat. Con el fin de estudiar estos defectos, se analizaron tres defectos tipo squat en los rieles de las curvas 35 y 96 de la Línea A del Metro de Medellín. Las técnicas que fueron utilizadas para la caracterización de los defectos estudiados son: Microscopia Óptica, Microscopia Electrónica de Barrido (en inglés: Sacanning Electron Microscopy SEM), medidas de dureza y microdurezas en Vickers y medida de perfil de rugosidad. Además, se midió el desgaste ondulatorio en las curvas 35 y 96, antes de que fueran retiradas de servicio, por medio de un análisis de CAT (Corrugation Analysis Trolley) que describe las longitudes de onda en función de la posición recorrida. Se encontró regiones de capa blanca (en inglés: White Etching Layer WEL) y altas deformaciones plásticas en las superficies de las muestras analizadas. Las deformaciones plásticas fueron comparadas a partir de medidas de dureza en zonas con y sin ensanchamiento en la banda de rodadura, algunas zonas con un incremento en la dureza de hasta 130 HV por encima del valor nominal. Luego, en el mapa de estabilización (en inglés: shakedown map) fueron analizados para conocer si se encuentran en la zona de colapso de material. Adicionalmente, se encontró longitudes de onda críticas en el desgaste ondulatorio entre 20-40 mm por medio de las mediciones en el CAT para las curvas 35 y 96. (Tomado de la fuente)spa
dc.description.abstractIn recent years, reports of squat-type defects in the rails of Line A of the Medellín Metro have increased. This rise represents a significant risk to the safety and comfort of passengers, making it essential to study this phenomenon thoroughly. This research focuses on understanding the surface and microstructural characteristics that define squattype defects. To investigate these phenomena, three rail defects from curves 35 and 96 of the Line A from Medellin’s Metro were analyzed. The techniques employed for the characterization included Optical Microscopy, Scanning Electron Microscopy, Vickers hardness and microhardness testing, and surface roughness profiling. Additionally, rail corrugation measurements were done in curves 35 and 96 using a Corrugation Analysis Trolley (CAT) before these rail sections were removed from service. The CAT analysis provided data on wavelength variations along the track. The study identified regions of White Etching Layer (WEL) and significant plastic deformation on the analyzed surfaces. Plastic deformations were compared through a hardness analysis in areas with and without widening of the running band, with some regions showing an increase in hardness of up to 130 HV above the nominal value. These deformations were then analyzed using a shakedown map to determine if they belonged to the material collapse zone. These deformations were then analyzed using a shakedown map to determine if they belonged to the material collapse zone. Furthermore, critical wavelengths between 20-40 mm were identified through the rail corrugation with CAT on curves 35 and 96.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMaterialesspa
dc.description.researchareaSuperficiesspa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86845
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAl-Juboori A. (2020). Mechanisms of squat initiation and propagation on rail surfaces. https://ro.uow.edu.au/theses1.https://ro.uow.edu.au/theses1/747spa
dc.relation.referencesAl-Juboori, A., Wexler, D., Li, H., Zhu, H., Lu, C., McCusker, A., McLeod, J., Pannil, S., & Wang, Z. (2017). Squat formation and the occurrence of two distinct classes of white etching layer on the surface of rail steel. International Journal of Fatigue, 104, 52–60. https://doi.org/10.1016/j.ijfatigue.2017.07.005spa
dc.relation.referencesAl-Juboori, A., Zhu, H., Wexler, D., Li, H., Lu, C., McCusker, A., McLeod, J., Pannila, S., & Barnes, J. (2019a). Characterisation of White Etching Layers formed on rails subjected to different traffic conditions. Wear, 436–437. https://doi.org/10.1016/j.wear.2019.202998spa
dc.relation.referencesAl-Juboori, A., Zhu, H., Wexler, D., Li, H., Lu, C., McCusker, A., McLeod, J., Pannila, S., & Barnes, J. (2019b). Evolution of rail surface degradation in the tunnel: The role of water on squat growth under service conditions. Engineering Fracture Mechanics, 209, 32–47. https://doi.org/10.1016/j.engfracmech.2019.01.018spa
dc.relation.referencesASTM International. (2015). Standard Practice for Microetching Metals and Alloys (E407-07). https://doi.org/10.1520/E0407-07R15E01spa
dc.relation.referencesASTM International. (2017). Standard Guide for Preparation of Metallographic Specimens (E3-11). In ASTM. ASTM. https://doi.org/10.1520/E0003-11R17spa
dc.relation.referencesBaumann, G., Fecht, H. J., & Liebelt, S. (1996). Formation of white-etching layers on rail treads. In Wear (Vol. 191).spa
dc.relation.referencesBedoya-Zapata, D., Rojas-Parra, S., Díaz-Mazo, J. H., García-Jiménez, J. A., López-Londoño, J. E., Vergara-Puello, R. A., Molina, L. F., Santa-Marín, J. F., Toro, A., Mesaritis, M., Lewis, R., & Palacio, M. (2021). Case study: Understanding the formation of squat-type defects in a metropolitan railway. Engineering Failure Analysis, 123. https://doi.org/10.1016/j.engfailanal.2021.105325spa
dc.relation.referencesCho, H., & Park, J. (2021). Study of rail squat characteristics through analysis of train axle box acceleration frequency. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11157022spa
dc.relation.referencesCho, H., Park, J., & Park, K. (2023). Analysis of Axial Acceleration for the Detection of Rail Squats in High-Speed Railways. CivilEng, 4(4), 1143–1156. https://doi.org/10.3390/civileng4040062spa
dc.relation.referencesClayton, P., & Allery, M. B. P. (1982). METALLURGICAL ASPECTS OF SURFACE DAMAGE PROBLEMS IN RAILS. In Canadian Metallurgical Quarterly (Vol. 21, Issue I).spa
dc.relation.referencesDeng, X., Li, Z., Qian, Z., Zhai, W., Xiao, Q., & Dollevoet, R. (2019). Pre-cracking development of weld-induced squats due to plastic deformation: Five-year field monitoring and numerical analysis. International Journal of Fatigue, 127, 431–444. https://doi.org/10.1016/j.ijfatigue.2019.06.013spa
dc.relation.referencesDeng, X., Qian, Z., Li, Z., & Dollevoet, R. (2018). Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring. International Journal of Fatigue, 112, 94–105. https://doi.org/10.1016/j.ijfatigue.2018.03.002spa
dc.relation.referencesDikshit, V., Clayton, P., & Christensen, D. (1991). Investigation of rolling contact fatigue in a head-hardened rail. In Wear* (Vol. 144).spa
dc.relation.referencesDu, X., Jin, X., Zhao, G., Wen, Z., & Li, W. (2021). Rail Corrugation of High-Speed Railway Induced by Rail Grinding. Shock and Vibration, 2021. https://doi.org/10.1155/2021/5546809spa
dc.relation.referencesFarjoo, M., Daniel, W., & Meehan, P. A. (2012). Modelling a squat form crack on a rail laid on an elastic foundation. Engineering Fracture Mechanics, 85, 47–58. https://doi.org/10.1016/j.engfracmech.2012.02.004spa
dc.relation.referencesFröhling, R., De Koker, J., & Amade, M. (2009). Rail lubrication and its impact on the wheel/rail system. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(2), 173–180. https://doi.org/10.1243/09544097JRRT218spa
dc.relation.referencesGrassie, S. L. (2012). Squats and squat-type defects in rails: The understanding to date. In Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit (Vol. 226, Issue 3, pp. 235–242). https://doi.org/10.1177/0954409711422189spa
dc.relation.referencesGrassie, S. L. (2016). Studs and squats: The evolving story. Wear, 366–367, 194–199. https://doi.org/10.1016/j.wear.2016.03.021spa
dc.relation.referencesGrassie, S. L., Fletcher, D. I., Gallardo Hernandez, E. A., & Summers, P. (2012). Studs: A squat-type defect in rails. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226(3), 243–256. https://doi.org/10.1177/0954409711421462spa
dc.relation.referencesGrassie, S. L., & Kalousek, J. (1993). Rail Corrugation: Characteristics, Causes and Treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 207(1), 57–68. https://doi.org/10.1243/PIME_PROC_1993_207_227_02spa
dc.relation.referencesHajizad, O., Kumar, A., Li, Z., Petrov, R. H., Sietsma, J., & Dollevoet, R. (2019). Influence of microstructure on mechanical properties of bainitic steels in railway applications. Metals, 9(7). https://doi.org/10.3390/met9070778spa
dc.relation.referencesHasan, N. (2019). Shakedown Limits and Uses in Railroad Engineering. Journal of Materials in Civil Engineering, 31(11). https://doi.org/10.1061/(asce)mt.1943-5533.0002925spa
dc.relation.referencesJohnson, K. L. (1985). Contact Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139171731spa
dc.relation.referencesJones, C. P., Tyfour, W. R., Beynon, J. H., & Kapoor, A. (n.d.). The effect of strain hardening on shakedown limits of a pearlitic rail steel.spa
dc.relation.referencesKerr M, Wilson A, & Marich S. (2008). The epidemiology of squats and related rail defects. Conference on Railway Engineering.spa
dc.relation.referencesLewis, R. (Roger), & Olofsson, U. (Ulf). (2009). Wheel-rail interface handbook. CRC Press.spa
dc.relation.referencesLi, S., Wu, J., Petrov, R. H., Li, Z., Dollevoet, R., & Sietsma, J. (2016). “Brown etching layer”: A possible new insight into the crack initiation of rolling contact fatigue in rail steels? Engineering Failure Analysis, 66, 8–18. https://doi.org/10.1016/j.engfailanal.2016.03.019spa
dc.relation.referencesLi, Z., Dollevoet, R., Molodova, M., & Zhao, X. (2011). Squat growth-Some observations and the validation of numerical predictions. Wear, 271(1–2), 148–157. https://doi.org/10.1016/j.wear.2010.10.051spa
dc.relation.referencesLi, Z., Molodova, M., Nunez, A., & Dollevoet, R. (2015). Improvements in axle box acceleration measurements for the detection of light squats in railway infrastructure. IEEE Transactions on Industrial Electronics, 62(7), 4385–4397. https://doi.org/10.1109/TIE.2015.2389761spa
dc.relation.referencesLi, Z., Zhao, X., & Dollevoet, R. (2017). An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects. International Journal of Rail Transportation, 5(1), 16–37. https://doi.org/10.1080/23248378.2016.1194775spa
dc.relation.referencesLi, Z., Zhao, X., Dollevoet, R., & Molodova, M. (2008). Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects. Vehicle System Dynamics, 46(SUPPL.1), 237–246. https://doi.org/10.1080/00423110801935855spa
dc.relation.referencesLi, Z., Zhao, X., Esveld, C., Dollevoet, R., & Molodova, M. (2008). An investigation into the causes of squats-Correlation analysis and numerical modeling. Wear, 265(9–10), 1349–1355. https://doi.org/10.1016/j.wear.2008.02.037spa
dc.relation.referencesMesaritis, M., Santa, J. F., Molina, L. F., Palacio, M., Toro, A., & Lewis, R. (2023). Post-field grinding evaluation of different rail grades in full-scale wheel/rail laboratory tests. Tribology International, 177. https://doi.org/10.1016/j.triboint.2022.107980spa
dc.relation.referencesMessaadi, M., & Steenbergen, M. (2018). Stratified surface layers on rails. Wear, 414–415, 151–162. https://doi.org/10.1016/j.wear.2018.07.019spa
dc.relation.referencesMolodova, M., Li, Z., Nunez, A., & Dollevoet, R. (2014). Automatic detection of squats in railway infrastructure. IEEE Transactions on Intelligent Transportation Systems, 15(5), 1980–1990. https://doi.org/10.1109/TITS.2014.2307955spa
dc.relation.referencesNaeimi, M., Li, Z., & Dollevoet, R. (2015). Nucleation of squat cracks in rail, calculation of crack initiation angles in three dimensions. Journal of Physics: Conference Series, 628(1). https://doi.org/10.1088/1742-6596/628/1/012043spa
dc.relation.referencesNaeimi, M., Li, Z., Qian, Z., Zhou, Y., Wu, J., Petrov, R. H., Sietsma, J., & Dollevoet, R. (2017). Reconstruction of the rolling contact fatigue cracks in rails using X-ray computed tomography. NDT and E International, 92, 199–212. https://doi.org/10.1016/j.ndteint.2017.09.004spa
dc.relation.referencesPablo Restrepo-Barrientos. (2024). Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure. Universidad Nacional De Colombia.spa
dc.relation.referencesPal, S., Valente, C., Daniel, W., & Farjoo, M. (2012). Metallurgical and physical understanding of rail squat initiation and propagation. Wear, 284–285, 30–42. https://doi.org/10.1016/j.wear.2012.02.013spa
dc.relation.referencesPaloma Vila Tortosa. (2015). Modelado del crecimiento del desgaste ondulatorio en carriles ferroviarios. Universitat Politècnica de València.spa
dc.relation.referencesPereira, J. I., Tressia, G., Kina, E. J., Sinatora, A., & Souza, R. M. (2021a). Analysis of subsurface layer formation on a pearlitic rail under heavy haul conditions: Spalling characterization. Engineering Failure Analysis, 130. https://doi.org/10.1016/j.engfailanal.2021.105549spa
dc.relation.referencesPereira, J. I., Tressia, G., Kina, E. J., Sinatora, A., & Souza, R. M. (2021b). Analysis of subsurface layer formation on a pearlitic rail under heavy haul conditions: Spalling characterization. Engineering Failure Analysis, 130. https://doi.org/10.1016/j.engfailanal.2021.105549spa
dc.relation.referencesSmulders. (2003, July 1). Management and research tackle rolling contact fatigue. Railway Gazette International.spa
dc.relation.referencesSteenbergen, M., & Dollevoet, R. (2013a). On the mechanism of squat formation on train rails - Part I: Origination. International Journal of Fatigue, 47, 361–372. https://doi.org/10.1016/j.ijfatigue.2012.04.023spa
dc.relation.referencesSteenbergen, M., & Dollevoet, R. (2013b). On the mechanism of squat formation on train rails - Part II: Growth. International Journal of Fatigue, 47, 373–381. https://doi.org/10.1016/j.ijfatigue.2012.04.019spa
dc.relation.referencesUNE. (2012). Aplicaciones ferroviarias Vía Carriles Parte 1: Carriles Vignole de masa mayor o igual a 46 kg/m (EN 13674-1). In UNE.spa
dc.relation.referencesWu, J., Petrov, R. H., Naeimi, M., Li, Z., Dollevoet, R., & Sietsma, J. (2016). Laboratory simulation of martensite formation of white etching layer in rail steel. International Journal of Fatigue, 91, 11–20. https://doi.org/10.1016/j.ijfatigue.2016.05.016spa
dc.relation.referencesYuan, Z., Zhu, S., Chang, C., Yuan, X., Zhang, Q., & Zhai, W. (2021). An unsupervised method based on convolutional variational auto-encoder and anomaly detection algorithms for light rail squat localization. Construction and Building Materials, 313. https://doi.org/10.1016/j.conbuildmat.2021.125563spa
dc.relation.referencesZhang, H., Zhang, S. Y., Zhong, H., Wang, W. J., Meli, E., Cui, X. L., Ding, H. H., & Liu, Q. Y. (2022). Damage mechanism of a long-wavelength corrugated rail associated with rolling contact fatigue. Engineering Failure Analysis, 136. https://doi.org/10.1016/j.engfailanal.2022.106173spa
dc.relation.referencesZhao, X., Li, Z., & Dollevoet, R. (2013). The vertical and the longitudinal dynamic responses of the vehicle-track system to squat-type short wavelength irregularity. Vehicle System Dynamics, 51(12), 1918–1937. https://doi.org/10.1080/00423114.2013.847466spa
dc.relation.referencesZhu, H., Li, H., Al-Juboori, A., Wexler, D., Lu, C., McCusker, A., McLeod, J., Pannila, S., & Barnes, J. (2020). Understanding and treatment of squat defects in a railway network. Wear, 442–443, 203139. https://doi.org/10.1016/j.wear.2019.203139spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carreteraspa
dc.subject.lembFerrocarriles - Mantenimiento y reparación
dc.subject.lembTransporte ferroviario - Medellín (Colombia)
dc.subject.lembVías férreas - Medellín (Colombia)
dc.subject.lembVías férreas - Mantenimiento y reparación
dc.subject.lembRieles (Ferrocarriles) - Mantenimiento y reparación
dc.subject.proposalDefectos tipo squatspa
dc.subject.proposalDesgaste ondulatoriospa
dc.subject.proposalEndurecimiento por deformaciónspa
dc.subject.proposalSquat-type defectseng
dc.subject.proposalCorrugation weareng
dc.subject.proposalStrain hardeningeng
dc.titleEstudio de los defectos tipo squat en los rieles del Metro de Medellínspa
dc.title.translatedStudy of squat-type defects in the rails of the Medellín Metroeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152469557_2024.pdf
Tamaño:
6.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: