Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia

dc.contributor.advisorFranco Peñaloza, Roberto
dc.contributor.advisorRamos Rodriguez, Edwin
dc.contributor.authorAranguren Quintero, Daniel Felipe
dc.contributor.researchgroupGrupo de Sistemas Correlacionadosspa
dc.date.accessioned2022-07-26T13:31:09Z
dc.date.available2022-07-26T13:31:09Z
dc.date.issued2022-07
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl presente trabajo estudia y extiende, mediante argumentos de universalidad, el comportamiento térmico dentro del régimen Kondo, de las distintas propiedades termoeléctricas tales como: La termopotencia, la conductancia eléctrica y la conductancia térmica, dentro de nanoestructuras semiconductoras comprimidas. Aduciendo, a la fuerte evidencia tanto experimental como teórica de condiciones de universalidad para la conductancia eléctrica zero − bias (sin potencial externo aplicado), en función de la temperatura normalizada T∗ = T/TK, con TK actuando como la temperatura de Kondo. Estudiamos, por medio del modelo de impureza de Anderson SIAM, un sistema idealizado compuesto por un punto cuántico inmerso dentro un canal de conducción balístico (hilos cuánticos). Para este sistema, se establece un mapeo lineal sobre el cual, se pueden expresar los coeficientes de transporte termoeléctrico, en términos de la condición (universal) simétrica partícula-hueco, junto a un cambio fase δ producto de los procesos de dispersión cuánticos. Asimismo, bajo el grupo de renormalización numérica (NRG), se calculan los coeficientes termoeléctricos para este sistema, permitiendo así, ilustrar tanto la física implícita en estos procesos, como la validez del mapeo lineal, dentro de un variado rango de temperaturas. De igual modo, se aplicaron los resultados obtenidos, para los coeficientes termoeléctricos en su forma universal, sobre algunos resultados experimentales recientes, asociados a la conductancia eléctrica y el termo-voltaje Vgate dentro de un rango limitado de temperaturas en el régimen Kondo. Logrando con esto, calcular todas las propiedades termoeléctricas derivadas de los mismos, seguido de la obtención, de algunas expresiones analíticas simples, que pueden ser empleadas para predecir, validar y/o ajustar resultados experimentales. Sin embargo, debido a la ausencia de mediciones experimentales, sobre las otras propiedades termoeléctricas dentro de un rango variado de temperaturas, no fue posible examinar la validez de los resultados para las mismas. Por otro lado, empleando las relaciones universales obtenidas para los coeficientes de transporte termoeléctrico (Onsager), junto al parámetro de Mahan-Sofo. Se logra deducir una expresión tal que permite, obtener condiciones que maximizan la figura térmica de mérito multiplicada por la temperatura ZT en función del cambio de fase δ implícito, dentro del régimen Kondo. Así, al evaluar esta expresión sobre el sistema de un único punto cúantico inmerso entre dos hilos cuánticos, se encuentra que, bajo estas condiciones, es físicamente imposible obtener un cambio de fase, que permita maximizar la eficiencia térmica de este tipo de sistemas. De esta forma, se estudia mediante el método de aproximación atómica, un sistema “mejorado” compuesto por dos puntos cuánticos acoplados no interactuantes entre si, pero con fuerte correlación electrónica en cada punto cuántico. En este sistema, variando la energía del primer punto cuántico (el Vgate en sistemas experimentales), mientras se mantiene el segundo punto cuántico en la condición simétrica (simetría-electrón-hueco), se logra encontrar condiciones que replican el cambio de fase δ necesario para optimizar la figura térmica de mérito ZT y por ende, la eficiencia termoeléctrica del sistema. (Texto tomado de la fuente)spa
dc.description.abstractThe present work studies and extends, by universality arguments, the thermal behavior on the Kondo regime, for the different thermoelectric properties like: Thermopower, electrical conductance and thermal conductance. Within compressed semiconductor nanostructures. Adducing, to the strong experimental and theoretical evidence of universality conditions, for the electrical conductance zero − bias (no external potential applied), as a function of the normalized temperature T∗ =T/TK, where TK is the Kondo temperature. Studying, by the single impurity model SIAM, on an idealized system composed of a quantum dot enbedded in a ballistic conduction channel (quantum wires). For this system, we establish a linear mapping for the thermoelectric transport coefficients, allowing expressed in terms of the universal symmetric particle-hole condition, together with a phase shift δ product of the quantum scattering process. Likewise, under the numerical renormalization group (NRG), the thermoelectric coefficients for this system are calculated, thus allowing to illustrate both the physics implicit in these process, as well as the validity of the linear mapping, within a wide range of temperatures. On the same way, applying the thermoelectric coefficients in their universal form, on some recent experimental results, associated with the electrical conductance and the thermo-voltage Vgate on a limited temperature range in the Kondo regime. Achieving with this, calculate all the thermoelectric properties derived from them, followed by some simple analytical fit expressions, which can be used to predict, validate and/or adjust experimental results. However, due to the absence of experimental measurements for others thermoelectric properties within widdly range of temperatures, it was not possible examine the validity of the results for them. By other way, using the universal relationships obtained for the thermoelectric transport coefficients (Onsager), together with the Mahan-Sofo parameter. It is possible to deduce an expression such that it allows obtaining conditions that maximize the thermal figure of merit multiplied by the temperature ZT as a function of the implicit phase shift δ. Thus, when we evaluatate this expression on the system of a single quantum dot immersed between two quantum wires, in the Kondo regime. We found that, under these conditions, it is physically impossible to obtain a phase shift that allows maximizing the thermal efficiency for this type of system. Then, using the atomic approximation method, on a “tuned” system composed of two coupled quantum dots whitout interdot correlation, but strongly correlated in each quantum dot. On which, varying the energy level on the first quantum dot (the Vgate in experimental systems), while maintaining the second quantum dot in the symmetric electron-hole condition. It’s possible find, conditions that replicate the phase shift δ necessary to optimize the thermal figure of merit ZT and therefore, the thermodynamic efficiency of these type systemseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaSistemas nanoestructuradosspa
dc.format.extentxiv, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81751
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye, “Observation of the fano kondo antiresonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. Lett., vol. 95, p. 066801, Aug 2005.spa
dc.relation.referencesA. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, and M. Leijn se, “Thermoelectric characterization of the kondo resonance in nanowire quantum dots,” Phys. Rev. Lett., vol. 121, p. 206801, Nov 2018.spa
dc.relation.referencesJ. He and T. Tritt, “Advances in thermoelectric materials research: Looking back and moving forward,” Science, vol. 357, p. eaak9997, 09 2017.spa
dc.relation.referencesC. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, “Nanostructured ther moelectrics: Big efficiency gains from small features,” Advanced Materials, vol. 22, no. 36, pp. 3970–3980, 2010.spa
dc.relation.referencesZ.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge,” Progress in Natural Science: Mate rials International, vol. 22, no. 6, pp. 535–549, 2012.spa
dc.relation.referencesT. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum dot superlattice thermoelectric materials and devices,” Science, vol. 297, no. 5590, pp. 2229–2232, 2002.spa
dc.relation.referencesJ. Parks, A. Champagne, T. Costi, W. Shum, A. Pasupathy, E. Neuscamman, S. Flores Torres, P. Cornaglia, A. Aligia, C. Balseiro, et al., “Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect,” Science, vol. 328, no. 5984, pp. 1370–1373, 2010.spa
dc.relation.referencesC. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-state thermal rectifier,” Science, vol. 314, no. 5802, pp. 1121–1124, 2006.spa
dc.relation.referencesR. Scheibner, H. Buhmann, D. Reuter, M. Kiselev, and L. Molenkamp, “Thermopower of a kondo spin-correlated quantum dot,” Physical review letters, vol. 95, no. 17, p. 176602, 2005.spa
dc.relation.referencesR. Scheibner, E. Novik, T. Borzenko, M. K¨onig, D. Reuter, A. Wieck, H. Buhmann, and L. Molenkamp, “Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots,” Physical Review B, vol. 75, no. 4, p. 041301, 2007.spa
dc.relation.referencesO.-P. Saira, M. Meschke, F. Giazotto, A. M. Savin, M. M¨ott¨onen, and J. P. Pekola, “Heat transistor: Demonstration of gate-controlled electronic refrigeration,” Physical review letters, vol. 99, no. 2, p. 027203, 2007.spa
dc.relation.referencesN. Linden, S. Popescu, and P. Skrzypczyk, “How small can thermal machines be? the smallest possible refrigerator,” Physical review letters, vol. 105, no. 13, p. 130401, 2010.spa
dc.relation.referencesM. Grobis, I. Rau, R. Potok, H. Shtrikman, and D. Goldhaber-Gordon, “Universal scaling in nonequilibrium transport through a single channel kondo dot,” Physical review letters, vol. 100, no. 24, p. 246601, 2008.spa
dc.relation.referencesA. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl, A. Weichselbaum, J. von Delft, T. Costi, and D. Mahalu, “Spin-1 2 kondo effect in an inas nanowire quantum dot: Unitary limit, conductance scaling, and zeeman splitting,” Physical Review B, vol. 84, no. 24, p. 245316, 2011.spa
dc.relation.referencesT. Costi and V. Zlati´c, “Thermoelectric transport through strongly correlated quantum dots,” Physical Review B, vol. 81, no. 23, p. 235127, 2010.spa
dc.relation.referencesM. Yoshida and L. N. d. Oliveira, “Thermoelectric effects in quantum dots,” Physica B: Condensed Matter, vol. 404, no. 19, pp. 3312–3315, 2009.spa
dc.relation.referencesD. Boese and R. Fazio, “Thermoelectric effects in kondo-correlated quantum dots,” EPL (Europhysics Letters), vol. 56, no. 4, p. 576, 2001.spa
dc.relation.referencesB. Dong and X. Lei, “Effect of the kondo correlation on the thermopower in a quantum dot,” Journal of Physics: Condensed Matter, vol. 14, no. 45, p. 11747, 2002.spa
dc.relation.referencesD. Ferry and S. M. Goodnick, Transport in Nanostructures. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, 1997.spa
dc.relation.referencesG. S. Nolas, J. Sharp, and H. G. Thermoelectrics, “Basic principles and new materials developments,” in Thermoelectrics, Springer, 2001.spa
dc.relation.referencesJ. Haˇs´ık, E. Tosatti, and R. Marto˚A´ak, “Quantum and classical ripples in graphene,” Physical Review B, Volume 97, Issue 14, id.140301, vol. 97, p. 140301, apr 2018.spa
dc.relation.referencesJ. Kondo, “Resistance Minimum in Dilute Magnetic Alloys,” Progress of Theoretical Physics, vol. 32, pp. 37–49, July 1964.spa
dc.relation.referencesJ. R. Schrieffer and P. A. Wolff, “Relation between the anderson and kondo hamilto nians,” Phys. Rev., vol. 149, pp. 491–492, Sep 1966.spa
dc.relation.referencesP. W. Anderson, “Localized magnetic states in metals,” Phys. Rev., vol. 124, pp. 41–53, Oct 1961.spa
dc.relation.referencesD. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Mei rav, “From the kondo regime to the mixed-valence regime in a single-electron transistor,” Phys. Rev. Lett., vol. 81, pp. 5225–5228, Dec 1998.spa
dc.relation.referencesT. A. Costi, A. C. Hewson, and V. Zlatic, “Transport coefficients of the anderson model via the numerical renormalization group,” Journal of Physics: Condensed Matter, vol. 6, p. 2519–2558, Mar 1994.spa
dc.relation.referencesM. Yoshida, A. C. Seridonio, and L. N. Oliveira, “Universal zero-bias conductance for the single-electron transistor,” Physical Review B, vol. 80, no. 23, p. 235317, 2009.spa
dc.relation.referencesA. Seridonio, M. Yoshida, and L. Oliveira, “Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot,” Physical Review B, vol. 80, no. 23, p. 235318, 2009.spa
dc.relation.referencesE. Ramos, R. Franco, J. Silva-Valencia, and M. Figueira, “Thermoelectric transport properties of a t-coupled quantum dot: Atomic approach for the finite u case,” Physica E: Low-dimensional Systems and Nanostructures, vol. 64, pp. 39–44, 2014.spa
dc.relation.referencesG. Mahan and J. Sofo, “The best thermoelectric,” Proceedings of the National Academy of Sciences, vol. 93, no. 15, pp. 7436–7439, 1996.spa
dc.relation.referencesD. Goldhaber-Gordon, J. Gores, H. Shtrikman, D. Mahalu, U. Meirav, and M. Kastner, “The kondo effect in a single-electron transistor,” Materials Science and Engineering: B, vol. 84, no. 1, pp. 17 – 21, 2001.spa
dc.relation.referencesA. Hewson, “The kondo problem to heavy fermions (cambridge university press, cambridge, 1993).”spa
dc.relation.referencesH. Krishna-Murthy, J. Wilkins, and K. Wilson, “Renormalization-group approach to the anderson model of dilute magnetic alloys. i. static properties for the symmetric case,” Physical Review B, vol. 21, no. 3, p. 1003, 1980spa
dc.relation.referencesN. Andrei, K. Furuya, and J. Lowenstein, “Solution of the kondo problem,” Reviews of modern physics, vol. 55, no. 2, p. 331, 1983spa
dc.relation.referencesD. Stradi, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, “General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium green’s function,” Physical Review B, vol. 93, no. 15, p. 155302, 2016spa
dc.relation.referencesA. Seridonio, M. Yoshida, and L. Oliveira, “Thermal dependence of the zero-bias con ductance through a nanostructure,” EPL (Europhysics Letters), vol. 86, no. 6, p. 67006, 2009spa
dc.relation.referencesD. Goldhaber-Gordon, J. G¨ores, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Mei rav, “From the kondo regime to the mixed-valence regime in a single-electron transistor,” Phys. Rev. Lett., vol. 81, pp. 5225–5228, Dec 1998spa
dc.relation.referencesL. N. Oliveira, M. Yoshida, and A. C. Seridonio, “Universal conductance for the anderson model,” Journal of Physics: Conference Series, vol. 200, p. 052020, jan 2010spa
dc.relation.referencesR. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, “Ther mopower of a kondo spin-correlated quantum dot,” Phys. Rev. Lett., vol. 95, p. 176602, Oct 2005spa
dc.relation.referencesE. A. Hoffmann, H. A. Nilsson, J. E. Matthews, N. Nakpathomkun, A. I. Persson, L. Samuelson, and H. Linke, “Measuring temperature gradients over nanometer length scales,” Nano Letters, vol. 9, no. 2, pp. 779–783, 2009spa
dc.relation.referencesS. F. Svensson, E. A. Hoffmann, N. Nakpathomkun, P. M. Wu, H. Q. Xu, H. A. Nilsson, D. Sánchez, V. Kashcheyevs, and H. Linke, “Nonlinear thermovoltage and thermocurrent in quantum dots,” New Journal of Physics, vol. 15, p. 105011, oct 2013spa
dc.relation.referencesB. Dutta, D. Majidi, A. García Corral, P. A. Erdman, S. Florens, T. A. Costi, H. Courtois, and C. B. Winkelmann, “Direct probe of the seebeck coefficient in a kondo correlated single-quantum-dot transistor,” Nano Letters, vol. 19, pp 506–511, Jan 2019spa
dc.relation.referencesT. Lobo, M. Figueira, and M. Foglio, “The atomic approach to the anderson model for the finite u case: application to a quantum dot,” Nanotechnology, vol. 21, no. 27, p. 274007, 2010spa
dc.relation.referencesE. Ramos, J. Silva-Valencia, R. Franco, and M. Figueira, “The thermoelectric figure of merit for the single electron transistor,” International journal of thermal sciences, vol. 86, pp. 387–393, 2014spa
dc.relation.referencesA. Takayama, Basic Principle of Photoemission Spectroscopy and Spin Detector, pp. 15– 30. Tokyo: Springer Japan, 2015spa
dc.relation.referencesS. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, “State-to-state exciton dynamics in semiconductor quantum dots,” Phys. Rev. B, vol. 74, p. 235328, Dec 2006spa
dc.relation.referencesP. Vitushinsky, Theoretical study of the Kondo effect in the quantum dots. Theses, Université Joseph-Fourier - Grenoble I, Nov. 2005spa
dc.relation.referencesM. Ternes, A. Heinrich, and W.-D. Schneider, “Spectroscopic manifestations of the kondo effect on single atoms,” Journal of physics. Condensed matter : an Institute of Physics journal, vol. 21, p. 053001, 02 2009spa
dc.relation.referencesS. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, “Pseudospin-resolved transport spectroscopy of the kondo effect in a double quantum dot,” Phys. Rev. Lett., vol. 110, p. 046604, Jan 2013spa
dc.relation.referencesJ. Yu, S. Shendre, W.-k. Koh, B. Liu, M. Li, S. Hou, C. Hettiarachchi, S. Delikanli, P. Hernandez Martinez, M. D. Birowosuto, H. Wang, T. Sum, H. Demir, and C. Dang, “Electrically control amplified spontaneous emission in colloidal quantum dots,” Science Advances, vol. 5, p. eaav3140, 10 2019spa
dc.relation.referencesC. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nature Reviews Materials, vol. 1, no. 9, pp. 1–13, 2016spa
dc.relation.referencesJ. Von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z, vol. 30, pp. 465–467, 1929spa
dc.relation.referencesG. Ordonez, K. Na, and S. Kim, “Bound states in the continuum in quantum-dot pairs,” Phys. Rev. A, vol. 73, p. 022113, Feb 2006spa
dc.relation.referencesG. Ordonez, K. Na, and S. Kim, “Bound states in the continuum in quantum-dot pairs,” Physical Review A, vol. 73, no. 2, p. 022113, 2006spa
dc.relation.referencesC. S. Kim and A. M. Satanin, “Dynamic confinement of electrons in time-dependent quantum structures,” Physical Review B, vol. 58, no. 23, p. 15389, 1998spa
dc.relation.referencesA. S. C.S Kim, “Dynamic confinement of electrons in time dependent quantum structures.,” Physical Review B., vol. 58, 1998spa
dc.relation.referencesR. U. Haq, S. S. Bharadwaj, and T. A. Wani, “An explicit method for schrieffer-wolff transformation,” 2019spa
dc.relation.referencesR. U. Haq and S. S. Bharadwaj, “Schrieffer-wolff transformation of anderson models,” 2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.othersingle-electron transistoreng
dc.subject.otherTransistor de electrón únicospa
dc.subject.proposalUniversalidadspa
dc.subject.proposalSET
dc.subject.proposalTemperatura Kondospa
dc.subject.proposalPuntos cuánticosspa
dc.subject.proposalModelo de Andersonspa
dc.subject.proposalGrupo de renormalización numéricospa
dc.subject.proposalTermoelectricidadspa
dc.subject.proposalFigura térmica de méritospa
dc.subject.proposalEficiencia termoeléctricaspa
dc.subject.proposalCoeficientes de transportespa
dc.subject.proposalEfecto Seebeckspa
dc.subject.proposalAproximación atómicaspa
dc.subject.proposalUniversalityeng
dc.subject.proposalKondo Temperatureeng
dc.subject.proposalQuantum Dotseng
dc.subject.proposalAnderson Modeleng
dc.subject.proposalNumerical Renormalization Groupeng
dc.subject.proposalAtomic Approximation for the Anderson Modeleng
dc.subject.proposalThermoelectricityeng
dc.subject.proposalThermal Figure of Meriteng
dc.subject.proposalThermoelectric Efficiencyeng
dc.subject.proposalTransport Coefficientseng
dc.subject.proposalSeebeck Effecteng
dc.titleEstudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficienciaspa
dc.title.translatedStudy of thermoelectric properties in nanostructured systems: possible conditions to optimize efficiencyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022361870_2022_07.pdf
Tamaño:
5.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Físicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: